集合导学案

合集下载

中职一轮复习集合单元导学案

中职一轮复习集合单元导学案
考点预测
本章知识点主要有集合与集合,元素与集合的关系,集合的运算、常用逻辑用语、充要条件,每年的高考会在其中的两个或三个知识点命题.以选择题和填空题作为主要的考查形式,占9分左右;主要考查的内容有以下几个方面:
1.集合元素的特征:确定性、互异性、无序性;
2.两类关系:元素与集合之间的关系,集合与集合之间的关系;
复习
一单元
《集合与常用逻辑用语》
1.理解集合的概念,掌握集合的表示方法,掌握集合之间的关系(子集、真子集、相等),掌握集合的交、并、补运算.
2.能正确地区分充分、必要、充要条件.
3.理解符号的含义.
4.了解命题的有关概念,能判断一个命题的真假.
5.理解全称量词和存在量词,理解全称命题和存在性命题.
6.理解逻辑联结词“且、或、非”的含义,能判断复合命题的真值.
7.理解符号∧、V、一、V、3的含义.
考情分析
本章主要内容包括集合的有关概念及集合的运算和常用逻辑用语,是每年春考考试的必考部分,本章的试题都比较简单,考生得分率较高.每年高考对这部分知识考查的重点基本不变,试题难度、试题数量变化不大.复习时要重视基础,力求基本概念清楚、基本运算熟练,避免解过难、过繁的题目.
3.集合的交、并、补运算;
4.逻辑联结词的含义,命题真假值的判断;
5.与不等式相联系,考查对集合的概念和运算知识的把握及数形结合的能力;
6.以集合为载体考查方程、函数、几何等新概念知识,体现集合的工具性;
7.以函数、不等式、三角函数、解析几何等知识为载体,考查充要条件,起到了对数学思想、数学方法和数学能力进行综合考查的作用.
思维导图
学习课时
4课时
课时分配
课题
课时
《集合及其表示方法》《集合的源自系及基本运算》《常用逻辑用语》

职一年级数学第一章(集合)导学案

职一年级数学第一章(集合)导学案

职一年级数学第一章(集合)导学案

职一年级数学第一章(集合)导学案
职一年级数学第一章(集合)导学案
职一年级数学第一章(集合)导学案
,
;集合与集合用,
A
点评:此题不能用;
、用符号,
职一年级数学第一章(集合)导学案
职一年级数学第一章(集合)导学案
、设
职一年级数学第一章(集合)导学案
,求
职一年级数学第一章(集合)导学案
职一年级数学第一章(集合)导学案
职一年级数学第一章(集合)导学案
职一年级数学第一章(集合)导学案
职一年级数学第一章(集合)导学案
是奇数”的充分条件;
A

职一年级数学第一章(集合)导学案。

【新导学案】高中数学人教版必修一:11《集合(复习)》(2).doc

【新导学案】高中数学人教版必修一:11《集合(复习)》(2).doc

1.1《集合(复习)》导学案【学习目标】1.承植橐合6勺交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2.能使用数轴分析、仏/加图表达集合的运算,体会直观图示对理解抽象概念的作用.【知识链接】(复习教材/广凡,找出疑惑之处)复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言?AHB = _________________________ :A UB = _________________________ :q A二 _______________________ •复习2:交、并、补有如下性质.AC\A= ________ ;AH 0 = _________ ;AUA= __________ ;AU 0=. ;人门((7异)= __ ; AU(C u A)= _________5 (Q, A) = ______ .你还能写出一些吗?【学习过程】探典型例题例1 设庐R, A = {x\-5<x<5}, ^ = {x|0<x<7}.求AC B、AU B、C(j A、久B、(%) Q Q、(CuA)U(Cu®、5 (AU 3、GUM.小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点;(2)由以上结果,你能得岀什么结论吗?例 2 已知全集1/ = {1,2,3,4,5},若AU3二",ARBH0, A (1(0 = {1,2},求集合力、B.小结:列举法表示的数集问题用仏/加图示法、观察法.例 3 -4x+3 = 0j,Z?=|x|x2 -ar+ty-l = oj, C = |x x2 -nu4-1 = oj .fi.A\J B = A,AC}C = C ,求实数臼、刃的值或取值范围.变式:设y4 = {x|r-8x+15 = 0}, B = {x\ax-\ = 0},若BJ,求实数日组成的集合、.探动手试试练 1.设A = {x\x2-ax + 6 = 0}, B = {x\^-x+c = 0}f且〃门〃={2},求AU B.练2.已知用{刘攻-2或兀>3},伊{刘仆+/水0},当A^B时,求实数刃的取值范围。

集合的基本关系(导学案)

集合的基本关系(导学案)

§2 集合的基本关系一 学习目标:1.知识与技能理解集合之间的包含与相等的含义,理解子集、真子集的概念,能用Venn 图表达集合间的关系,体会直观图对抽象概念的理解2.过程与方法通过概念学习,提高学生逻辑思维能力,渗透等价转化的思想3.情感、态度与价值观培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,培养学生学习数学的兴趣二 学习重点:集合间的“包含”与“相等”关系,子集与真子集的概念及关系三 学习难点:元素与集合的属于关系与集合间的包含关系之间的区别预习案1、复习元素与集合的关系——属于与不属于的关系2、 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。

记作:读作:A 包含于B ,或B 包含A当集合A 不包含于集合B 时,记作:用Venn 图表示两个集合间的“包含”关系 )(A B B A ⊇⊆或3、集合与集合之间的 “相等”关系;A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即⎩⎨⎧⊆⊆⇔=A B B A B A 4、结论:任何一个集合是它本身的子集 A A ⊆A(B)5、真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集记作:6、 规定:空集是任何集合的子集,是任何非空集合的真子集。

7、结论:B A ⊆,且C B ⊆,那么A 与C 的关系是自主学习:(1)集合A 是集合B 的真子集的含义是什么?什么叫空集?(2)集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别?(3)0,{0}与∅三者之间有什么关系?(4)包含关系{}a A ⊆与属于关系a A ∈有什么区别?试结合实例作出解释.(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?(6)能否说任何集合是它本身的子集,即A A ⊆?(7)对于集合A ,B ,C ,D ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系?探究案例1 某工厂生产的产品在质量和长度上都合格时,该产品才合格。

人教版高中数学必修1:11 集合 必修一导学案

人教版高中数学必修1:11 集合 必修一导学案

1 / 9第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示(1课时)【学习目标】1. 学习重点:了解集合、元素与集合的关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2. 学习难点:列举法、描述法.3. 学习意义:了解集合在现代数学中的基础作用,初步体会集合思想在数学中的应用.【预习导学】(一)新课导入:我们在初中接触了一些集合,请你尝试用合适的方法表示下列集合:1. 自然数的集合 ;2. 不等式73x -<的解的集合 ;3. 圆 .(二)自主预习(预习教材P2―P5)完成该下列问题,不明白的做记号.1.集合的含义与特性阅读下列几个例子,理解其含义,能否构成集合?(1)1到20以内的所有素数 ;(2)身材较高的人 ;(3)方程2320x x +-=所有的实数根 ;(4)广美附中高一所有的学生 ;一般地,我们把研究对象统称为 ;把一些元素组成的总体叫 ;集合具有三大特性: 、 、 ,这是判断语句是否确定一个集合的依据;构成两个集合的元素是一样的,我们称之为两个集合 .2.元素与集合的关系(1). 集合通常用大写字母,,,A B C 表示,元素通常用 表示,如果a 是集合A 的元2 / 9素,就说a 属于集合A ,记作: ;如果a 不是集合A 的元素,就说a 不属于集合A ,记作: .(2). 数的集合称之为 ;常用的数集的记法:自然数集(非负整数集)记作 ;正整数集记作 ;整数集记作 ;有理数集记作 ;实数集记作 ;3.集合的表示如何表示一个集合?上面我们表示数集可以采用自然语言描述一个集合,除此以外,还能用什么方法表示集合?(1). 列举法把集合的元素一一列举出来,并用花括号“{}”括起来,这种表示集合的方法叫做 . 请用列举法表示方程2x x =的实数解 ;问题探究:你能不能用列举法表示不等式73x -<的解集?为什么?(2). 描述法如果集合中的元素无法列举,用集合所含元素的共同特征表示集合的方法称为 , 一般形式为 ,其中x 代表元素,P 是确定条件. 用描述法表示集合时,如果从上下文关系来看,x R ∈、x Z ∈明确时可省略,例如{|21,}x x k k Z =-∈; {|0}x x >. 请用描述法表示不等式73x -<的解集 ;【例题精析】题型一: 集合的性质理解例1.下列语句是否能构成一个集合?如果是请指出集合的元素,不是说明理由.(1)全体实数组成的集合 ;(2)我国的小河流 ;(3)大于3小于11的偶数 ;(4)平方值等于1-的全体实数 .例2. 用符号∈或∉填空:0 N 0 R 3.7 +N 3.7 Z 3- Q题型二 集合的表示方法例3. 试分别用列举法和描述法表示下列集合:3 / 9方程220x -=的所有实数根组成的集合; ; .【变式训练】用合适的表示方法表示下列集合:1. 不等式50x -<中所有正整数: ;2. 一次函数3y x =+与26y x =-+的图象的交点组成的集合 .方法总结:1. 列举法的特点是 .2. 描述法的特点是 .【堂上练习】1. 下列说法正确的是A .高一年级中的高个子组成一个集合B .所有小正数组成一个集合C .{1,2,3,4,5}和{5,4,3,2,1}表示同一个集合D .13611,0.5,,,2244能组成一个集合 2. 给出下列关系:① 12R =;② 2Q ;③3N +-∉;④3.Q -其中正确的个数为A .1个B .2个C .3个D .4个3. 直线21y x =+与y 轴的交点所组成的集合为A. {0,1}B. {(0,1)}C. 1{,0}2-D. 1{(,0)}2-4. 试选择适当的集合表示方法表示下列集合(1)由方程290x -=的所有实数根组成的集合 .(2)不等式453x -<的解集 .【课堂小结】1.表示集合的主要的方法有 .2. 注意∈与⊆区别 .3. 集合具有三个性质是: .1.1.2 集合间的基本关系(1课时)【学习目标】4 / 91. 学习重点:理解集合之间包含于、相等的含义,能识集合的子集;了解空集的含义;2. 学习难点:子集、真子集、集合相等、空集之间的含义;3. 学习意义:通过学习集合之间的关系,为后章集合运算打下良好的基础.【预习导学】(一)新课导入回顾:用合适的方法表示下列集合:(1)方程2(1)0x x -=的所有实数根组成的集合 .(2)由大于10小于20的所有实数组成的集合 .(二)自主预习:(预习教材P6-P7)完成该下列问题,不明白的做记号.实数之间有大小关系,两个集合之间有没有关系呢?如:集合{}1,23A =,,{}1,2,3,4,5B =,我们发现,集合A 中任何一个元素都是集合B 中的元素,我们就说集合A 与集合B 有包含关系.1.子集:如果集合A 的任意一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集,记作: ,读作: ,或 .在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 用Venn 图表示两个集合间的“包含”关系为:图1-1 2. 集合相等:若A B B A ⊆⊆且,记作 .如:集合{}{}1,2=(1)(2)0x R x x ∈--=3.真子集:若集合A B ⊆,存在元素x B x A ∈∉且,则称集合A 是集合B 的真子集,记作: .4.空集:不含有任何元素的集合称为空集,记作: .并规定:空集是任何集合的 ,是任何非空集合的 . 如:{}210x R x ∈+== . 问题探究:你能用合适的方法表示子集、真子集、集合相等,空集之间的关系吗?【例题精析】题型:两集合之间的关系理解B A5 / 9例1.已知集合}{}{12,01A x x B x x =-<<=<<,则A. B A > B . B A ⊆ C. AB D. B A 例2. 用适当的符号填空.(1)a {,,}a b c (2)∅ {}230x R x ∈+= (3){0} 2{|0}x x x -=. 例3.写出集合{}1,2A =的所有子集:(1)不含元素的子集有 .(2)含1个元素的子集有 .(3)含2个元素的子集有 .(4)其中真子集有 个;非空真子集有 个. 【变式训练】写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.方法总结:两个集合之间的关系主要有 .【堂上练习】1. 集合}{Z x x x A ∈<≤=且30的真子集的个数为A . 5B . 6C . 7D . 82. 满足M a ⊆}{的集合},,,{d c b a M 共有A . 6个B . 7个C . 8个D . 15个3. 设集合}{{ax x x B x x A -==-=2,01}02=-,若B A ⊆,求a 的值. 【课后作业】(一)基础题1. 下列结论正确的是A. ∅∈AB. {0}∅∈C. {1,2}Z ⊆D. {0}{0,1}∈2. 比较下面例子,用合适的符号表示两个集合之间的关系:(1){|(1)(2)0}E x x x x =--= {0,1,2}F = .6 / 9(2){|(1)(2)0}E x x x x =--= {}1,2F = .(3){}3E x x =>- {}2F x x => .3. 设{}2A x x =<,{}1B x x =<,则B A .4. 集合},02{2R x a x x x M ∈=-+=,且φM ,则实数a 的范围是 A . 1-≤a B . 1≤a C . 1-≥a D . 1≥a(二)能力提升1. 设{}2A x x =<,{}B x x a =<,B A ⊆,则a 的范围是 .2. 设{}2A x x =<,{}B x x a =<,B A ⊂≠,则a 的范围是 .3. 若集合{}{}2=1,1A x x B x ax ===,且满足B A ⊆,求实数a 的取值范围.1.1.3 集合的基本运算(2课时)【学习目标】1. 学习重点:(1)会求两个简单集合的并集与交集、补集.(2)能使用韦恩(Venn )图表达集合的关系及运算.2. 学习难点:两个简单集合的交集、并集、补集.3. 学习意义:理解集合的运算,类比数的运算,深刻理解集合思想.【预习导学】(一)新课导入:用适当的符号填空:0 {0}; ∅ {x |210,x x R +=∈}; {}3x x >- {}2x x >. (二)自主预习:(预习教材P8-P11)完成该下列问题,不明白的做记号.1. 并集、交集、补集(1). 由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的并集,记作: ,读作:A 并B ,用描述法表示是: .并集的Venn 图如下表示.图1-2 (2). 由属于集合A 属于集合B 的元素所组成的集合,叫作A 、B 的交集,B A7 / 9记作 ,读“A 交B ”, 用描述法表示是: ;交集的 Venn 图如下表示.图1-3 (3). 如果一个集合含有我们所研究问题中所涉及的 元素,那么就称这个集合为全集,通常记作 .(4). 设集合A ⊆U ,由U 中所有 A 的元素组成的集合,称这个集合为 ,记作: ,读作:“A 在U 中补集”; 用描述法表示是 .补集的Venn 图表示如右:图1-42. 两个集合的交、并、补的性质.A ∩A = ;A ∩∅= ; A ∪A = ;A ∪∅= ;问题探究1:若A ∩B=A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.问题探究2:若A B= A ,则集合A ,B 的关系是什么?试用韦恩图表示出来.【例题精析】题型一:理解集合的交集、并集、补集运算例1. 设集合{}123456U =,,,,,,{}1,23A =,,{}34,5,6B =,.用Venn 图表示,A B 如下: 则A B = ; A B = ; 【变式训练】设集合{}12x x =-<<,集合{}13B x x =<<,在数轴上表示AB ,A B . 则A B = ; A B = ; R A = .方法总结:一般地说,集合之间的运算,除了可以用韦恩图表示外,若是数集,还可以采用数轴的方法直观表示,体现了数形结合的解题方法.题型二:集合思想的应用例2. 设平面内直线1l 上点的集合为1L ,直线2l 上点的集合为2L ,试分别说明下面三种情况时直线1l 与直线2l 的位置关系?(1)12{}L L P =点 . (2)12L L =∅ . (3)1212L L L L == .A B A U U A 1, 2 3456BA8 / 9 【变式训练】 设全集{}U x x =是三角形,{}A x x =是锐角三角形,{}B x x =是钝角三角形,求A B ,()U A B ,()()U U A B .方法总结:数学有很多的知识可以用集合的思想去理解,集合思想是数学的基本概念之一.【课堂练习】1. 已知集合P M ,满足M P M = ,则一定有A . P M =B . P M ⊇C . M P M =D . P M ⊆2. 集合(){},0P x y x y =+=,(){},2Q x y x y =-= ,AB 3. 设集合{}{}=04,7A x x B x a x ≤<=<≤. (1)若AB φ=,求a 的取值范围; (2)若A B B =,求a 的取值范围.【课堂小结】1.用自己的语言总结:两个集合的交集,就是 ;并集是 ;补集是2. 我们在解题时,常采用图示法解题,一般的图示法有 .特别要注意分类讨论的方法解题.【课后作业】(一)基础题1. 设{}{}5,1,A x Z x B x Z x =∈≤=∈>那么A B 等于A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{}15x x <≤ 2. 设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U M =A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U3. 若集合{}=0,1,2,3A ,{}=1,2,4B ,则集合A B =A .{}01234,,,,B .{}1234,,,C .{}12,D .{}04. 设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则ST =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-9 / 9 5. 设{|18}A x x =-<<,{|45}B x x x =><-或,在数轴上求A ∩B 、A ∪B .(二)能力提升1. 某校秋季运动会中,若集合A ={参加比赛的运动员},集合B ={参加比赛的男运动员},集合C ={参加比赛的女运动员},则下列关系正确的是A. A B ⊆B. B C ⊆C. B C = AD. A ∩B = C2. 集合{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为A .4 B.3 C.2 D. 13. 设{|}A x x a =>,{|03}B x x =<<,若AB =∅,求实数a 的取值范围是 .4. 已知集合}023|{2=+-=x ax x A .(1) 若A 中至多有一个元素,则a 的取值范围是 .(2) 若A 中至少有一个元素,则a 的取值范围是 .。

《集合》导学案

《集合》导学案

1.1.1 集合的含义及其表示方法(1)步骤一:自主探究(一)、预习目标:初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法(二)、预习内容:阅读教材填空:1 、元素:一般地,我们把研究对象统称为元素。

集合:把一些元素组成的总体叫做集合。

(简称为集)2、集合与元素的表示:集合通常用 来表示,它们的元素通常用 来表示。

3、元素与集合的关系:如果a 是集合A 的元素,就说 ,记作 ,读作 。

如果a 不是集合A 的元素,就说 ,记作 ,读作 。

4.常用的数集及其记号:(1)自然数集: ,记作 。

(2)正整数集: ,记作 。

(3)整 数 集: ,记作 。

(4)有理数集: ,记作 。

(5)实 数 集: ,记作 。

步骤二:知识整合、能力提升一.考点突破考点一:集合元素的三特性——确定性、互异性、无序性【问题1】①高一(1)班的所有女生能不能构成一个集合吗?②高一(3)班上身高在1.75米以上的男生能构成一个集合吗?③世界上最高的山能不能构成一个集合?④世界上的高山能不能构成一个集合?⑤实数1、2、3、1组成的集合有几个元素?⑥由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?⑦⑧⑨⑩【问题2】下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 变式训练11.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工考点二:元素与集合的 关系——属于、不属于【问题1】下列结论中,不正确的是( )A.若a ∈N ,则-a ∉NB.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R ,则R a ∈3变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”(1)所有在N 中的元素都在N *中( )(2)所有在N 中的元素都在Z中( )(3)所有不在N *中的数都不在Z 中( )(4)所有不在Q 中的实数都在R 中( )(5)由既在R 中又在N *中的数组成的集合中一定包含数0( )(6)不在N 中的数不能使方程4x =8成立( )二、当堂检测1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。

人教版高中数学必修一《集合》导学案(含答案)

人教版高中数学必修一《集合》导学案(含答案)

第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义 课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.元素与集合的概念(1)把________统称为元素,通常用__________________表示.(2)把________________________叫做集合(简称为集),通常用____________________表示.2.集合中元素的特性:________、________、________.3.集合相等:只有构成两个集合的元素是______的,才说这两个集合是相等的.45.符号____ ________ ____ 一、选择题1.下列语句能确定是一个集合的是( )A .著名的科学家B .留长发的女生C .2010年广州亚运会比赛项目D .视力差的男生2.集合A 只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A3.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.由a 2,2-a,4组成一个集合A ,A 中含有3个元素,则实数a 的取值可以是( )A .1B .-2C .6D .25.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可6.由实数x 、-x 、|x |、x 2及-3x 3所组成的集合,最多含有( )A .2个元素B .3个元素C .4个元素D .5个元素二、填空题7.由下列对象组成的集体属于集合的是______.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A 中含有三个元素0,1,x ,且x 2∈A ,则实数x 的值为________.9.用符号“∈”或“∉”填空-2_______R ,-3_______Q ,-1_______N ,π_______Z .三、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a ,b ,c 与由元素b ,a ,c 组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第一章 集合与函数概念§1.1 集 合1.1.1 集合的含义与表示第1课时 集合的含义知识梳理1.(1)研究对象 小写拉丁字母a ,b ,c ,… (2)一些元素组成的总体 大写拉丁字母A ,B ,C ,… 2.确定性 互异性 无序性3.一样 4.a 是集合A a 不是集合A 5.N N *或N + Z Q R作业设计1.C [选项A 、B 、D 都因无法确定其构成集合的标准而不能构成集合.]2.C [由题意知A 中只有一个元素a ,∴0∉A ,a ∈A ,元素a 与集合A 的关系不应用“=”,故选C.]3.D [集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D.]4.C [因A 中含有3个元素,即a 2,2-a,4互不相等,将选项中的数值代入验证知答案选C.]5.B [由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾; 若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.]6.A [方法一 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素.方法二 令x =2,则以上实数分别为:2,-2,2,2,-2,由元素互异性知集合最多含2个元素.]7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④.8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素.(4)不正确.因为个子高没有明确的标准.11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32. 则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}6二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号) ①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时集合的表示知识梳理1.一一列举 2.描述法{x|x<10}{x∈Z|x=2k,k∈Z}作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x<5}={1,2,3,4}.]2.D [集合{(x ,y)|y =2x -1}的代表元素是(x ,y),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧ x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x2-2x +1=0可化简为(x -1)2=0,∴x1=x2=1,故方程x2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x(x2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x|x =2n +1,且x<1 000,n ∈N};③{x|x>8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x2+3中y 的取值范围是y≥3,所以B ={y|y≥3}. 集合C 中代表的元素是(x ,y),这是个点集,这些点在抛物线y =x2+3上,所以C ={P|P 是抛物线y =x2+3上的点}.12.C [由集合的含义知{x|x =1}={y|(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x|x =2k +14,k ∈Z},N ={x|x =k +24,k ∈Z}, ∵2k +1(k ∈Z)是一个奇数,k +2(k ∈Z)是一个整数,∴x0∈M 时,一定有x0∈N ,故选A.]。

集合的概念导学案

集合的概念导学案

1.1.1 集合的概念导学案题型一 集合的判断例1、下面的各组对象能组成集合的是_____-_(1)正三角形的全体(2)血压很高的人(3)鲜艳的颜色(4)某校2009级高一新生(5)所有数学难题(6)所有不大于3,不小于0的整数(7)充分接近100的全体实数 变式:各组对象中,哪些能组成集合?哪些不能组成集合?(1)参加2010年全国高考的山东考生。

(2)所有数学难题。

(3)数组2,2,4,6。

(4(5题型二例2(1)3(5)π题型三例3A 、题型四例4 (3) 数轴上到原点的距离小于1 的点;(4) 方程 x 2=0 的解的全体;(5) 你们班中成绩较好的同学;(6) 小于1的正整数的全体.题型五 用列举法表示下列集合例5 用列举法表示下列集合(1)A={x ∈N|0<x ≤5} (2)B={x|2x -5x+6=0} (3)C={x ∈Z|x-36∈N} 题型六 用描述法表示集合例6 用描述法表示下列集合(1){-1,1} (2)大于3的全体偶数构成的集合。

限时训练1. 选择(1)集合}{5|<*∈x N x 的另一种表示法是( ) A. }{4,3,2,1,0 B. }{4,3,2,1 C. }{5,4,3,2,1,0 D. }{5,4,3,2,1(2) 由大于-3小于11的偶数所组成的集合是( ) A. }{Q x x x ∈<<-,113| B. }{113|<<-x xC. }{N k k x x x ∈=<<-,2,113|D. }{Z k k x x x ∈=<<-,2,113|(3) 方程组 ⎨⎧=+1y x 的解集是( )(4 A. C. (5)设2. 填空(1 (2 (3 4 (4) A={ C={}Z y Z x y x y x ∈∈=+,,4|),(22=_____________.(5) 已知A={}2,1,0,1- , B={}A x x y y ∈=|,||, 则集合B=__________.3. 已知集合A={}12,52,22a a a +-, 且-3A ∈,求实数a. 4.已知集合A={}33,)1(,222++++a a a a ,若A ∈1,求实数a 的值。

必修一第一章第一单元-集合(导学案)

必修一第一章第一单元-集合(导学案)

第一章 集合与函数的概念第一单元 集合一、知识要点学习探究1、生活中有很多集合的例子例如:1. 正整数1, 2, 3, ⋯⋯ ;2. 中国古典四大名著;3. 高10班的全体学生;4. 我校篮球队的全体队员;5. 到线段两端距离相等的点.你能否通过这些例子总结出集合的定义?及集合的简单表示方法?答案:一般地,我们把研究对象统称为元素,通常用小写字母表示a,b,c把一些元素组成的总体叫做集合(简称为集),通常用大写字母表示A,B,C ……. 探究2、通过对下列集合的研究1.很小的数2.π的近似值3.高一年级优秀的学生;4.不超过 30的非负实数5.直角坐标平面的横坐标与纵坐标相等的点;6.所有无理数7.大于2的整数 ; 8.正三角形全体归纳总结出集合中元素的特征,集合的分类,元素与集合的关系?答案:集合中元素的特征三要素:确定性,互异性,无序性集合:有限集和无限集元素与集合的关系 元素a 与集合A 的关系:属于或不属于解决问题1:(d1)若x ∈R ,则数集{1,x ,x 2}中元素x 应满足什么条件.探究3、探究教材上介绍的集合的三种表示,常用数集及简记符号 给出下列三个集合1.自然数集2.集合A={1,2,3,7,8,9}3.集合B={x ∣x>2}; B={(x,y)∣y=x+2};4.如图集合C答案:.集合的表示方法自然语言法;列举法;描述法;图形语言(Venn 图法)常用数集及其记法自然数集(N );正整数集N *;整数集Z ;有理数集Q ;实数集R 。

元素a 与集合A 的符号语言,A a ∈或A a ∉解决问题2:(d2,3)设x ∈R ,y ∈R ,观察下面四个集合A ={ y =x 2-1 }B ={ x | y =x 2-1 }CC ={ y | y =x 2-1 }D ={ (x , y ) | y =x 2-1 }它们表示含义相同吗?解决问题3:(d2,3)已知集合A ={x |ax 2+4x +4=0,x ∈R ,a ∈R}只有一个元素,求a 的值与这个元素. 对点练习1、(d1,2)已知集合{},1,0,1,2--=P ,则集合{}P x x y y Q ∈==,,则.______=Q2、(d1,2,3)已知集合{}N x x y y x M ∈-==,4),(2,则集合用列举法可表示为______________.3、(d1,2,3))一次函数y=x-3与y=-2x 的图像的交点组成的集合是 A. {}2,1- B. {}2,1-==y x C. {})2,1( - D. {})1,2-( 4、(d2,3)已知集合{}2,1,0=A ,则集合{}B y A x y x B ∈∈-=,中元素的个数有____个。

集合的含义与表示(导学案)

集合的含义与表示(导学案)

§1 集合的含义与表示一学习目标:1.知识与技能了解集合的含义及有限集和无限集的意义,体会元素与集合的属于关系,会用集合语言表达数学问题,掌握常用数集及集合表示的符号2.过程与方法体会集合中蕴涵的分类思想,认识到列举法和描述法不同的使用范围3.情感态度与价值观通过集合的学习,激发学生学习数学的兴趣,培养学生积极的学习态度,体会数学学习的意义二学习重点:集合的基本概念与表示方法三学习难点:用列举法和描述法正确表示集合预习案1列举生活中的集合实例,并概括各种集合实例的共同特征2关于集合知识有哪些概念?元素与集合有何关系?3关于集合知识涉及哪些符号?是如何表示的?4集合的常用表示方法有哪些?各自的特点是什么?5、0 N πQ12 Q π R6 、探讨以下问题并思考集合中元素的特性(1)“所有的好学生”能否构成一个集合(2){1,2, 2, 3 }是不是集合(3){a ,b,c}和{b,a,c}是否表示同一集合(4)“book”中字母构成一个集合,请写出这个集合探究案例1选择适当的方法表示下列集合由大于3小于10的自然数组成的集合方程092=-x 的解的集合抛物线2x y = 图像上所有点组成的集合方程022=+x 的解的集合例2 已知2x {∈1,0,}x ,求实数x 的值 方法指导:首先确定2x 是集合中的元素,再根据集合中元素的互异性解题变式:由实数x x x x x ,,,,332--所构成的集合中,最多含有的元素个数是多少?训练案1下列关系正确的是( )A 0={0}B 0= φC 0∈φD 0∈{0}2 下列集合中表示同一个集合的是( )A M ={(0,1)}, N ={(1,0)}B M ={0,1},N ={1,0}C M ={0,1}, N ={(0,1)}D M ={0,1}, N ={(y x ,)|10==y x 且}3若-3∈{a -3,2a -1,12+a },求实数a 的值。

集合间的基本关系导学案

集合间的基本关系导学案

导学案(设计:朱巧)班别: 姓名:一、学习目标: 1、了解集合之间包含与相等的含义,能识别给定集合的子集。

2、理解子集、真子集的概念。

3、能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。

二、学习过程: 思考:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢? 探究:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1)A={1,2,3},B={1,2,3,4,5} ; (2)设A 为昭平中学高一(6)班全体女生组成的集合,B 为这个班全体学生组成的集合; (3) {}C x x =是两条边相等的三角形,{}D x x =是等腰三角形;(4)C={2,4,6},D={6,4,2} (5)M={}210x +=方程的实数根结论:1、一般的,对于两个集合A,B ,如果集合 中任意一个元素都是集合 中的元素,我们就说这两个集合有 关系,称集作 或 。

读作:或 。

用图可以表示为:2、在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为 。

思考:你能在生活中举出几个具有包含关系、相等关系的集合实例吗?3、如果集合 是集合 的子集()A B ⊆,且集合 是 集合 的子集()B A ⊆,此时,集合A 与集合B 的元素是一样的,因此,集合A 与集合B , 记作:用Venn 图表示为:思考:与实数中的结论“若a b ≥,且b a ≥,则a b =”相类比,你有什么体会?4、如果集合A B ⊆,但存在元素 ,且 ,我们称集合导学案(设计:朱巧)班别: 姓名:一、学习目标: 1、了解集合之间包含与相等的含义,能识别给定集合的子集。

2、理解子集、真子集的概念。

3、能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。

二、学习过程: 思考:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢? 探究:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1)A={1,2,3},B={1,2,3,4,5} ; (2)设A 为昭平中学高一(6)班全体女生组成的集合,B 为这个班全体学生组成的集合; (3) {}C x x =是两条边相等的三角形,{}D x x =是等腰三角形;(4)C={2,4,6},D={6,4,2} (5)M={}210x +=方程的实数根结论:1、一般的,对于两个集合A,B ,如果集合 中任意一个元素都是集合 中的元素,我们就说这两个集合有 关系,称集作 或 。

集 合(经典导学案及练习答案详解)

集 合(经典导学案及练习答案详解)

§1.1集合学习目标1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.知识梳理1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合非负整数集(或自然数集)正整数集整数集有理数集实数集符号N N*(或N+)Z Q R2.集合的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集,记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作A B(或B A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集:不含任何元素的集合叫做空集,记为∅.空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算表示 运算集合语言 图形语言 记法并集{x |x ∈A ,或x ∈B }A ∪B交集 {x |x ∈A ,且x ∈B }A ∩B 补集{x |x ∈U ,且x ∉A }∁U A常用结论1.若集合A 有n (n ≥1)个元素,则集合A 有2n 个子集,2n -1个真子集. 2.A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)集合{x ∈N |x 3=x },用列举法表示为{-1,0,1}.( × ) (2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若1∈{x 2,x },则x =-1或x =1.( × ) (4)对任意集合A ,B ,都有(A ∩B )⊆(A ∪B ).( √ ) 教材改编题1.(多选)若集合A ={x ∈N |2x +10>3x },则下列结论正确的是( ) A .22∉A B .8⊆A C .{4}∈A D .{0}⊆A答案 AD2.已知集合M ={a +1,-2},N ={b ,2},若M =N ,则a +b =________. 答案 -1解析 ∵M =N ,∴⎩⎨⎧a +1=2,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴a +b =-1.3.已知全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4},则A ∩B =____________,A ∪(∁U B )=____________.答案 {x |2≤x ≤3} {x |-2<x ≤3}解析 ∵全集U =R ,集合A ={x |1≤x ≤3},B ={x |x 2≥4}={x |x ≤-2或x ≥2}, ∴∁U B ={x |-2<x <2},∴A ∩B ={x |2≤x ≤3},A ∪(∁U B )={x |-2<x ≤3}.题型一 集合的含义与表示例1 (1)(2020·全国Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .6 答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素. (2)若集合A ={a -3,2a -1,a 2-4},且-3∈A ,则实数a =________. 答案 0或1解析 ①当a -3=-3时,a =0, 此时A ={-3,-1,-4}, ②当2a -1=-3时,a =-1, 此时A ={-4,-3,-3}舍去,③当a 2-4=-3时,a =±1,由②可知a =-1舍去,则当a =1时,A ={-2,1,-3}, 综上,a =0或1. 教师备选若集合A ={x |kx 2+x +1=0}中有且仅有一个元素,则实数k 的取值集合是________. 答案 ⎩⎨⎧⎭⎬⎫0,14解析 依题意知,方程kx 2+x +1=0有且仅有一个实数根,∴k =0或⎩⎪⎨⎪⎧k ≠0,Δ=1-4k =0,∴k =0或k =14,∴k 的取值集合为⎩⎨⎧⎭⎬⎫0,14.思维升华 解决集合含义问题的关键有三点:一是确定构成集合的元素;二是确定元素的限制条件;三是根据元素的特征(满足的条件)构造关系式解决相应问题.跟踪训练1 (1)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪4x -2∈Z ,则集合A 中的元素个数为( )A .3B .4C .5D .6答案 C解析 ∵4x -2∈Z ,∴x -2的取值有-4,-2,-1,1,2,4, ∴x 的值分别为-2,0,1,3,4,6, 又x ∈N ,故x 的值为0,1,3,4,6. 故集合A 中有5个元素.(2)已知a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则a 2 023+b 2 023=________.答案 0解析 ∵{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b 且a ≠0,∴a +b =0,∴a =-b , ∴{1,0,-b }={0,-1,b }, ∴b =1,a =-1, ∴a 2 023+b 2 023=0.题型二 集合间的基本关系例2 (1)设集合P ={y |y =x 2+1},M ={x |y =x 2+1},则集合M 与集合P 的关系是( ) A .M =P B .P ∈M C .M P D .PM答案 D解析 因为P ={y |y =x 2+1}={y |y ≥1},M ={x |y =x 2+1}=R ,因此P M .(2)已知集合A ={x |-3≤x ≤4},B ={x |2m -1≤x ≤m +1},且B ⊆A ,则实数m 的取值范围是________. 答案 [-1,+∞) 解析 ∵B ⊆A ,①当B =∅时,2m -1>m +1,解得m >2; ②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1≤4,解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞).延伸探究 在本例(2)中,若把B ⊆A 改为B A ,则实数m 的取值范围是________. 答案 [-1,+∞)解析 ①当B =∅时,2m -1>m +1,∴m >2;②当B ≠∅时,⎩⎪⎨⎪⎧2m -1≤m +1,2m -1≥-3,m +1<4或⎩⎪⎨⎪⎧2m -1≤m +1,2m -1>-3,m +1≤4.解得-1≤m ≤2.综上,实数m 的取值范围是[-1,+∞). 教师备选已知M ,N 均为R 的子集,若N ∪(∁R M )=N ,则( ) A .M ⊆N B .N ⊆M C .M ⊆∁R N D .∁R N ⊆M答案 D解析 由题意知,∁R M ⊆N ,其Venn 图如图所示,∴只有∁R N ⊆M 正确.思维升华 (1)空集是任何集合的子集,在涉及集合关系问题时,必须考虑空集的情况,否则易造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练2 (1)已知集合A ={x |x 2-3x +2=0},B ={x ∈N |x 2-6x <0},则满足A C ⊆B 的集合C 的个数为( ) A .4 B .6 C .7 D .8答案 C解析 ∵A ={1,2},B ={1,2,3,4,5}, 且A C ⊆B ,∴集合C 的所有可能为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.(2)已知集合M ={x |x 2=1},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值为________. 答案 0,±1解析 ∵M ={-1,1},且M ∩N =N ,若N =∅,则a =0;若N ≠∅,则N =⎩⎨⎧⎭⎬⎫1a ,∴1a =1或1a =-1, ∴a =±1综上有a =±1或a =0. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2021·全国乙卷)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T 等于( )A .∅B .SC .TD .Z 答案 C解析 方法一 在集合T 中,令n =k (k ∈Z ),则t =4n +1=2(2k )+1(k ∈Z ),而集合S 中,s =2n +1(n ∈Z ),所以必有T ⊆S , 所以T ∩S =T .方法二 S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以T ∩S =T .(2)(2022·济南模拟)集合A ={x |x 2-3x -4≥0},B ={x |1<x <5},则集合(∁R A )∪B 等于( ) A .[-1,5) B .(-1,5) C .(1,4] D .(1,4)答案 B解析 因为集合A ={x |x 2-3x -4≥0}={x |x ≤-1或x ≥4}, 又B ={x |1<x <5}, 所以∁R A =(-1,4), 则集合(∁R A )∪B =(-1,5).命题点2 利用集合的运算求参数的值(范围)例4 (1)(2022·厦门模拟)已知集合A ={1,a },B ={x |log 2x <1},且A ∩B 有2个子集,则实数a 的取值范围为( ) A .(-∞,0] B .(0,1)∪(1,2] C .[2,+∞)D .(-∞,0]∪[2,+∞)解析 由题意得,B ={x |log 2x <1}={x |0<x <2}, ∵A ∩B 有2个子集, ∴A ∩B 中的元素个数为1; ∵1∈(A ∩B ),∴a ∉(A ∩B ),即a ∉B ,∴a ≤0或a ≥2, 即实数a 的取值范围为(-∞,0]∪[2,+∞).(2)已知集合A ={x |3x 2-2x -1≤0},B ={x |2a <x <a +3},若A ∩B =∅,则实数a 的取值范围是( ) A .a <-103或a >12B .a ≤-103或a ≥12C .a <-16或a >2D .a ≤-16或a ≥2答案 B解析 A ={x |3x 2-2x -1≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤1, ①B =∅,2a ≥a +3⇒a ≥3,符合题意; ②B ≠∅,⎩⎪⎨⎪⎧a <3,a +3≤-13或⎩⎪⎨⎪⎧a <3,2a ≥1, 解得a ≤-103或12≤a <3.∴a 的取值范围是a ≤-103或a ≥12.教师备选(2022·铜陵模拟)已知A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},若A ∩(∁R B )≠∅,则实数a 的取值范围是( ) A .1≤a ≤2 B .1<a <2 C .a ≤1或a ≥2 D .a <1或a >2答案 D解析 A ={x |x ≤0或x ≥3},B ={x |x ≤a -1或x ≥a +1},所以∁R B ={x |a -1<x <a +1}; 又A ∩(∁R B )≠∅, 所以a -1<0或a +1>3, 解得a <1或a >2,所以实数a 的取值范围是a <1或a >2.思维升华 对于集合的交、并、补运算,如果集合中的元素是离散的,可用Venn 图表示;如果集合中的元素是连续的,可用数轴表示,此时要注意端点的情况.跟踪训练3 (1)(2021·全国甲卷)设集合M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5,则M ∩N 等于( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x ≤13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4 C .{x |4≤x <5} D .{x |0<x ≤5}答案 B解析 因为M ={x |0<x <4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤5, 所以M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x <4. (2)(2022·南通模拟)设集合A ={1,a +6,a 2},B ={2a +1,a +b },若A ∩B ={4},则a =________,b =________. 答案 2 2解析 由题意知,4∈A ,所以a +6=4或a 2=4, 当a +6=4时,则a =-2,得A ={1,4,4},故应舍去; 当a 2=4时,则a =2或a =-2(舍去), 当a =2时,A ={1,4,8},B ={5,2+b }, 又4∈B ,所以2+b =4,得b =2. 所以a =2,b =2.题型四 集合的新定义问题例5 (1)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( ) A .15 B .16 C .20 D .21 答案 D解析 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.(2)非空数集A 如果满足:①0∉A ;②若∀x ∈A ,有1x∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x |x 2-6x +1≤0};③⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4],其中是“互倒集”的序号是________. 答案 ②③解析 ①中,{x ∈R |x 2+ax +1=0},二次方程判别式Δ=a 2-4,故-2<a <2时,方程无根,该数集是空集,不符合题意; ②中,{x |x 2-6x +1≤0}, 即{x |3-22≤x ≤3+22}, 显然0∉A , 又13+22≤1x ≤13-22,即3-22≤1x ≤3+22,故1x也在集合中,符合题意; ③中,⎩⎨⎧⎭⎬⎫y ⎪⎪y =2x,x ∈[1,4], 易得⎩⎨⎧⎭⎬⎫y ⎪⎪12≤y ≤2,0∉A , 又12≤1y ≤2,故1y 也在集合A 中,符合题意. 教师备选对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={x |x ≥0},B ={x |-3≤x ≤3},则A *B =____________. 答案 {x |-3≤x <0或x >3}解析 ∵A ={x |x ≥0},B ={x |-3≤x ≤3}, ∴A -B ={x |x >3},B -A ={x |-3≤x <0}. ∴A *B ={x |-3≤x <0或x >3}. 思维升华 解决集合新定义问题的关键解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目所给定义和要求进行恰当转化,切忌同已有概念或定义相混淆.跟踪训练4 若集合A 1,A 2满足A 1∪A 2=A ,则称(A 1,A 2)为集合A 的一种分拆,并规定:当且仅当A 1=A 2时,(A 1,A 2)与(A 2,A 1)是集合A 的同一种分拆.若集合A 有三个元素,则集合A 的不同分拆种数是________. 答案 27解析不妨令A={1,2,3},∵A1∪A2=A,当A1=∅时,A2={1,2,3},当A1={1}时,A2可为{2,3},{1,2,3}共2种,同理A1={2},{3}时,A2各有2种,当A1={1,2}时,A2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A1={1,3},{2,3}时,A2各有4种,当A1={1,2,3}时,A2可为A1的子集,共8种,故共有1+2×3+4×3+8=27(种)不同的分拆.课时精练1.(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},集合N={3,4},则∁U(M∪N)等于()A.{5} B.{1,2}C.{3,4} D.{1,2,3,4}答案 A解析方法一(先求并再求补)因为集合M={1,2},N={3,4},所以M∪N={1,2,3,4}.又全集U={1,2,3,4,5},所以∁U(M∪N)={5}.方法二(先转化再求解)因为∁U(M∪N)=(∁U M)∩(∁U N),∁U M={3,4,5},∁U N={1,2,5},所以∁U(M∪N)={3,4,5}∩{1,2,5}={5}.2.已知集合U=R,集合A={x|x+3>2},B={y|y=x2+2},则A∩(∁U B)等于() A.R B.(1,2]C.(1,2) D.[2,+∞)答案 C解析A={x|x+3>2}=(1,+∞),B={y|y=x2+2}=[2,+∞),∴∁U B=(-∞,2),∴A∩(∁U B)=(1,2).3.已知集合M={1,2,3},N={(x,y)|x∈M,y∈M,x+y∈M},则集合N中的元素个数为() A.2 B.3 C.8 D.9答案 B解析 由题意知,集合N ={(1,1),(1,2),(2,1)},所以集合N 的元素个数为3.4.(2022·青岛模拟)已知集合A ={a 1,a 2,a 3}的所有非空真子集的元素之和等于9,则a 1+a 2+a 3等于( )A .1B .2C .3D .6 答案 C解析 集合A ={a 1,a 2,a 3}的所有非空真子集为{a 1},{a 2},{a 3},{a 1,a 2},{a 1,a 3},{a 2,a 3},则所有非空真子集的元素之和为a 1+a 2+a 3+a 1+a 2+a 1+a 3+a 2+a 3=3(a 1+a 2+a 3)=9,所以a 1+a 2+a 3=3.5.(2022·浙江名校联考)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是( )A .a <-2B .a ≤-2C .a >-4D .a ≤-4 答案 D解析 集合A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≤-a 2,由A ∪B =B 可得A ⊆B ,作出数轴如图.可知-a 2≥2,即a ≤-4. 6.(多选)已知集合P ={(x ,y )|x +y =1},Q ={(x ,y )|x 2+y 2=1},则下列说法正确的是( )A .P ∪Q =RB .P ∩Q ={(1,0),(0,1)}C .P ∩Q ={(x ,y )|x =0或1,y =0或1}D .P ∩Q 的真子集有3个答案 BD解析 联立⎩⎪⎨⎪⎧ x +y =1,x 2+y 2=1, 解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =1, ∴P ∩Q ={(1,0),(0,1)},故B 正确,C 错误;又P,Q为点集,∴A错误;又P∩Q有两个元素,∴P∩Q有3个真子集,∴D正确.7.(多选)(2022·重庆北碚区模拟)已知全集U={x∈N|log2x<3},A={1,2,3},∁U(A∩B)={1,2,4,5,6,7},则集合B可能为()A.{2,3,4} B.{3,4,5}C.{4,5,6} D.{3,5,6}答案BD解析由log2x<3得0<x<23,即0<x<8,于是得全集U={1,2,3,4,5,6,7},因为∁U(A∩B)={1,2,4,5,6,7},则有A∩B={3},3∈B,C不正确;对于A选项,若B={2,3,4},则A∩B={2,3},∁U(A∩B)={1,4,5,6,7},矛盾,A不正确;对于B选项,若B={3,4,5},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},B正确;对于D选项,若B={3,5,6},则A∩B={3},∁U(A∩B)={1,2,4,5,6,7},D正确.8.(多选)已知全集U的两个非空真子集A,B满足(∁U A)∪B=B,则下列关系一定正确的是()A.A∩B=∅B.A∩B=BC.A∪B=U D.(∁U B)∪A=A答案CD解析令U={1,2,3,4},A={2,3,4},B={1,2},满足(∁U A)∪B=B,但A∩B≠∅,A∩B≠B,故A,B均不正确;由(∁U A)∪B=B,知∁U A⊆B,∴U=A∪(∁U A)⊆(A∪B),∴A∪B=U,由∁U A⊆B,知∁U B⊆A,∴(∁U B)∪A=A,故C,D均正确.9.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.解析 由题意可知,A ={x ∈U |x 2+mx =0}={0,3},即0,3为方程x 2+mx =0的两个根,所以m =-3.10.(2022·石家庄模拟)已知全集U =R ,集合M ={x ∈Z ||x -1|<3},N ={-4,-2,0,1,5},则下列Venn 图中阴影部分的集合为________.答案 {-1,2,3}解析 集合M ={x ∈Z ||x -1|<3}={x ∈Z |-3<x -1<3}={x ∈Z |-2<x <4}={-1,0,1,2,3}, Venn 图中阴影部分表示的集合是M ∩(∁R N )={-1,2,3}.11.已知集合A ={m 2,-2},B ={m ,m -3},若A ∩B ={-2},则A ∪B =________. 答案 {-5,-2,4}解析 ∵A ∩B ={-2},∴-2∈B ,若m =-2,则A ={4,-2},B ={-2,-5},∴A ∩B ={-2},A ∪B ={-5,-2,4};若m -3=-2,则m =1,∴A ={1,-2},B ={1,-2},∴A ∩B ={1,-2}(舍去),综上,有A ∪B ={-5,-2,4}.12.已知集合A ={x |y =lg(a -x )},B ={x |1<x <2},且(∁R B )∪A =R ,则实数a 的取值范围是________.答案 [2,+∞)解析 由已知可得A =(-∞,a ),∁R B =(-∞,1]∪[2,+∞),∵(∁R B )∪A =R ,∴a ≥2.13.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系”集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有“伙伴关系”的集合的个数为( )A .15B .16C .32D .256解析 由题意知,满足“伙伴关系”的集合由以下元素构成:-1,1,12,2,13,3,其中12和2,13和3必须同时出现,所有满足条件的集合个数为24-1=15. 14.已知集合A ={x |8<x <10},设集合U ={x |0<x <9},B ={x |a <x <2a -1},若(∁U B )∩A ={x |8<x <9},则实数a 的取值范围是________________.答案 ⎝⎛⎦⎤-∞,92解析 当B =∅时,2a -1≤a ,解得a ≤1,此时∁U B =U ,(∁U B )∩A =U ∩A ={x |8<x <9},符合题意;当B ≠∅时,2a -1>a ,解得a >1,因为集合U ={x |0<x <9},B ={x |a <x <2a -1},所以∁U B ={x |0<x ≤a 或2a -1≤x <9},因为(∁U B )∩A ={x |8<x <9},所以2a -1≤8,解得a ≤92,所以B ≠∅时,1<a ≤92,综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,92.15.(多选)设集合A ={x |x =m +3n ,m ,n ∈N *},若x 1∈A ,x 2∈A ,x 1x 2∈A ,则运算可能是( )A .加法B .减法C .乘法D .除法答案 AC解析 由题意可设x 1=m 1+3n 1,x 2=m 2+3n 2,其中m 1,m 2,n 1,n 2∈N *,则x 1+x 2=(m 1+m 2)+3(n 1+n 2),x 1+x 2∈A ,所以加法满足条件,A 正确;x 1-x 2=(m 1-m 2)+3(n 1-n 2),当n 1=n 2时,x 1-x 2∉A ,所以减法不满足条件,B 错误;x 1x 2=m 1m 2+3n 1n 2+3(m 1n 2+m 2n 1),x 1x 2∈A ,所以乘法满足条件,C 正确;x 1x 2=m 1+3n 1m 2+3n 2,当m 1m 2=n 1n 2=λ(λ>0)时,x 1x 2∉A , 所以除法不满足条件,D 错误.16.对班级40名学生调查对A ,B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成,另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人,问对A ,B 都赞成的学生有___________人.答案 18解析 赞成A 的人数为40×35=24,赞成B 的人数为24+3=27,设对A ,B 都赞成的学生有x 人,则13x +1+27-x +x +24-x =40, 解得x =18.。

2023年人教版数学三年级上册集合导学案(优选3篇)

2023年人教版数学三年级上册集合导学案(优选3篇)

人教版数学三年级上册集合导学案(优选3篇)〖人教版数学三年级上册集合导学案第【1】篇〗复习集合师:集合是近期才学习的内容,大家还记得哪些与集合相关的知识呢引导学生回顾。

1思维图。

让学生说-说图形的要素、画法及各部分的作用。

2利用维思图解决问题。

师:求两个集合的交、井之后的元素个数。

就是用两个集合的元素个数的和减去它们的交集的元素的个数。

(板书〉师:在我校开展运动会时,本班有7人报名50米短跑,有5人报名跳远。

最后老师让报名参加这两项比賽的同学起立,可是数来数去却只有9人参賽。

你知道为什么吗[学情预设]因为有人同时报了两项比賽. .师:你能利用维思图帮老师找找,有几人报了两项吗学生独立完成,然后集体交流。

师:像这样,你还能举出其他的例子吗根据举出的例子,请你面一面,然后把你画的图跟大家分享一下吧!展示学生作业,集体评议。

[设计意图]集合这一部分内容是近期才学习的。

学生相对来说比较熟悉。

故以学生回顾为主。

然后举例验证并表达对维思图的理解.反馈练习1.口算练习:完成教科书F112*练习二十四”第10题。

学生口答,以接龙形式完成,检验学生分数的简单计算能力。

2综合练习:完成教科书F113~练习二十四"第13题。

(1)回顾钟面的结构。

师:我们认识了钟面,钟面.上有哪些数学知识呢[学情预设]学生会知道钟面一共有12个大格。

把钟面平均分成了12份:也可以把钟面看成平均分成了60份,每分钟表示其中的1份。

(2)让学生根据复习分数的相关知识独立解决问题。

3.分数解决间题:完成教科书F114“练习二十四"第15题。

(1)学生独立思考。

(2)指名学生板演。

.(3)根据学生所出现的问魎进行讲解。

及时发现解决问题过程中易犯的普逍性错误。

[设计意图]设计不同类型的题目。

让学生进-步巩固所学的知识。

增养学生的综合运用能力,拓展学生的思维。

五、全课小结师:这节课你学习了什么说说你的收获。

〖人教版数学三年级上册集合导学案第【2】篇〗教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

导学案001集合的概念及运算

导学案001集合的概念及运算

集合的概念及运算编号:001 一、考纲要求(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(V enn)图表达集合的关系及运算.二、复习目标了解集合的含义;集合包含与相等的含义,能识别给定集合的子集(不要求证明集合的相等关系、包含关系);全集与空集的含义。

理解两个集合的并集与交集的含义;会求两个简单集合的并集与交集。

理解给定集合的一个子集的补集的含义;会求给定子集的补集。

会用Venn图表示集合的关系及运算。

三、重点难点1、集合的子、交、并、补运算2、V enn图和数轴在解决集合问题时的应用四、要点梳理1.集合:某些指定的对象集在一起成为集合。

(1)集合中的对象称元素,若a是集合A的元素,记作Aa∈;若b不是集合A的元素,记作Ab∉;(2)集合中的元素必须满足、、。

确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,与顺序无关;(3)表示一个集合可用列举法、描述法或韦恩图法;列举法:把集合中的元素出来,写在大括号内;描述法:把集合中的元素的描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

《1.1 集合的概念》教学导学案(统编人教A版)

《1.1 集合的概念》教学导学案(统编人教A版)

【新教材】1.1 集合的概念学案(人教A版)1. 了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2. 深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3. 会用集合的两种表示方法表示一些简单集合。

感受集合语言的意义和作用。

1.数学抽象:集合概念的理解,描述法表示集合的方法;2.逻辑推理:集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算,集合的描述法转化为列举法时的运算;4. 数据分析:元素在集合中对应的参数满足的条件;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。

重点:集合的基本概念,集合中元素的三个特性,元素与集合的关系,集合的表示方法.难点:元素与集合的关系,选择适当的方法表示具体问题中的集合.一、预习导入阅读课本2-5页,填写。

1.元素与集合的概念(1)元素:一般地,把__________统称为元素.元素常用小写的拉丁字母a,b,c,…表示.(2)集合:把一些元素组成的________叫做集合(简称为_______).集合通常用大写的拉丁字母A,B,C,…表示.(3)集合相等:只要构成两个集合的_______是一样的,就称这两个集合是相等的.(4)元素的特性:_________、__________ 、___________.2.元素与集合的关系3.常用的数集及其记法把集合的元素_____________,并用花括号“{ }”括起来表示集合的方法叫做列举法.5.描述法(1)定义:用集合所含元素的___________表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的__________及____________,再画一条竖线,在竖线后写出这个集合中元素所具有的___________.1.判断(正确的打“√”,错误的打“×”)(1)你班所有的姓氏能组成集合. ( ) (2)新课标数学人教A 版必修1课本上的所有难题.( )(3)一个集合中可以找到两个相同的元素. ( )(4)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( )(5)集合{(1,2)}中的元素是1和2.( )(6)集合A ={x |x -1=0}与集合B ={1}表示同一个集合.( )2.下列元素与集合的关系判断正确的是( )A .0∈NB .π∈Q C.2∈Q D .-1∉Z3.已知集合A 中含有两个元素1,x 2,且x ∈A ,则x 的值是( )A .0B .1C .-1D .0或14.方程组⎩⎪⎨⎪⎧x +y =1,x -y =-3的解集是( ) A .(-1,2)B .(1,-2)C .{(-1,2)}D .{(1,-2)}5.不等式x -3<2且x ∈N *的解集用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5}6.不等式4x -5<7的解集为________.例1 考查下列每组对象,能构成一个集合的是( )①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④例2(1)下列关系中,正确的有()①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A.1个B.2个C.3个D.4个(2)集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.例3已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.变式1.[变条件]本例若将条件“1∈A”改为“2∈A”,其他条件不变,求实数a的值.变式2.[变条件]本例若去掉条件“1∈A”,其他条件不变,则实数a的取值范围是什么?变式3.[变条件]已知集合A含有两个元素1和a2,若“a∈A”,求实数a的值.例4用列举法表示下列集合.(1)不大于10的非负偶数组成的集合;(2)方程x3=x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点所组成的集合.例5用描述法表示下列集合:(1)被3除余1的正整数的集合;(2)坐标平面内第一象限的点的集合;(3)大于4的所有偶数.例6(1)若集合A={x∈R|ax2+2x+1=0,a∈R}中只有一个元素,则a=()A.1B.2 C.0D.0或1(2)设12∈⎩⎨⎧⎭⎬⎫x⎪⎪x2-ax-52=0,则集合⎩⎨⎧⎭⎬⎫x⎪⎪x2-192x-a=0中所有元素之积为________.例7用描述法表示抛物线y=x2+1上的点构成的集合.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?1.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C .不超过20的非负数组成一个集合D .方程(x -1)(x +1)2=0的所有解构成的集合中有3个元素2.已知集合A 由x <1的数构成,则有( )A .3∈AB .1∈AC .0∈AD .-1∉A3.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .04.已知a ,b 是非零实数,代数式|a |a +|b |b +|ab |ab的值组成的集合是M ,则下列判断正确的是( ) A .0∈MB .-1∈MC .3∉MD .1∈M5.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R).选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B6.定义P *Q ={ab |a ∈P ,b ∈Q },若P ={0,1,2},Q ={1,2,3},则P *Q 中元素的个数是( )A .6个B .7个C .8个D .9个7.下列说法中:①集合N 与集合N +是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________(填序号).8.已知A ={(x ,y )|x +y =6,x ∈N ,y ∈N},用列举法表示A 为________.9.已知集合A ={x |ax 2-3x -4=0,x ∈R},若A 中至多有一个元素,求实数a 的取值范围. 答案小试牛刀1.答案:(1)√ (2)× (3)× (4)× (5)× (6)√2-5.AACB 6.{x |4x -5<7}自主探究例1 B例2 (1) C (2) 0,1,2例3 a =-1.变式1. a =2,或a =2,或a =- 2.变式2. a ≠0且a ≠1.变式3. a =0.例4 (1) {0,2,4,6,8,10}.(2) {0,1,-1}. (3) {(0,1)}.例5 (1) {x |x =3n +1,n ∈N}.(2) {(x ,y )|x >0,y >0}.(3) {x |x =2n ,n ∈Z 且n ≥3}.例6 (1) D (2) 92例7 {(x ,y )|y =x 2+1}.变式1解:集合{x |y =x 2+1}的代表元素是x ,且x ∈R ,所以{x |y =x 2+1}中的元素是全体实数. 变式2解:集合{ y | y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以{ y | y =x 2+1}={ y | y ≥1},所以集合中的元素是大于等于1的全体实数.当堂检测1-6. CCBBCA 7.②④8.{(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}9.解:当a =0时,A =⎩⎨⎧⎭⎬⎫-43; 当a ≠0时,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根,所以Δ=9+16a ≤0,即a ≤-916. 故所求的a 的取值范围是a ≤-916或a =0.。

必修1集合导学案(附练习题完整)北师版

必修1集合导学案(附练习题完整)北师版

集合的含义与表示 导学案【学习目标】(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系,集合相等的含义;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)理解列举法和描述法,能选择自然语言、集合语言、图形语言表示集合。

【学习重点】(1)利用集合中元素的三个特性解题;(2)集合的三种表示方法.【学习难点】(1)利用集合中元素的三个特性解题;(2)准确认识元素与集合间的关系;(3)对描述法表示的集合的理解.一、知识链接请列举小学和初中已接触过的集合 .二、学习过程思考一、(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)到一个角的两边距离相等的所有的点;(4)方程2560x x -+=的所有实数根;(5)不等式30x ->的所有解;(6)安吉县高级中学2011年9月入学的高一学生的全体.观察上面的例子,指出这些实例的共同特征是什么?1.元素与集合的概念元素:一般地,我们把 统称为元素;集合:把一些元素的 叫做集合,简称为集.思考二、指出问题1中各集合的元素2.元素与集合的表示元素:通常用 拉丁字母 来表示;集合:通常用 拉丁字母 来表示.3.元素与集合的关系:如果a 是集合的元素,就说 ,记作 ;如果a是集合的元素,就说 ;记作 .思考三、判断以下元素的全体是否成集合,并说明理由。

(1)美丽的小鸟;(2)不超过20 的所有非负整数;(3)所有等腰直角三角形;(4)全班成绩优异的学生.思考四、在一个给定的集合中能否有相同的元素?思考五、112班的全体同学组成一个集合,调整座位后这个集合有没有变化?4.集合元素的特性: ; ; .5.集合相等的概念集合相等:只要构成两个集合的 是一样的,我们就称这两个集合是相等的.6.常用数集及其表示符号自然数集(非负整数集): ;正整数集: ;整数集: ;有理数集: ;实数集: 。

7.集合的表示方法集合的表示方法有 、 、图示法. 叫列举法.注元素间要用 隔开; 叫描述法.注花括号内竖线的前面部分为集合的代表元素.思考六、(1) a 与{}a 的含义是否相同?(2) 集合{}(){}2,1,2,1是否表示同一集合?(3) 集合{}{}(){},,|,,,,,|222R x x y y x C R x x y B R x x y y A ∈==∈==∈=={}2|x y x D ==是不是相同的集合?试用文字语言叙述集合的含义.三、典例剖析例1.已知集合A 是有三个元素12,52,22a a a +-组成的,且A ∈-3,求a.例2.用适当的方法表示下列集合(1)绝对值小于3的所有整数组成的集合;(2)所有奇数组成的集合;(3)函数32+=x y 的图像上的点.例3.集合A={}0168|2=+-x kx x ,若集合A 中只有一个元素,试求实数k 的值.四、课堂小结 课后检测1.给出下列四个命题:(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,23,46,21-,0.5这些数字组成的集合有5个元素; (4)集合{(x ,y )|xy ≤0,x ,y ∈R}是指第二象限或第四象限内的点的集合;(5)集合{x |x >3}与集合{t|t >3}表示不同的集合.以上命题中,正确命题的个数是( )A.0B.1C.2D.32.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( )A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2--C.{}0,1,2,3 D.{}1,2,33.给出下列4个关系式:{}3,0.3,0,00R Q N +∈∉∈∈其中正确的个数是( )A.1个 B.2个 C.3个 D.4个4.已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形5.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B. M={3,2},N={(2,3)}C.M={(x ,y )|x +y =1},N={y |x +y =1}D.M={1,2},N={2,1}6.已知集合M={m ∈N|8-m ∈N},则集合M 中元素个数是( )A.6B.7C.8D.9二、填空题 7.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为____________. 8.已知集合A={}20,1,x x -则x 在实数范围内不能取哪些值________.9.已知集合A 中的元素y 满足N y ∈且12+-=x y ,若A t ∈,则t 的值为________.10.已知集合P={x |2<x <a ,x ∈N},已知集合P 中恰有3个元素,则整数a =_________.三、解答题11.已知集合{1,a ,b }与{-1,-b ,1}是同一集合,求实数a 、b 的值.12.设R x ∈,集合A 中含有三个元素3,x x x 2,2-,(1)求x 应满足的条件;(2)若-2A ∈,求实数x 的值.集合间的关系 导学案【学习目标】(1)理解集合之间的包含与相等的含义,理解子集、真子集的概念,会写出给定集合的子集、真子集;(2)在具体情境中,了解全集与空集的含义.【学习重点】集合间关系的判断.【学习难点】(1)正确判断元素与集合、集合与集合的关系;(2)空集概念的理解.一、知识链接1.元素与集合的关系是 或 ;用符号 表示.2.集合元素的特性 、 、 .3.集合的表示方法有 、 、 .二、学习过程思考一我们知道实数有大小或相等的关系,哪么集合间是不是也有类似的关系呢?(1){}{}1,2,3,1,2,3,4,5A B ==;(2)设集合A为我班全体女生组成的集合,集合B为我班全体学生组成的集合;(3)设{}{}|,|C x x D x x ==是等边三角形是三角形.观察上面的例子,指出给定两个集合中的元素有什么关系?你还能举出有以上关系的例子吗?1.子集的概念集合A 中 元素都是集合B 中的元素,就说这两个集合有 关系,称集合 是集合 的子集.即若A x ∈,就有 .记作A B 或B A;读作 .可用Venn 图表示为 .思考二(1){}{}1,3,5,5,1,3A B ==(2)}|{D }|{是两条边相等的三角形,是等腰三角形x x x x C ==(3)131(,)|,(,)222x y A x y B x y ⎧+=⎫⎧⎧⎫==-⎨⎨⎬⎨⎬-=⎩⎭⎩⎩⎭上面的各对集合中有何关系?2.集合的相等如果集合A 是集合B 的 ,即A B ;且集合B 是集合A 的 ,即A B ,则称集合A 与B 相等,记作 .可用Venn 图表示为 .3.真子集的概念如果集合A B,但存在元素B x ∈,且A x ∉,则称 ,记作A B ,B A.思考三{}{}2|10,|5A x x B x x =+==是身高在米以上的人观察上面给定的两个集合,归纳出空集的概念.4.空集的概念 叫空集,记作 .规定空集是 集合的子集, 集合的真子集.思考四判断下列集合是否是空集(1){}0;(2){}22++x x ;(3){}32|2++x x x ;(4){}32|-<-∈x N x思考五类比实数的大小关系,可归纳处集合间的什么性质?(1)a a R a ≤∈,;(2)c a c b b a R c b a ≤≤≤∈那么若,,,,,.5.集合间的基本关系任何集合是 的子集,即A A ;对于集合A,B,C,若C B B A ⊆⊆,,那么A C.含n 个元素的集合,其子集的个数 ,真子集的个数 ,非空真子集的个数 .三、典例剖析例1.写出下列各集合的子集及其个数{}{}{},,,,,,a a b a b c ∅例2.用适当的符号填空(1)a {}c b a ,,;(2)0 {}0;(3)0 φ;(4){}1 {}3,2,1;(5)φ {}0.例 3.已知集合{}{}112|,43|+<<-=≤≤-=m x m x B x x A ,求下列情况下实数m的取值范围.(1)若B A ⊆;(2)A B ⊆.例4.已知含有3个元素的集合,,1b A a a ⎧⎫=⎨⎬⎩⎭,{}2,,0B a a b =+,若A=B,求20102010a b +的值.四、课堂小结1.集合间有几种基本关系?2.集合的基本关系分别用哪些符号表示?怎样用Venn 图来表示?3.什么叫空集?它有什么特殊规定? 课后检测一、选择题1.下列各式中错误的个数为( )①{}10,1,2∈②{}{}10,1,2∈③(){}(){}a b b a ,,=④{}{}0,1,22,0,1=⑤{}φφ∈ ⑥{}φφ⊆A 1B 2C 3D 42.若,x y R ∈,集合{}(,)|,(,)|1y A x y y x B x y x ⎧⎫====⎨⎬⎩⎭,则A,B的关系为( ) A A=B B A⊆B C AB D BA3.若,A B A ⊆C,且A中含有两个元素,{}{}0,1,2,3,0,2,4,5B C ==则满足上述条件的集合A可能为( ).A {}0,1 B {}0,3 C {}2,4 D {}0,24.满足{}a M ⊆{},,,a b c d 的集合M共有( )A6个 B7个 C8个 D9个二、填空题5.已知{}{}{}A B C ===菱形正方形平行四边形,则集合A,B,C之间的关系为__________.6.{}R a a x x M ∈+==,1|2,{}R x x x y y P ∈+-==,54|2,则M 与P 的关系 .7.已知集合{}{}2|320,|10A x x x B x ax =-+==-=若B A ,则实数a 的值为__. 8.已知集合{}{}|40,|12A x R x p B x x x A B =∈+≤=≤≥⊆或且,则实数p 的取值集合为___.9.集合{}|21,A x x k k Z ==-∈,集合{}|21,B x x k k Z ==+∈,则A与B的关系__.10.已知A={},a b ,{}A x x B ⊆=|,集合A与集合B的关系为 .三.解答题11.已知集合{}{}22,,,2,2,A x y B x y A B ===且,求,x y 的值.12.已知{}{}|25,|121A x x B x a x a =-≤≤=+≤≤-,B A ⊆,求实数a 的取值范围集合的基本运算(第一课时) 导学案【学习目标】1.理解两个集合的并集与交集的含义,掌握有关术语和符号,会求两个简单集合的并集与交集.2.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.【学习重点】理解两个集合的交集、并集的含义.【学习难点】理解并集概念中“或”的含义以及交集概念中“且”的含义.一、知识链接1.集合与元素的关系有 、 ;集合与集合的关系有 、 、 .2.已知集合{}{}6,4,3,2,5,3,1==B A ,由集合A 与B 的所有元素组成的集合是 ;由集合A 与B 的公共元素组成的集合是 .二、学习过程思考一类比实数的加法运算,集合是否也可以“相加”吗?考察下列各集合,归纳集合A 、B 中的与集合C 有何关系?集合C 中的元素与集合A 、B 有何关系?(1){}{}{}5,3,2,1,5,3,2,5,3,1===C B A ;(2){}{}{}是实数,是无理数,是有理数x x x x x x A |C |B |===.若,A x ∈则x C;若B x ∈,x C.若C x ∈,则x .1.集合的并集文字语言: 组成的集合,成为集合A 与B的 .符号语言:=⋃B A .图形语言: .思考二判断下列各集合间的关系A ∪B B ∪ A ; (A ∪B )∪C A ∪(B ∪C );A ∪ A = ;A ∪ ∅= ; A B A ⋃;B B A ⋃;=⋃⇒⊂B A B A ;A B B A ⇒=⋃ B .思考三考察下列各集合,归纳集合A 、B 中的与集合C 有何关系?集合C 中的元素与集合A 、B 有何关系?(1){}{}{}3,2,9,7,3,2,5,3,2,1===C B A ;(2){}{},是我校高一全体学生,是我校全体女生学生x x x x A |B |== {}是我校全体高一女生x x C |=. 若A x ∈,则x C ;若C x ∈,则x A ;x B .2.集合的交集文字语言: 组成的集合,成为集合A 与B的 .符号语言:=⋂B A .图形语言: .思考二判断下列各集合间的关系A ∩B B ∩ A ; (A ∩ B ) ∩C A ∩ (B ∩ C );A ∩ A = ;A ∩ ∅=∅ A = ;A B A ⋂;B B A ⋂;=⋂⇒⊆B A B A ;A A B A ⇒=⋂ B .三、典例剖析例 1.已知{}{}35,43,24,1,32,4,22222+-+-+-+=+-=a a a a a a a B a a A ,若{},3,2=⋂B A 求B A ⋃.例2.若{}{}12|,31|+≤≤=>≤=a x a x B x x x A 或,求a 的取值范围.(1)R B A =⋃; (2)φ=⋂B A .例3.设集合{}{}R a ax x B A ∈=+=-=,01|,2,若B B A =⋂,求a 的值.四、课堂小结1.集合有哪些基本运算?2.各种运算如何用符号和Venn 图来表示.3.集合运算与实数的运算有何区别与联系.课后检测一、选择题1.设集合{}{}|32,|13M x Z x N n Z n =∈-<<=∈-≤≤,则M N ⋂= ( ) A{}0,1 B {}1,0,1- C {}0,1,2 D {}1,0,1,2-2.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( ) A 1或0 B 1,0,或2 C 0,2或-2 D 1或23.下列关系中完全正确的是 ( ) A {},a a b ⊂ B {}{},,a b a c a ⋂=C {}{},,b a a b ⊆ D {}{}{},,0b a a c ⋂=4.已知集合{}{}|23,|14A x x B x x x =-≤≤=<->或,则A B ⋂= ( )A {}|34x x x ≤>或B {}≤x|-1<x 3C {}4≤<x|3xD {}1≤<-x|-2x5.若集合A,B,C满足C B B A ⋂=⋃,则一定有( )A C A ≠ B φ=A C A C ⊆ D C A ⊆二、填空题6.设集合{}{}|91,|32A x x B x x A B =-<<=-<<⋂=则__________.7.满足条件{}{}1,2,31,2,3,4,5A ⋃=的所有集合A的个数是__________.8.若集合{}{}|2,|A x x B x x a =≤=≥,满足{}2A B ⋂=则实数a =_______.9.集合{}{},1|,12|),(-==+==x y y B x y y x A ,则=⋂B A _____.10.对于集合A,B,定义{}|A B x x A -=∈∉且B ,A⊙B=()()A B B A -⋃-, 设集合{}{}1,2,3,4,5,6,4,5,6,7,8,9,10M N ==,则M⊙N=__________.11.设集合{}{}22|320,|220A x x x B x x ax =-+==-+=,若A B A ⋃=,求实数a 的取值集合.12. 已知{}{}|24,|A x x B x x a =-≤≤=<(1)若A B φ⋂=,求实数a 的取值范围;(2)若A B A ⋂≠,求实数a 的取值范围;(3)若A B A B A φ⋂≠⋂≠且,求实数a 的取值范围.集合的基本运算(第二课时) 导学案【学习目标】1.理解全集、补集的含义,会求给定子集的补集;2.熟练掌握集合的基本运算;3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;4.能利用集合的关系和运算及Venn 图来求有限集合中元素的个数.【学习重点】求给定集合的补集.【学习难点】1.求交、并、补集的运算;2.数形结合思想在解题中的应用.一、知识链接1.集合间的三种运算 、 、 .2.=⋃B A ;=⋂B A .思考一在下列范围内解方程0)3)(2(2=--x x(1)有理数范围内;(2)实数范围内.1.全集如果一个集合 ,那么我们就称这个集合为 .通常记作 .2.补集文字语言:对于集合A ,由全集U 中 组成的集合,称为 .记作 .符号语言:=A C U .图形语言: .思考二求下列各集合间的运算u C u = ;=φu C ;=⋃A C A u ;=⋂A C A u ;=)(A C C u u . =⋂)(B A C u ;=⋃)(B A C u .三、典例剖析例1.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.变式:已知集合{}x A ,3,1=,{}2,1x B =,若A B C B u =⋃,求B C u .例2.已知全集{}6,5,4,3,2,1=U ,{},6,1=⋂B A C u {}{},4,3,2=⋂=⋂B A B C A u 求B.例3.已知集合{}{}21|,22|<<=<<-=x x B a x a x A ,且B C A R ⊂≠,求a 的取值范围.变式.已知集合{}{}21|,22|<<=<<-=x x B a x a x A ,且A C B R ⊂≠,求a 的取值范围.课后检测一、选择题1.设全集{}60|,≤≤==x x A R U ,则A C R 等于 ( )A {}6,5,4,3,2,1,0 B {}60|><x x x 或 C {}60|<<x x D {}60|≥≤x x x 或 2.设U为全集,集合,M U N U N M ⊆⊆⊆且则 ( ) A U U C N C M ⊆ B U M C ⊆N C U U C N C M = D ()U U C M C ⊆N 3.已知集合{}3|0,|31x M x N x x x +⎧⎫=<=≤-⎨⎬-⎩⎭,则集合{}|1x x ≥是 ( ) A N M ⋂ B N M ⋃ C ()M N ⋂U C D ()M N ⋃U C4.已知全集{}8,5,2=U ,且{}2=A C u ,则集合A 的真子集个数为 ( ) A 3 B 4 C 5 D 65.对于非空集合M和N,定义M与N的差{}|M N x x M x N -=∈∉且,那么M-(M-N)总等于 ( ) A N B M C M N ⋂ D M N ⋃二.填空题6.设集合{}{},(,)|1A B x y x y ==-=-(x,y)|x+2y=7,则A B ⋂=_______.7.设{}{}2,|20,U A x x x N +==<∈x|x 是不大于10的正整数,则U C A =____.8.已知全集为U,,,D C B B C A u u ==则A 与D 的关系是____.9.设全集{}{},|U A x ==x|x 是三角形x 是锐角三角形,{}|B x =x 是钝角三角形,则U C A B⋃()=______________. 10.已知全集{}{}{}22,4,1,1,2,7U U a a A a C A a =-+=+==则_______.三.解答题11.设全集{}{}{}y A C A x x I I ,2,5,32,3,22==-+=,求x,y 的值.12.设全集R U =,{}m x m x A 213|<<-=,{}31|<<-=x x B ,若B C A u ⊂≠,求实数m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 集合的含义与表示一、元素与集合的概念只要构成两个集合的元素是 ,我们就称这两个集合 .2.集合元素的特性集合元素的特性: 、 、 .(注意对元素特性的理解)3.元素与集合的关系(1)如果a 是集合A 的元素,就说a 集合A ,记作(2)如果a 不是集合A 中的元素,就说a 集合A ,记作 .注意:对∈和∉的理解(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a 与一个集合A 而言,只有“a ∈A ”与“a ∉A ”这两种结果.(2)∈和∉具有方向性,左边是元素,右边是集合,形如R ∈0是错误的.二、常用的数集及其记法实数集R ⎩⎪⎨⎪⎧ 有理数集Q ⎩⎨⎧ 整数集Z ⎩⎨⎧ ⎭⎪⎬⎪⎫正整数集N *{0}自然数集N 负整数集分数集无理数集三、集合的表示列举法:把集合的元素 出来,并用花括号“{}”括起来表示集合的方法叫做列举法. 描述法:(1)定义:用集合所含元素的 表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.[例1] (1)下列各组对象:①接近于0的数的全体;②比较小的正整数的全体;③平面上到点a 的距离等于1的点的全体;④正三角形的全体;⑤2的近似值的全体.其中能构成集合的组数是( )A 、2B 、3C 、4D 、5[例2] (1)设集合A 只含有一个元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A (2)下列所给关系正确的个数是( )①π∈R ;② 3∉Q ;③0∈N *;④|-4|∉N *A .1B .2C .3D .4 [例3]已知集合A 中含有两个元素2a a 和,若1∈A ,求实数a 的值.[例4]设集合{},3A n n Z n =∈≤,集合{}21,B y y x x A ==-∈集合,试用列举法分别写出集合A 、B 、C.课堂练习:1.下列说法正确的是( )(A )所有著名的作家可以形成一个集合(B )0与 {}0的意义相同(C )集合是⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1有限集 (D )方程0122=++x x 的解集只有一个元素2.设不等式3-2x <0的解集为M ,下列正确的是( )A .0∈M,2∈MB .0∉M,2∈MC .0∈M,2∉MD .0∉M,2∉M 3.设A 表示由a 2+2a -3,2,3构成的集合,B 表示由2,|a +3|构成的集合,已知5∈A ,且5∉B ,求a 的值.4.若集合A 中含有三个元素a -3,2a -1,a 2-4,且-3∈A ,则实数a 的值为________.5、(1)集合A ={1,-3,5,-7,9,…}用描述法可表示为( )A .{x |x =2n ±1,n ∈N }B .{x |x =(-1)n (2n -1),n ∈N }C .{x |x =(-1)n (2n +1),n ∈N }D .{x |x =(-1)n -1(2n +1),n ∈N }(2)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪ 62+x ∈N . ①试判断元素1,2与集合B 的关系; ②用列举法表示集合B ..6、集合A ={x |ax 2+2x +1=0,a ∈R }中只有一个元素,求a 的取值范围(){}2,1,C x y y x x A ==-∈1.1.2集合间的基本关系1、子集的概念定义一般地,对于两个集合A,B,如果集合A中元素都是集合B中的元素,我们就说这两个集合有关系,称集合A为集合B的记法与读法记作(或),读作“A含于B”(或“B包含A”) 图示结论(1)任何一个集合是它本身的子集,即(2)对于集合A,B,C,若A⊆B,且B⊆C,则对子集概念的理解(1)集合A是集合B的子集的含义是:集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A中存在着不是集合B的元素,那么集合A不包含于B,或B不包含A.此时记作A⃘B或B⊉A.(3)注意符号“∈”与“⊆”的区别:“⊆”只用于之间,如{0}⊆N.而不能写成{0}∈N,“∈”只能用于之间.如0∈N,而不能写成0⊆N.2、集合相等的概念如果集合A是集合B的(A⊆B),且集合B是集合A的(B⊆A),此时,集合A 与集合B中的元素是一样的,因此,集合A与集合B相等,记作对两集合相等的认识(1)若A⊆B,又B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.这就给出了证明两个集合相等的方法,即欲证A=B,只需证A⊆B与B⊆A同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.3、真子集的概念定义如果集合A⊆B,但存在元素,且,我们称集合A是集合B的记法记作A B(或B A)图示结论(1)A⊆B且B⊆C,则A C;(2)A⊆B且A≠B,则A B(1)在真子集的定义中,A、B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.(2)若A不是B的子集,则A一定不是B的真子集.4、空集的概念(1)∅是不含任何元素的集合;(2){0}是含有一个元素的集合.5、判断集合间关系的方法(1)用定义判断.首先,判断一个集合A 中的任意元素是否属于另一集合B ,若是,则A ⊆B ,否则A 不是B 的子集;其次,判断另一个集合B 中的任意元素是否属于第一个集合A ,若是,则B ⊆A ,否则B 不是A 的子集;若既有A ⊆B ,又有B ⊆A ,则A =B .(2)数形结合判断.对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.6、有限集合的子集个数(1)含n 个元素的集合有 个子集;(2)含n 个元素的集合有 个真子集.(3)含n 个元素的集合有 个非空子集;(4)含有n 个元素的集合有 个非空真子集;(5)若集合A 有n (n ≥1)个元素,集合C 有m (m ≥1)个元素,且A ⊆B ⊆C ,则符合条件的集合B 有 个[例1] (1)下列各式中,正确的个数是( )①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}A .1B .2C .3D .4[例2](1)集合{}8,6,4,2的真子集的个数是( )A.16B.15C.14D.13[例3] 已知{}3A x x =<,{}B x x a =<.⑴若B A ⊆,求a 的取值范围; ⑵若A B ⊆,求a 的取值范围;课堂练习:1、下列四个命题:①{}0∅=;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中正确的有( )A.0个 B.1个 C.2个 D.3个2、指出下列各组集合之间的关系:①A ={-1,1},B ={(-1,-1),(-1,1),(1,-1),(1,1)};②A ={x |x 是等边三角形},B ={x |x 是等腰三角形};③M ={x |x =2n -1,n ∈N *},N ={x |x =2n +1,n ∈N *}.3、满足{1,2}M ⊆{1,2,3,4,5}的集合M 有 个.4、已知集合P={x ∣},062R x x x ∈=-+,S={x ∣},01R x ax ∈=+,若S ⊆P ,求实数a 的取值集合.5、已知集合A ={x |-2≤x ≤5},B ={x |m -6≤x ≤2m -1},若A ⊆B ,求实数m 的取值范围. 北晨学校高一数学导学案 主备人:邓洪萍 审核人:付冬梅1.1.3集合的基本运算第一课时集合的并集、交集1.并集的概念文字语言一般地,由所有的元素组成的集合,称为集合A与B 的并集,记作(读作“A并B”)符号语言A∪B={x|}图形语言2.并集的性质(1)A∪B=,即两个集合的并集满足交换律.(2)A∪A=,即任何集合与其本身的并集等于这个集合本身.(3)A∪∅=∅∪A=,即任何集合与空集的并集等于这个集合本身.(4)A⊆(A∪B),B⊆(A∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A⊆B,则A∪B=,反之亦然,即任何集合同它的子集的并集,等于这个集合本身.理解并集应关注三点(1)A∪B仍是一个集合,由所有属于A或属于B的元素组成.(2)“或”的数学内涵的形象图示如下:(3)若集合A和B中有公共元素,根据集合元素的互异性,则在A∪B中仅出现一次. 1.交集的概念文字语言一般地,由属于的所有元素组成的集合,称为A与B的交集,记作(读作“A交B”)符号语言A∩B={x|}图形语言(1)A∩B=,(2)A∩A=,(3)A∩∅=∅∩A=,(4)A∩B A,A∩B B,(5)若A⊆B,则A∩B=,理解交集的概念应关注四点(1)概念中“且”即“同时”的意思,两个集合交集中的元素必须同时是两个集合的元素.(2)概念中的“所有”两字不能省,否则将会漏掉一些元素,一定要将相同元素全部找出.(3)当集合A和集合B无公共元素时,不能说集合A,B没有交集,而是A∩B=∅.(4)定义中“x ∈A ,且x ∈B ”与“x ∈(A ∩B )”是等价的,即由既属于A ,又属于B的元素组成的集合为A ∩B .而只属于集合A 或只属于集合B 的元素,不属于A ∩B .例1、(1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( )(2)若集合A ={x |x >-1},B ={x |-2<x <2},则A ∪B 等于( )注:并集的运算技巧(1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的互异性.(2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但要注意是否去掉端点值.例2、设A=(]3,1- ,B=[)4,2,求A ∩B.注:求交集运算应关注两点(1)求交集就是求两集合的所有公共元素形成的集合.(2)利用集合的并、交求参数的值时,要检验集合元素的互异性.例3、已知集合A ={x |-3<x ≤4},集合B ={x |k +1≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.课堂练习:1、设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},求 A ∩B 和A ∪B2、若A ={0,1,2,3},B ={x |x =3a ,a ∈A },则A ∩B 等于( )A .{1,2}B .{0,1}C .{0,3}D .{3}3、已知M ={1,2,a 2-3a -1},N ={-1,a,3},M ∩N ={3},求实数a 的值4、设集合A={x|2x 2+3px+2=0},B={x|2x 2+x+q=0},其中p ,q ,x ∈R ,且A ∩B={21}时,求p 的值和A ∪B5、集合A ={x |x 2-3x +2=0},B ={x |x 2-2x +a -1=0},A ∩B =B ,则a 的取值范围为________.6、某车间有120人,其中乘电车上班的84人,乘汽车上班的32人,两车都乘的18人,求:⑴只乘电车的人数 ⑵不乘电车的人数 ⑶乘车的人数 ⑷只乘一种车的人数1.1.3 集合的基本运算第二课时补集及综合应用全集的定义及表示(1)定义:如果一个集合含有我们所研究问题中涉及的,那么就称这个集合为全集.(2)符号表示:全集通常记作对全集概念的理解“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R看作全集,而当我们在整数范围内研究问题时,就把整数集Z看作全集.补集的概念及性质定义文字语言对于一个集合A,由全集U中的所有元素组成的集合称为集合A相对全集U的,简称为集合A的补集,记作符号语言∁U A={x|}图形语言性质(1)∁U A⊆;(2)∁U U=,∁U∅=;(3)∁U(∁U A)=;(4)A∪(∁U A)=;A∩(∁U A)=(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(2)∁U A包含三层意思:①A⊆U;②∁U A是一个集合,且∁U A⊆U;③∁U A是由U中所有不属于A的元素构成的集合.(3)若x∈U,则x∈A或x∈∁U A,二者必居其一.[例1](1)设全集U=R,集合A={x|2<x≤5},则∁U A=________.(2)设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则∁U A=________,∁U B=________.求补集的方法求给定集合A的补集通常利用补集的定义去求,从全集U中去掉属于集合A的元素后,由所有剩下的元素组成的集合即为A的补集.练习:设全集U={1,3,5,7,9},A={1,|a-5|,9),∁U A={5,7},则a的值为________.[例2]已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B),∁U(A∪B).解决集合交、并、补运算的技巧(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来求解.这样处理起来,相对来说比较直观、形象且解答时不易出错.(2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.[例3] 已知集合A={x|x<a},B={x<-1,或x>0},若A∩(∁R B)=∅,求实数a的取值范围.利用补集求参数应注意两点(1)与集合的交、并、补运算有关的参数问题一般利用数轴求解,涉及集合间关系时不要忘掉空集的情形.(2)不等式中的等号在补集中能否取到,要引起重视,还要注意补集是全集的子集练习:1、已知集合A={x|x2-4x+2m+6=0},B={x|x<0},若A∩B≠∅,求实数m的取值范围.2、设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M∁U P,求实数a的取值范围.。

相关文档
最新文档