微分方程 ppt课件

合集下载

常微分方程第一章课件

常微分方程第一章课件

数值解法的稳定性
数值解法的稳定性是指数值解法对于离散化误差的敏感程度,如果数值 解法对于离散化误差敏感,则会导致数值解的精度下降甚至失去意义。
数值解法的稳定性可以分为条件稳定性和无条件稳定性,其中条件稳定 性是指数值解法在一定条件下是稳定的,无条件稳定性是指数值解法在
任何条件下都是稳定的。
对于不稳定的数值解法,可以采用一些改进的方法来提高其稳定性,例 如减小步长、增加迭代次数等。
04
微分方程的应用
物理中的应用
力学
描述物体的运动规律,如牛顿第二定律、万有引力定律等。
电磁学
解释电磁现象,如振荡电路、交流电等。
光学
研究光的传播规律,如波动光学中的干涉和衍射等。
经济中的应用
1 2
金融
预测股票价格、债券收益率等金融产品的动态变 化。
供需关系
分析商品价格与市场需求和供应之间的关系。
微分方程的几何意义
总结词
微分方程的几何意义是通过图形表示未知函数和其导数的变化规律,有助于直观理解方 程的性质和求解方法。
详细描述
通过作图,可以直观地表示微分方程的解,即未知函数的导数随自变量的变化规律。例 如,一阶常微分方程描述了一条曲线的斜率变化规律,二阶常微分方程描述了曲线的弯 曲程度等。通过观察图形,可以更好地理解微分方程的性质和求解方法,例如,通过观
察斜率的变化规律可以求解一阶常微分方程。
02
一阶常微分方程
一阶线性微分方程
定义
应用
形如y'=ay+b的微分方程,其中a和b 为常数,a≠0。
描述物理、工程等领域的线性现象。
解法
通过变量代换y=e^(at),将其转化为 线性方程。

高等数学第七章第一节微分方程的基本概念课件.ppt

高等数学第七章第一节微分方程的基本概念课件.ppt
解: 如图所示, 点 P(x, y) 处的法线方程为
令 Y = 0 , 得 Q 点的横坐标
即 yy 2x 0
y P
Qo xx
引例1 通解:
dy dx
2x
y x1 2
引例2
y x2 C
d2y dx2
0.4
s t0 0 ,
ds dt
t0 20
s 0.2t 2 C1t C2
特解: y x2 1
s 0.2t 2 20t
例1. 验证函数 是微分方程
(C1 , C2为常数 )
的解, 并求满足初始条件
x
t0
A, dx
dt
t00
的特解 .
解:
k 2 (C1 sin kt C2 cos kt ) 这说明 x C1 cos kt C2 sin kt 是方程的解 .
是两个独立的任意常数, 故它是方程的通解.
利用初始条件易得:
故所求特解为
x Acos k t
例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求所满足的微分方程 .
微分方程的基本概念
含未内容)
分类 偏微分方程
方程中所含未知函数导数的最高阶数叫做微分方程 的阶.
一般地 , n 阶常微分方程的形式是
F (x, y, y,, y(n) ) 0
或 y(n) f (x, y, y,, y(n1) ) ( n 阶显式微分方程)
微分方程的解 — 使方程成为恒等式的函数.
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同.
特解 — 不含任意常数的解, 其图形称为积分曲线.
定解条件 — 确定通解中任意常数的条件.

全版微分方程.ppt

全版微分方程.ppt
将 y 和 y 代入原方程得C( x)e P( x)dx Q( x),
积分得 C( x) Q( x) e P( x)dxdx C,
.精品课件.
24
C( x) Q( x) e P( x)dxdx C,
故一阶线性非齐次微分方程的通解为:
y
C(
x)e
P(
x )dx
[ Q( x)e P( x)dxdx C]e P( x)dx
第六章 微 分 方 程
6.1 微分方程的基本概念 6.2 一阶微分方程 6.3 可降阶的二阶微分方程 6.4 二阶线性微分方程 6.5 微分方程的应用举例
.精品课件.
1
6.1 微分方程的基本概念
定义 把联系自变量、未知函数、未知函数的
导数或微分的方程称为微分方程.
例 y xy, y 2 y 3 y e x ,
x
微分方程的解为 sin y ln x C. x
.精品课件.
19
例 4 求解微分方程
x2
dx xy
y2
dy 2y2
xy
.

dy dx
2 y2 xy x2 xy y2
2
y 2
y
1
x y
x y 2
,
x x
令u y , x
即 y xu,
则 dy u x du ,
dx
dx
x
x
定义 形 如 dy f ( y ) 的微分方程称为齐次方程 .
dx
x
.精品课件.
17
解法: 对齐次方程dy f ( y ) , dx x
令 u y x
,
即 y xu, dy u x du ,
dx

高等数学之微分方程课件

高等数学之微分方程课件
8-4 二阶微分方程
精品课程
例8 求微分方程 的通解
解 特征方程为 共轭虚根为 原方程的通解 (共轭虚根时,由欧拉公式有 再根据该方程 的线性组合仍是解而消去i )
8-5 数学建模:微分方程应用(2)
精品课程
战争模型 用x(t)和y(t)表示甲乙交战双方在时刻t的兵力,可视为双方的士兵人数,一个简化模型是,假设一支军队参站人数减少(死亡或受伤)的比率(如 ) 是与另一支军队集中向其开火的次数成正比,而这开火的次数又与该方军队中参战人数成正比。 于是x、y服从微分方程: (1) 下面分析求解此微分方程组
《高等数学》 教学课件
旅游旅行攻略
汇报人姓名
CLICK TO ADD TITLE来自八章 微分方程精品课程
8-1 什么是微分方程
精品课程
引例1:曲线过点(1,2),且在该曲线上任意一点M (x , y) 处的切线的斜率为2x,求这曲线的方程? 解 设所求曲线y=f ( x ) ,根据导数的几何意义得 (1) 此外还应满足条件 把方程(1)两边积分,得 即 把条件 代入(2),得C=1 把 C=1代入(2)式,即得所求曲线方程
8-4 二阶微分方程
精品课程
解 解特征方程 得 于是微分方程的通解 (可以证明,二阶常系数线性齐次微分方程的两个特解 ,只要他们不成比例,则 为该方程的通解) 例7 求方程 的通解 解 特征方程 则通解为 重根时,得一个特解 ,再用待定法令 或 等等,求得另一个特解
3、如果把某个函数代入微分方程,能使方程恒等,这个方程称为微分方程的解;求微分方程的解的过程,叫做解微分方程
4、微分方程的解有不同的形式,常用的两种形式是:一种是解中含有任意常数并且独立的任意常数的个数与微分方程的阶数相同,这样的解称为微分方程的通解;另一种是解不含任意常数,称为特解

高等数学微分方程总结ppt课件.pptx

高等数学微分方程总结ppt课件.pptx
y py qy 0,
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0

一阶微分方程的求解ppt课件市公开课金奖市赛课一等奖课件

一阶微分方程的求解ppt课件市公开课金奖市赛课一等奖课件

y=2/t*x+t^2*exp(t )
[T Y]=Trapezia_reckon (' euler_3_3_2',[1 2],0,10)
第19页
不同求解器特点
3.3
一阶微分方程的求解
求解器 ode45 ode23
求解问题
特点
非刚性
一步算法;4,5阶 Runge-Kutta算法
非刚性
一步算法;2,3阶 Runge-Kutta算法
y(tk1 ) h
y(tk )
y'(tk1 )
其近似值:
yk1 yk y'k1 h 欧拉隐式公式
第9页
一阶微分方程的求解
3.3 后向欧拉法几何意义:
yk1 yk hf (tk1 , yk1 )
在任一步长内,用一段直线
代替函数 y(曲t)线,此直
线段斜率等于该函数在该 步长终点斜率。
y(tn )
0 0.345919876 0.866642536 1.607215079 2.620359552 3.967666295 5.720961527 7.963873479
y(tn ) yn
0 -0.098362899 -0.240212999 -0.433745533 -0.688050221 -1.013245028 -1.420624329 -1.922824060
误差称为截断误差。尚有一个误差称为舍入误差,这种误差是由于
计算时数值舍入引起。
第3页
一阶微分方程的求解
前向欧拉法几何意义:
yk1 yk hf (tk , yk )
在任一步长内,用一段直 线代替函数 y(t曲) 线,此直 线段斜率等于该函数在该 步长起点斜率。

高数微分方程PPT

高数微分方程PPT

应用
描述了许多自然现象,如生态模型、化学反应等。
二阶常系数线性微分方程
定义
形如 $y'' + py' + qy = 0$ 的微分方程称为二阶常系数 线性微分方程。
解法
通过求解特征方程,得到通 解。
应用
在物理学、工程学等领域有 广泛应用,如弹簧振动、电 磁波等。
04
高阶微分方程
BIG DATA EMPOWERS TO CREATE A NEW
参数法
总结词
通过引入参数,将微分方程转化为更易于求 解的形式。
详细描述
参数法是通过引入参数,将微分方程转化为 更易于求解的形式。这种方法适用于具有特 定形式的高阶微分方程。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分 方程,简化求解过程。
详细描述
积分因子法是通过寻找积分因子,将微分方 程转化为积分方程,从而简化求解过程。这 种方法适用于具有特定形式的一阶线性微分
高阶微分方程
包含多个导数的微分方程。
微分方程的应用
物理问题
描述物理现象的变化规律,如 振动、波动、流体动力学等。
经济问题
描述经济现象的变化规律, 如供求关系、市场均衡等。
工程问题
在机械、航空、化工等领域中 ,微分方程被用来描述各种动 态过程。
生物问题
描述生物种群的增长规律、 生理变化等。
02
一阶微分方程
经济增长模型
在经济学中,微分方程可以用来描述一个国家或地区的经济增长率 与人口、技术、资本等因素之间的关系。
生物问题中的应用
1 2 3
种群动态
微分方程可以用来描述种群数量的变化规律,如 Logistic增长模型、捕食者-猎物模型等。

《微分方程 》课件

《微分方程 》课件
总结词
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。

常微分方程全册ppt课件

常微分方程全册ppt课件

z z (5) z ; x y
2u 2u (6) 2 x y uz 0 . 2 x y
都是偏微分方程 注: 本课程主要研究常微分方程,同时把常微分方程简称 为微分方程或方程
微分方程的阶 定义 微分方程中出现的未知函数的最高阶导数或微分的阶数称为 微分方程的阶数.
z z (5) z ; x y
2 3
(2) xdy ydx 0 ;
d 4x d 2x (4) 5 2 3x sin t ; 4 dt dt
2u 2u (6) 2 x y uz 0 . 2 x y
常微分方程 如果在一个微分方程中,自变量的个数只有一个,则这样 的微分方程称为常微分方程
两种群竞争模型
Lorenz方程
Lorenz吸引子,蝴蝶效应
对初值的敏感性
分形(fractal)
吸引盆
总结
微分方程反映量与量之间的关系,与时间有关,是一个动态系 统 从已知的自然规律出发,考虑主要因素,构造出由自变量、未 知函数及其导数的关系史,即微分方程,从而建立数学模型 数学模型的建立有多种方式 研究微分方程的解和解结构的性质,检查是否与实际相吻合, 不断改进模型 由微分方程发现或预测新的规律和性质
如:
dy (1) 2x dx
是一阶微分方程
(2) xdy ydx 0
d 2x dx (3) tx x 0 2 dt dt
d 4x d 2x (4) 5 2 3x sin t 4 dt dt
3
是二阶微分方程
是四阶微分方程
n阶微分方程的一般形式为
此ppt下载后可自行编辑
教学课件
常微分方程

微分方程解法ppt课件

微分方程解法ppt课件

阶段汽车运动规律的函数S=S(t),应满足方程:
4
d 2s
dt2 4
(5)
及条件
S
t0
0, v t0
ds dt
t 0
10
(6)
对(5)式两端积分一次,得
v
ds dt
4t
c1
(7)
在积分一次,得S 2t 2 c1t c2
(8)
将条件v t0 10代入(7)式中,将条件S t0 0代入(8)式,
原方程,经整理得 C(x) ex
y C(x) 代入 x
解得
C(x) ex C
于是原方程的通解为 y 1 (ex C) x
方法二 直接利用非齐次方程的通解公式(5),得
23
y
e
1 x
dx
(
e
x
e
1 x
dx
dx
C
)
x
eln x ( e x eln xdx C) x
1 x
( exdx
b N
N Ceabt bN
于是
N
Cbeabt 1 Ceabt
1
b 1 eabt
C
这就是种群的生长规律 。
15
8.3 一阶线性微分方程
形如
y P(x)y Q(x)
(1)
的方程叫做一阶线性微分方程(linear differential equation of first
Order),它的特点为左端是关于未知函数y及一阶导数
curve).如 y x2 c 是方程(1)的积分曲线族,而 y x2 1只是其中过(1,2)点的一条积分曲线。
10
8.2 可分离变量的一阶微分方程

微分方程ppt课件

微分方程ppt课件
❖ 这里a和N为正参数,a为x较小时的总量增长 率,而N代表一种“理想”总量或“承载 量”。 验证: 当x较小时, ax(1-x/N) ≈1,即x΄=ax。 当x>N时,则有x΄<0,满足假设。
注意:满足假设的方程有很多,这里只是选取 了最简单的。
8
假设N=1,即选取单位舍得承载量为1的总量, x(t)则代表了在t时刻的总量占理想总量的比例。
❖ 方程简化为x΄= f(a x)=ax(1-x) 此方程称为一阶、自治、非线性微分方程。 一阶: x΄ 自治:右端只与x有关,与t无关。 非线性:f(a x)是x的非线性函数。
问:x΄=ax是什么方程? (一阶、自治、线性微分方程)
9
解微分方程x΄=ax(1-x)。t=0时x=x(0)。

微分方程的通解为
4
❖ 在方程x΄=ax中,a看做参数,当a变化时, 方程也变化,其解随之改变。
1)若a>0,当k>0时,lim keat = ;当k<0 时,lim keat =- 。 t
t
2)若a=0,keat 是常数。
3)若a<0,lim keat =0 t
1)当a>0时,所有非零解都随t的增加而远离 平衡点; 2)当a<0时,所有非零解都随t的增加而趋于 平衡点;
从图上看,所有对应于x(0)>0的解都趋于 x(t) ≡1,与假设吻合,当x(0)<0 时,解将趋 于-∞。
11
从 f(a x)=ax(1-x) 的图像上认识:
❖ 该图像与x轴交与x=0与x=1两点,对应于两个 平衡点。
❖ 当0<x<1,f(a x)>0。从而在满足0<x<1的(t,x) 处,斜率为正数,从而解在这个区域将增加, 而在x>0或x>1时,f(a x)<0,故解将减小。

《常微分方程》课件

《常微分方程》课件
学习变量分离法解决一些特定类型的常微分方程,为深入研究提供技术支持。
齐次常微分方程及非齐次常微 分方程
理解齐次和非齐次常微分方程的区别,学习它们的解法并应用于实际问题。
常微分方程的初值问题及其解 法
探索常微分方程的初值问题,并学习如何求解初值问题的特解和解的存在唯 一性。
高阶常微分方程转化为一阶常微分方程
学习将高阶常微分方程转化为一阶形式,为解决复杂问题提供简化和便利。
常微分方程的特殊解与通解
探索常微分方程的特殊解和通解的概念,以及如何求解并理解其意义。
线性常微分方程及其解法
深入研究 的解法。
变量分离法求解常微分方程
《常微分方程》PPT课件
欢迎来到《常微分方程》PPT课件!本课程将带你深入了解常微分方程的基础 概念和解法,并展示其在各个领域的应用。
常微分方程基础
探索微分方程的定义、基本类型和解析解的概念,为后续学习打下坚实基础。
一阶常微分方程解法
介绍一阶常微分方程的多种解法,包括分离变量法、恰当方程法和线性方程 法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 同样,从f(a x ) 上看出,x=0是源点而x=1是汇点。
❖在x=0附近,当x>0时,f(a x ) >0,斜率为正,解增 加。当x<0时,f(a x ) <0,斜率为负,解减少,即附 近的解要远离0。即x=0为源点。同理,1为汇点。
❖ 由 f a ( x ) =a-2ax分析,由于f a ( 0 ) =a>0, 而 f a (1 ) =-a<0 。
❖ 现在将物种的收割考虑进来以修改合理模型。 假设物种遵循参数a=1时的合理假设,但它们 同时以常速率h来收割,此时,微分方程为
x΄=x(1-x)-h
不解方程,直接利用函数fh(x)=x(1-x)-h的图像 来“读出”解的定性行为:
❖ 在0<h<1/4,h=1/4及h>1/4三种不同的情况 下,做出图像。 1)当0≤h<1/4时,fh有两个根; 2)当h=1/4时, fh有一个根; 3)当h>1/4时, fh没有根。
x
=
1
k
e at ke
at
❖ 满足条件的特解为 x=1x(x0()0)exat(0)eat
❖ 于是当x(0)=1时,解x≡1,此时为一个平衡解。同 理,x(t)=0也是一个平衡解。
为了对解有一个定性认识,我们画出方程的 斜率场。
斜率场:在tx平面上做出一些短斜线,代表 (t,x)处的斜率ax(1-x),解的图像必须与斜率场 处处相切。
❖ 在方程x΄=ax中,a看做参数,当a变化时, 方程也变化,其解随之改变。
1)若a>0,当k>0时,lim keat = ;当k<0 时,limkeat =- 。 t
t
2)若a=0,k e a t 是常数。
3)若a<0,lim keat =0 t
1)当a>0时,所有非零解都随t的增加而远离 平衡点; 2)当a<0时,所有非零解都随t的增加而趋于 平衡点;
❖ 由于f a ( 0 ) >0,当x通过0时,斜率将单调增加, 于是在x=0的下方取负值,而x=1的上方,斜 率取正值。因而,解要远离x=0,为源点。
❖ 同理, <0,使解趋于x=1,为汇点。
f a ( 1 )
❖ 例:x΄=g(x)=x-x³
解:该方程有3个平衡点,分别为0,±1。 因为g΄(x)=1-3x²,而g΄(0)=1>0,故x=0为 源点,而g΄(±1)=-2<0,故x=±1为汇点 ,而在这些平衡点之间的斜率非零。 做出解的图像与相线。
练习
1、找出x΄=ax+3的通解,其中a为参数。该方 程有哪些平衡点?对a的哪些取值,平衡点是 汇点?又对哪些取值,平衡点是源点?
2、找出下列方程的平衡点,确定源点和汇点, 同时做出相线的简图。
1)x΄=x³-3x
2)x΄=|1-x²|
3.常值收割与分岔
❖ 对于x΄=ax,在某种意义下,当a≠0是,方程 式稳定的,当a用一个与之同号的b替换是, 解的定性行为不发生改变,但当a=0时,a的 微小改变都将根本地改变解的行为。于是, 我们说单参数微分方程族x΄=ax在a=0处出现 了一个分岔。
从图上看,所有对应于x(0)>0的解都趋于 x(t) ≡1,与假设吻合,当x(0)<0 时,解将趋 于-∞。
从 f(a x ) =ax(1-x) 的图像上认识:
❖ 该图像与x轴交与x=0与x=1两点,对应于两个 平衡点。
❖ 当0<x<1,f(a x ) >0。从而在满足0<x<1的(t,x) 处,斜率为正数,从而解在这个区域将增加, 而在x>0或x>1时,f(a x ) <0,故解将减小。
微分方程
微分方程与动力系统 (常微分方程续)
1.简单的例子和定义 2.合理的物种总量模型 3.常值收割与分岔 4.周期收割与周期解 5.计算庞加莱映射
1.简单的例子和定义
Hale Waihona Puke dx❖ 对于 d t
ax
,其中x=x(t)是实变量t的实值未知
函数,a是一个参数;
❖ 设k为任一给定的实数,则函数x(t)=ke a t 就是 上式的一个解,且这个方程没有其他解;
❖ 从而,在0≤h<1/4时,该微分方程有两个平衡 点xl和xr,且0≤xl<xr,容易验证xl是一源点,xr 是汇点。
❖ 当h通过h=1/4时,另一种分岔现象发生了: 当h单调增加通过1/4时,两个平衡点xl和xr重 合,而当h>1/4时,平衡点消失。
定义: 1)当平衡点附近的解都远离它时,称该平衡 点是一个源点; 2)当平衡点附近的解都趋于它时,称该平衡 点是一个汇点;
❖ 相线:由于解x(t)为时间的函数,我们将其 看做一个沿直线运动的质点。在平衡点处, 质点保持不动(用实心圆点表示),而其他 解则沿x轴上下运动,用箭头表示。
其中,一个函数图像表示了一个解。
❖ 这里a和N为正参数,a为x较小时的总量增长 率,而N代表一种“理想”总量或“承载 量”。 验证: 当x较小时, ax(1-x/N) ≈1,即x΄=ax。 当x>N时,则有x΄<0,满足假设。
注意:满足假设的方程有很多,这里只是选取 了最简单的。
假设N=1,即选取单位舍得承载量为1的总量, x(t)则代表了在t时刻的总量占理想总量的比例。
2.合理的物种总量模型
❖ x΄=ax(a>0)看做一个简单的物种总量增长模 型,其中x(t)代表某个物种在时刻t的总量,当 我们假设总量增长率与总量成正比时,就得 到该微分方程。
进一步假设: 1)当总量较少时,总量增长率几乎与总量 成正比; 2)当总量增长到很大时,增长率变为负的。
合理总量增长模型:x΄=ax(1-x/N)
❖ 方程简化为x΄= f(a x )=ax(1-x) 此方程称为一阶、自治、非线性微分方程。 一阶: x΄ 自治:右端只与x有关,与t无关。 非线性:f(a x ) 是x的非线性函数。
问:x΄=ax是什么方程? (一阶、自治、线性微分方程)
解微分方程x΄=ax(1-x)。t=0时x=x(0)。

微分方程的通解为
❖ 验证:设为u(t)方程任一解,计算u(t)e - a t 的导
数为0,从而u(t)e - a t 为一常数,设为k,于是 u(t)=ke a t
❖ 通解:微分方程所有解的全体。
初值问题:(满足初始条件)
x΄= ax, x(0)= u 0 ,即 t 0 =0
平衡解(平衡点):注意到在上式中,在 k=0是有一个特殊的解,即常数解x(t) ≡0。 像这样的解,称为方程的平衡解或平衡点。
相关文档
最新文档