弹塑性力学试题答案完整版
同济大学弹塑性力学试题和习题解答

弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
( ) (2)可用矩阵描述的物理量,均可采用张量形式表述。
( ) (3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( ) (4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
()(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么, 由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
() (6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( ) (7)Drucker 假设适合于任何性质的材料。
( ) (8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( ) (9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65 (5)随动强化后继屈服面的主要特征为:___________________________________________。
弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2
工程弹塑性力学题库及答案(修订)

,再求应力偏张量
,
,
,
,
,
。
由此求得:
然后求得:
,
,解出
然后按大小次序排列得到
,
,
1.9 已知应力分量中
,求三个主应力
,以及每个
主应力所对应的方向余弦
。
解:特征方程为
记, , 应满足下列关系
由(a),(b)式,·11得
(a) (b) (c)
, ,由此求得
,代入(c)式,得
解:的定义、物理意义:
;
1) 表征 Sij 的形式;2) 相等,应力莫尔圆相似,Sij 形式相同;3) 由可确定 S1:S2:S3。
1.4设某点应力张量 的分量值已知,求作用在过此点平面
力矢量
,并求该应力矢量的法向分量 。
解:该平面的法线方向的方向余弦为
上的应
而应力矢量的三个分量满足关系
曲线基本上和简单拉伸时的
曲线一样。
7.4 比较两种塑性本构理论的特点: 解:增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加 载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系, 再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影 响,直接建立应变全量与应力全量直接的关系。
z
且 利用平衡方程
当
时, 为(e)式。
(3)塑性阶段 平衡方程和几何方程同上。
本构方程 与(2)弹塑性阶段同样步骤:可得
(e) (f) (g)
5.9 如图所示等截面直杆,截面积为 ,且 。在 处作用一个逐渐增加 的力 。该杆材料为理想弹塑性,拉伸和压缩时性能相同。按加载过程分析
结构所处不同状态,并求力 作用截面的位移 与 的关系。 解:基本方程为
同济大学弹塑性力学试卷及习题解答.

弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题 2 分)(1)物体内某点应变为0 值,则该点的位移也必为0 值。
(2)可用矩阵描述的物理量,均可采用张量形式表述。
3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
()4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
()5)对于常体力平面问题,若应力函数x,y 满足双调和方程 2 20,那么,由x,y 确定的应力分量必然满足平衡微分方程。
()(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
()(7)Drucker 假设适合于任何性质的材料。
()(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
()(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
()(10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ()2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题 2 分)(1)设x,y a1x a2x y a3y ,当a1,a2,a3满足_________________________________ 关系时x,y 能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________ 的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料_______________________ 。
(4)π 平面上的一点对应于应力的失量的 _____________________ 。
P65(5)随动强化后继屈服面的主要特征为:__________________________________________ 。
(6)主应力轴和主应变轴总是重合的材料为_______________________ 。
(完整版)弹塑性力学习题题库加答案

第二章应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy ,τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x=γ1y ;T y =0 则σx =-γ1y ;τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a=0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cossinx xy yxy………………………………(a )将己知条件:σx=-γ1y ;τxy =-dx ;σy =cx+dy-γy代入(a )式得:1cossin 0cossin0y dx bdx cxdyy cL L L L L L L L L L L L L L L L L L化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1ctg 3β2—17.己知一点处的应力张量为312606100100Pa试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103σy =10×103 τxy =6×103,且该点的主应力可由下式求得:222231.2333312101210610222217.0831011371011 6.0828104.9172410xyxyxyPa则显然:3312317.08310 4.917100Pa Paσ1 与x 轴正向的夹角为:(按材力公式计算)22612sin 22612102cos2xy xytg 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°xO γyβBA n βγ1y则:θ=+40.2688B 40°16'或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学习题集_很全有答案_

题 2 —4 图
2—5* 如题 2—5 图,刚架 ABC 在拐角 B 点处受 P 力,已知刚架的 EJ,求 B、C 点的 转角和位移。 (E 为弹性模量、J 为惯性矩) 2—6 悬挂的等直杆在自重 W 的作用下如题 2—6 图所示。材料比重为 γ ,弹性模量为 E,横截面积为 A。试求离固定端 z 处一点 c 的应变 ε z 与杆的总伸长 ∆l 。 2—7* 试按材料力学方法推证各向同性材料三个弹性常数:弹性模量 E、剪切弹性模 量 G、泊松比 v 之间的关系:
1 1 1 , n y = , nz = 的微斜面上的全应力 Pα ,正 2 2 2
试求外法线 n 的方向余弦为: n x = 应力 σ α 和剪应力 τ α 。
2—10 已知物体的应力张量为: 30 − 80 50 σ ij = 0 − 30 MPa 110 (对称)
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
试确定外法线的三个方向余弦相等时的微斜面上的总应力 Pα ,正应力 σ α 和剪应力 τ α 。 2—11 试求以主应力表示与三个应力主轴成等倾斜面(八面体截面)上的应力分量, 并证明当坐标变换时它们是不变量。 2—12 试写出下列情况的应力边界条件。
题 2—12 图
弹塑性力学习题答案

第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
同济大学弹塑性力学试卷及习题解答教学文案

弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
() (2)可用矩阵描述的物理量,均可采用张量形式表述。
( ) (3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( ) (4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
()(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么, 由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
() (6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( ) (7)Drucker 假设适合于任何性质的材料。
( ) (8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( ) (9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65 (5)随动强化后继屈服面的主要特征为:___________________________________________。
弹塑性力学试题集锦(很全,有答案)

1 / 218弹塑性力学2008级试题一 简述题(60分) 1)弹性与塑性弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量球张量:球形应力张量,即σ=000000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦,其中2 / 218()13m x y z σσσσ=++5)转动张量:表示刚体位移部分,即110221102211022u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡⎤⎛⎫⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥=-- ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭⎝⎭⎣⎦6)应变张量:表示纯变形部分,即112211221122uu v u w x y x z x v u vv w ij x y yz y w u w v wx z y z zε⎡⎤⎛⎫⎛⎫∂∂∂∂∂++⎢⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥=++ ⎪⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭⎝⎭⎣⎦7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得关3 / 218系,即应变协调条件。
22222y xyx y x x yεγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
(完整word版)弹塑性力学思考题答案

弹塑性理论思考题⒈ 一点的应力状态?答:通过一点P 的各个面上应力状况的集合 ⒉ 一点应变状态? 答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 P 的邻域内线段与线段间夹角的改变⒊ 应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量J2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合张量之定义,因此,表示点的应力状态的9个分量构成一个二阶张量,称为应力张量。
一点的应力状态可以借用矩阵以张量σij 表示:。
其中:xz τ=zxτ,xy τ=yx τ,yz τ=zy τ。
应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即J 1,J 2,J 3是不变量,不随着坐标轴的变换而发生变化。
所以J 1,J 2,J 3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0-00+00m x m xy xz ij m yxy m yz m zx zy z m σσσττσστσστσττσσ⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,等式右端第一个张量称为应力球张量,第二个张量称为应力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力及主轴同原σij ,二阶对称张量,同样存在三个不变量J 1' ,J 2' ,J 3' 体积应力:P46平均应力:12311()()33m x y z σσσσσσσ=++=++,m δ为不变量,与坐标无关。
弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案

解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学综合测试答案

综合测试试题一二、填空题第1个为6第2个为平衡微分方程三、选择题 1 A 2 B 3 B 4 C四1、;;;2、五、计算题1、解:已知该点为平面应变状态,且知:k为已知常量。
则将应变分量函数代入相容方程得:2k+0=2k 成立,故知该应变状态可能存在。
2、解:球应力张量作用下,单元体产生体变。
体变仅为弹性变形。
偏应力张量作用下单元体只产生畸变。
塑性变形只有在畸变时才可能出现。
关于岩土材料,上述观点不成立。
3、解:,满足,是应力函数。
相应的应力分量为:,,;①应力边界条件:在x = h处,②将式①代入②得:,故知:,,;③由本构方程和几何方程得:④积分得:⑤⑥在x=0处u=0,则由式⑤得,f1(y)= 0;在y=0处v=0,则由式⑥得,f2(x)=0;因此,位移解为:4、解:据题意知一点应力状态为平面应力状态,如图示,且知,则,且= 0。
代入Mises屈服条件得:即:解得:200 MPa;轴力:P== 2×50×10-3×3×10-3×200×106=188.495kN扭矩:M== 2×502×10-6×3×10-3×200×106=9.425 kN·m综合测试试题二二、填空题第1个为9 5 2第2个为Tresca 屈服条件Mises屈服条件三、选择题 1 C 2 C 3 A 4 D四1、2、五、计算题1、解:应力解应再满足平衡微分方程即为弹性力学平面应力问题可能的应力解,代入平衡微分方程得:则知,只要满足条件a=-f,e=-d,b和c可取任意常数。
若给出一个具体的弹性力学平面应力问题,则再满足该问题的应力边界条件,该组应力分量函数即为一个具体的弹性力学平面应力问题的应力解。
2、解:由式(2—19)知,各应力不变量为、,代入式(2—18)得:也即(1)因式分解得:(2)则求得三个主应力分别为。
同济大学弹塑性力学试卷及习题解答(完整资料).doc

【最新整理,下载后即可编辑】弹塑性力学试卷及习题解答弹塑性力学试卷配套教材《弹性与塑性力学》陈惠发1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。
)(每小题2分)(1)物体内某点应变为0值,则该点的位移也必为0值。
( )(2)可用矩阵描述的物理量,均可采用张量形式表述。
( )(3)因张量的分量是随坐标系的变化而变化,故张量本身也应随坐标系变化。
( )(4)弹性的应力和应变张量两者的主方向是一致性,与材料无关的。
( )(5)对于常体力平面问题,若应力函数()y x ,ϕ满足双调和方程022=∇∇ϕ,那么,由()y x ,ϕ确定的应力分量必然满足平衡微分方程。
( )(6)若某材料在弹性阶段呈各向同性,故其弹塑性状态势必也呈各向同性。
( )(7)Drucker 假设适合于任何性质的材料。
( )(8)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。
( )(9)对于任何材料,塑性应变增量均沿着当前加载面的法线方向。
( ) (10)塑性应变增量的主方向与应力增量的主方向不重合。
P107;226 ( )2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。
)(每小题2分)(1)设()4322241,y a y x a x a y x ++=ϕ,当321,,a a a 满足_______________________关系时()y x ,ϕ能作为应力函数。
(2)弹塑性力学是研究固体受外界因素作用而产生的______________________的一门学科。
(3)导致后继屈曲面出现平移及扩大的主要原因是材料______________________。
(4)π平面上的一点对应于应力的失量的______________________。
P65(5)随动强化后继屈服面的主要特征为:___________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹塑性力学2008、2009级试题
一、简述题 1)弹性与塑性
弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。
塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。
2)应力和应力状态
应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的9个应力分量组成的新的二阶张量∑。
3)球张量和偏量(P25)
球张量:球形应力张量,即σ=0
00000m m m σσσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
,其中()13m x y z σσσσ=++
偏量:偏斜应力张量,即x m xy xz ij yx
y m yz zx zy z m S σστττσστττσσ⎡⎤
-⎢⎥
=-⎢⎥⎢⎥-⎣
⎦,其中()13
m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法
拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。
采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率;
欧拉描述也被称为空间描述。
在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。
由于采用了物质对固定网格的相对运动,它具有以下优点:
欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。
5)转动张量:表示刚体位移部分,即
1102211022110
22u v u w y x z x v u v w ij x y z y w u w v x z y z W ⎡
⎤
⎛⎫
⎛⎫∂∂∂∂--⎢⎥ ⎪ ⎪ ⎪∂∂∂∂⎢⎥
⎝⎭⎝⎭
⎢
⎥
⎛⎫⎛⎫∂∂∂∂⎢⎥
=-- ⎪
⎪⎢⎥ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎢⎥
⎢⎥⎛⎫⎛⎫∂∂∂∂⎢⎥-- ⎪ ⎪ ⎪⎢⎥∂∂∂∂⎝⎭
⎝⎭
⎣⎦
6)应变张量:表示纯变形部分,即
112211221122u u v u w x y x z x v u v v w ij x y y
z y w u w v w
x z y z z
ε⎡⎤
⎛⎫
⎛⎫∂∂∂∂∂++⎢
⎥ ⎪ ⎪ ⎪∂∂∂∂∂⎢⎥
⎝⎭⎝⎭
⎢
⎥
⎛⎫⎛⎫∂∂∂∂∂⎢⎥
=++ ⎪
⎪⎢⎥ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭⎢⎥⎢⎥
⎛⎫⎛⎫∂∂∂∂∂⎢⎥++ ⎪ ⎪ ⎪⎢⎥∂∂∂∂∂⎝⎭
⎝⎭⎣⎦
7)应变协调条件:物体变形后必须仍保持其整体性和连续性,因此各应变分量之间,必须要有一定得
关系,即应变协调条件。
22
222y xy
x y x x y
εγε∂∂∂+=∂∂∂∂。
8)圣维南原理:如作用在弹性体表面上某一不大的局部面积上的力系,为作用在同一局部面积上的另
一静力等效力所代替,则荷载的这种重新分布,只造离荷载作用处很近的地方,才使应力的分布发生显著变化,在离荷载较远处只有极小的影响。
9)屈服函数(P53):在一般情况下,屈服条件与所考虑的应力状态有关,或者说,屈服条件是改点6个独立的应力分量的函数,即为()0ij f σ=,()ij f σ即为屈服函数。
10)不可压缩:对金属材料而言,在塑性状态,物体体积变形为零。
11)稳定性假设(P56):即德鲁克公社,包括:1.在加载过程中,应力增量所做的功D dW 恒为正;2.在加载与卸载的整个循环中,应力增量所完成的净功D dW 恒为非负。
12)弹塑性力学的基本方程(P80):包括平衡方程、几何方程和本构方程。
弹性15个,塑性16个。
13)边界条件(P17):边界条件可能有三种情况:1.在边界上给定面力称为应力边界条件;2.在边界上给定位移称为位移边界条件;3. 在边界上部分给定面力,部分给定位移称为混合边界条件。
14)标量场的梯度:其大小等于场在法向上的导数,其指向为场值增大的方向并垂直于场的恒值面的一个矢量。
15)矢量的散度:矢量a 在单位体积下通过曲面的通量。
16)无量纲量:在量纲表达式中,其基本量量纲的全部指数均为零的量
[]3
1
2
123......m
m Q A A A A ∂∂∂∂=,若[
]
Q =1,
则为无量纲量。
17)塑性铰:断面所受弯矩达到极限弯矩后,不增加弯矩,该断面转角仍不断增加,称此断面形成了塑性铰。
塑性铰是单向铰,只能沿弯矩增大方向发生有限转动。
18)滑移线:最大剪力线。
(P142)
19)极限荷载:荷载逐渐按比例增加时,结构在多处形成塑性铰后,当结构变为机构时,结构丧失承载能力,此时相应的荷载称为极限荷载。
20)里兹法:也称位移变分法:若设定一组包含若干待定系数的位移分量的表达式,并使他们预先满足位移边界条件,然后再令其满足位移变分方程(用来代替平衡微分方程和应力边界条件)并求出待定系数,就同样地能得出实际位移的解答。
21)二阶张量的主值与主方向:
22)小应变张量:(P33)
23)弹性模量:E 的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力,其量纲为-2-1T ML ,其单位为Pa 。
E 是度量物体受力时形变大小的物理量。
指在弹性限度内,应力与应变的比值。
弹性模量又分纵向弹性模量(杨氏模量)和剪切弹性模量。
杨氏模量为正应力与线应变之比值;剪切弹性模量为剪应力与剪应变之比值。
对同一种材料,在弹性极限内,弹性模量是一常数。
24)相容方程(P38): 25)变分原理:
二、求010100000⎛⎫ ⎪
⎪ ⎪⎝⎭
的主值和主方向 (P25)
解:
解之得:1λ=0 2λ=1 3λ=-1,即主应力分别为1σ=1 2σ=0 3σ=-1
当1σ=1时,()()
1111
12121313
1112
13101101
0.110.000
001110n n n n n n n n n λλλ---=-=--=解之得:主方向1:
同理可得:主方向2:()()212223001n n n = 主方向3:()()31
3233110n n n =-
三、
(1)依据畸变能屈服条件,采用初等理论的简化假定,讨论受均布荷载作用的矩形截面简支梁的弹塑性弯曲 (P96)
(2)证明应力张量为二阶对称张量 四、论述
1、本构方程遵从的一般原理
(1)决定性原理,与时间历程相关;(2)局部作用 原理;(3)坐标无关性;(4)空间各向同性原理;(5)时间平移的无关性。
2、弹塑性本构关系
塑性本构关系与弹性本构关系不同
其特点是:①应力和应变关系的非线性;②加载时和卸载时应力与应变关系是不同的;③应力不仅与对应的应力状态有关,而且与整个加载过程有关。
如当薄壁圆筒承受拉伸和扭转的联合作用时,在弹性阶段不论是先拉后扭或是先扭后拉,所得到的最终变形是相同的。
可是在塑性阶段时,先拉伸到屈服而后扭转或先扭转到屈服而后拉伸,所得到的最终变形都不一样。
加载过程分为简单加载和复杂加载。
在加载过程中,各应力分量与某一参数成比例的增大,称为简单加载。
不属于简单加载的是复杂加载。
对于
()111213212223
313333 0
..0
0101000
ij j j
ij j ij j ij
ij j n n n n n σλσλδσ
λδσλσσσσλσσσσλ
λλλ
=-=-=--=---=-令那么 即:
塑性阶段的应力和应变关系有各种不同的理论。
,工程上用得最多的,一是形变理论,或称全量理论,以伊柳辛为代表,认为塑性应变偏量和应力偏量之间存在着某种非线性关系,仅适用于简单加载的情况。
另一是流动理论,又称增量理论,以罗伊斯-普朗特为代表,认为塑性应变速度偏量(或塑性应变增量的偏量)与应力偏量之间存在着非线性关系,可适用于复杂加载的情况。
在金属材料的塑性力学中,所考虑的材料有强化材料和理想塑性材料。
材料强化的问题比较复杂,有各种强化模型,如单一应力-应变关系曲线的强化模型、等向强化模型、运动强化模型,更进一步的还有滑移理论的强化模型。
工程中的静力问题大多采用单一应力-应变关系曲线的强化模型和等向强化模型。
当鲍氏效应的影响不能忽略或往复加载时,需要采用运动强化模型。
滑移理论的强化模型在理论上比较严密,但计算较为复杂。
理想塑性材料的屈服条件通常采用特雷斯卡的最大剪应力条件和米泽斯的能量条件。
这两个条件的最大差别发生在纯剪时,按这两个条件计算出来的最大剪应力其数值差为15.4%。
在简单拉伸时两者没有差别,其平均差值为7.7%,但是它们所对应的应力状态是不相同的。
试验资料表明,米泽斯屈服条件与试验结果比较符合。