聚合物驱油地面工艺技术

合集下载

油田采油中的水驱、气驱和聚驱技术比较研究

油田采油中的水驱、气驱和聚驱技术比较研究

油田采油中的水驱、气驱和聚驱技术比较研究摘要:油田开发中,采油技术的选择对于提高采收率和经济效益至关重要。

水驱、气驱和聚驱是常用的技术,它们各自具有特点和适用性。

本文将比较水驱、气驱和聚驱技术的原理和适用性,以帮助油田工程师和决策者更好地选择合适的采油方法。

关键词:油田采油;水驱;气驱;聚驱;比较一、原理与适用性水驱技术是通过注入水来增加油藏中的压力,从而推动原油向井口移动。

这种技术适用于具有一定渗透率和较高孔隙度的油藏。

水驱技术的优点是成本相对较低,操作简单,并且对环境影响较小。

缺点是水驱存在一些局限性,比如在高温油藏或含有高盐度水的油藏中效果不佳。

气驱技术是通过注入气体(通常是天然气)来增加油藏中的压力,推动原油向井口移动。

这种技术适用于低渗透率和较高黏度的油藏。

气驱技术的优点是可以提高采收率,减少水的使用量,同时还可以利用天然气资源。

缺点是成本较高,操作复杂,而且对环境的影响也比较大。

聚驱技术是通过注入聚合物来改变油藏的流动特性,从而增加原油的采收率。

聚驱技术适用于低渗透率和高黏度的油藏。

聚驱技术的优点是能够改善油藏的流动性,提高采收率,并且可以在较短的时间内实现投产。

缺点是成本较高,而且在一些油藏中可能会出现聚合物降解和沉积的问题。

二、驱替效率与采收率驱替效率是指驱替剂(水、气体或聚合物)与原油的接触面积,以及驱替剂能够将原油从孔隙中排出的能力。

水驱技术的驱替效率较高,因为水与原油的相溶性较好,可以迅速与原油接触并推动其移动。

气驱技术的驱替效率相对较低,因为气体与原油的相溶性较差,使得驱替剂与原油接触面积较小,难以完全将原油驱出。

聚驱技术的驱替效率介于水驱和气驱之间,因为聚合物可以改变油藏的流动性,增加原油与驱替剂的接触面积。

采收率是指从油藏中采出的有效原油量与总原油量之间的比例。

水驱技术通常能够实现较高的采收率,因为水作为驱替剂可以有效地将原油驱出,并且在水驱过程中还会发生油水混流和相渗现象,进一步提高采收率。

聚合物驱油技术研究

聚合物驱油技术研究

传输性 ; 源广 , 来 价格低 , 以便 在油 田上能够实现较低成 本 的广泛应用 。 能够同时满足以上要求的聚合 物很少 , 在 应用时 , 应根据油层条件选择适 当的聚合物 。
22 适合 聚 合 物油 效 率 . 2 聚合物驱提高 了岩石 内部的驱动压差 ,使注入液可
图 5 高抽巷抽放量随工作面推进距 变化 曲线图 图 4— 0 6 2西一Bl 高抽巷穿层钻孔剖面示意图 1
较近 , 这样 高抽巷透气性好 , 且处在瓦斯 富集 区 ; 高抽 巷
高抽 巷安设两路焊接 管 , 一路直径 20m 管路接 5 m, 至高抽巷以里 1 , 放管路 口 3m范围架设木垛保护 。 0m抽 另一路直径 10m 5 m,接到高抽巷里端与 1 2个抽放钻孔 合荐 。 两路管路均与矿井地面抽采系统 主管路合荐 。 在高 抽巷外 口砌 封闭墙 , 墙体厚度 80m 墙 四周要掏槽人 0 m, 岩体 , 墙面用水泥抹平 , 减少漏气 。
赵 荣 彦
( 河南油 田第二采油厂 新庄项 目部 , 河南 南阳 4 3 3 ) 7 12
摘 要 : 年 来 国 内外 聚合 物驱 油技 术研 究得 到 长 足 发 展 , 聚 合 物 的 驱 油 机 理 , 质 条 件及 聚合 物 的 驱 油 方 近 对 地
案 的研 究 应 用 都 有 详 细 的 介 绍 , 章 重 点 对 聚 合 物 的驱 油 地 质 条 件 及 机 理进 行 了探 讨 , 而 提 出适 合 我 国驱 文 进
积, 提高了中、 低渗透层的采出程度, 约提高采收率 7 %。 2 聚合物驱油的适合条件
关于聚合物的驱油机理 , 目前 尚未取得一致 的认识 。 但普遍认为 ,与其他化学驱相 比,聚合物驱 的机理较简 21 聚 合物 的筛 选 . 聚合物驱油时 , 地层岩石 、 流体等 的复杂性会影响聚 单 ,即聚合物通过增加注入水的粘度 和降低油层 的水相 渗透率 而改善水油流度 比,调整注入剖 面 ,扩大波及体 合物 的驱油效果 。 在油 田上应用 时 , 于聚合物的选择 , 对 积 , 高原 油 采 收率 。 提 必须从驱油效果和经济上综合考虑 ,同时与油藏性质相

2.聚合物驱油技术

2.聚合物驱油技术
第13页,共68页。
1.2胜利孤岛油田中二南中聚合物驱 (1)油藏基本特征
含油面积1.8km2,地质储量1185×104t,油层温度 70.5℃,地层水矿化度5797mg/L,地下原油粘度 85mPa·s。注聚前水驱采出程度38%,综合含水已高 达95%。
(2)工艺参数 二段塞注入方式,前置段塞为0.05PV聚合物溶液,浓度 为2200mg/L,主段塞为0.27PV聚合物溶液,浓度为 1700mg/L,溶液配制采用清水配制母液、污水稀释注入。 (3)处理效果
聚合物溶液分三级段塞注入:前缘段塞浓度为1000mg/L,占总液 量的26.2%;主体段塞浓度为500-1000mg/L,占总液量的45.6%;后
尾段塞浓度为1000mg/L,占总液量的28.2%。AT-530聚合物。
(3)处理效果 截至2001年6月,平均月增油250lt,累积增油21.8×l04t,已提高 采收率10.34%。
46362.8
聚合物产油量 (104t)
聚合物产量 所占比例 (%)
年注聚合物 干粉量(104t)
累积注聚合 物干粉量
(104t)
214.99
3.84
2.1
2.1
497.84
8.89
3.8
5.9
761.50
13.67
4.8
10.7
766.68
14.07
6.5
17.2
869.0
16.4
6.8
24.0
870.0
679天,累计注入聚合物溶液10.4×104m3,折合聚合 物干粉121.6t;注入期间聚合物平均浓度1169 mg/L, 粘度1~10.91 mPa.s,注入地层孔隙体积0.31PV。

大庆油田应用聚合物驱油技术的成本控制做法_徐庆红

大庆油田应用聚合物驱油技术的成本控制做法_徐庆红

财务与会计・理财版・2014 0426Finance & Accounting徐庆红采收率是衡量油田开发水平高低的一个重要指标,是指在一定的经济极限内,在现代工艺技术条件下,从油藏中能采出的石油量占地质储量的比率数。

油藏开发大体上可分为三个阶段:①利用天然能量开采的一次采油阶段。

原油采收率都比较低,只有8%~15%。

②利用人工补充地层能量(如注水、注气等)开采的二次采油阶段。

经二次采油的采收率大致为25%~45%,个别条件好的油藏可达50%左右。

③二次采油以后,通常仍会有一半以上的原油残留在地下。

这些原油需要使用更为复杂的工艺技术手段才能采出,这就是三次采油,也就是人们通常所说的提高采收率。

经三次采油的最终采收率可达45%~70%。

例如,大庆油田累计探明石油地质储量66亿吨,累计生产原油已超过20亿吨。

假如有2亿吨残余地下的原油,如果能够将采收率提高1%,那么将会多拿到200万吨原油。

大庆油田历经几代人的攻关,聚合物驱油已形成完整的配套技术,聚合物驱油技术提高采收率方法在一些领域已达到国际先进水平,为原油实现40%自给自足、维护国家石油供给安全、支持国民经济发展做出了应有贡献。

一、大庆油田聚合物驱油技术的应用聚合物驱油主要通过聚合物溶液的流度控制、调剖作用、粘弹性作用,扩大注入水的波及体积,提高残余油的驱油效率而提高采收率。

大庆油田开发初期,就着手研究聚合物驱油提高原油采收率技术,先后经历了室内研究、先导性矿场试验、工业性矿场试验、工业化推广应用四个阶段。

聚合物驱油技术采收率可在水驱基础上提高15%。

截至2010年底,三次采油年产油量已经连续9年超过1 000万吨,累计产油量1.49亿吨,累积增油8 231万吨。

聚合物驱油产量占到油田总产量的32.5%。

二、聚合物驱油技术的成本控制(一)聚合物驱油技术成本提高原因分析从聚合物驱油技术来看,主要影响因素是注入方式、参数、水质等,尤其是注聚后期,驱油效率和经济效益下降幅度较大。

浅述聚合物驱采油技术

浅述聚合物驱采油技术

浅述聚合物驱采油技术摘要:聚合物驱就是使用聚合物作为添加剂,增加水的粘度、改善水油流度比,从而提高波及系数,达到提高原油的采收率的目的。

近几年的聚合物驱工业化推广应用使它已成为胜利油区有效的提高采收率的三次采油技术之一。

但经研究表明,虽然聚合物驱油能比水驱油较大幅度地提高原油的采收率(6~12%),但即使在聚合物驱之后也只能采出原始地质储量的40~50%。

也就是说,仍有大约一半或以上的原油留在地下未被采出。

关键词:聚合物驱;采油一、引言在聚合物驱之后,还必须研究采取其它方法进一步提高原油的采收率。

聚合物驱试验结果表明,聚合物驱实施结束后,仍有50%~60%的原油残留在地层中,地层中的剩余油仍然很丰富。

如果能在目前状态下进一步提高原油的采收率,将产生巨大的经济效益。

因此,对聚合物驱后剩余油的微观分布规律的研究有很大的意义。

在油田实施聚合物驱以后,将面临着聚合物驱后如何提高采收率这一技术难题。

尽管开展了大规模的工业化应用,然而关于聚合物驱油的机理,人们的认识很不一致。

有学者认为,注粘性水与注常规水的最终剩余油饱和度是相同的;也有人认为,聚合物驱不能在波及面积内使剩余油饱和度有很大降低。

实际上,人们对于聚合物溶液在地下驱油过程中的渗流特征的认识还远远不够完善,特别是微观物理化学渗流规律,还不十分清楚,所以开展聚合物驱及其剩余油分布微观机理研究显得十分有必要。

二、国内外研究现状在石油工程领域,在世界范围内通过油井依靠天然能量开采和人工补充能量开采后的油藏,原油的采出量平均不到原油的原始地质储量的一半,即有一半左右的石油储量残留在地下。

近年来,随着油井含水的增加,原始开采的经济效益越来越差,人们试图寻找新的开采方式,聚合物驱油是当前提高水驱油田采收率的方法,已由先导性实验步入工业化应用阶段。

由于聚合物驱的优良前景,国内外都在做大量的研究,对其机理有一定的认识。

关于聚合物驱油的机理,人们的认为不一致:ALLEN等研究了驱替液流度性对流度控制的影响,认为驱替液的粘弹性对改善流度比有重要作用。

《微生物—聚合物联合驱油实验研究》

《微生物—聚合物联合驱油实验研究》

《微生物—聚合物联合驱油实验研究》篇一一、引言随着对可持续能源和环境保护的日益重视,对于新型油田开采技术的探索变得越来越迫切。

在此背景下,本文研究了一种新型的驱油技术——微生物—聚合物联合驱油技术。

该技术结合了微生物与聚合物的优势,通过实验室实验,验证了其在油田开发中的有效性。

二、实验材料与方法1. 实验材料实验材料主要包括油田原油、微生物菌种、聚合物溶液等。

其中,微生物菌种经过筛选和培养,具有较好的驱油效果。

2. 实验方法(1)微生物培养:在实验室条件下,对筛选出的微生物菌种进行培养,并控制其生长条件,如温度、pH值等。

(2)聚合物制备:将选定的聚合物材料进行化学处理,制备成所需的聚合物溶液。

(3)联合驱油实验:在模拟油田环境下,将微生物与聚合物溶液混合,进行驱油实验。

通过对比不同条件下的驱油效果,分析微生物与聚合物的协同作用。

三、实验结果与分析1. 实验结果实验结果显示,在微生物与聚合物联合作用下,驱油效果明显优于单一驱油方法。

在驱油速度和采收率方面,联合驱油技术表现出较大的优势。

同时,实验还发现微生物在驱油过程中对油田的伤害较小,具有良好的环保性。

2. 结果分析(1)微生物作用分析:微生物在驱油过程中通过分解原油中的成分,产生有益的生物化学物质,改善了原油的流动性。

此外,微生物的吸附和驱替作用也起到了显著的驱油效果。

(2)聚合物作用分析:聚合物溶液具有良好的黏度和流动性,可以降低原油与地下岩石的附着力,从而提高采收率。

此外,聚合物还可以起到降低流体渗透性的作用,减少不必要的能量损失。

(3)协同作用分析:在联合驱油过程中,微生物与聚合物发挥了协同作用。

微生物通过分解原油、改善流动性等作用,为聚合物溶液的扩散和运动提供了良好的环境。

同时,聚合物溶液也为微生物的生长和繁殖提供了条件。

两者共同作用下,使得驱油效果得到显著提高。

四、讨论与展望本次实验结果表明,微生物—聚合物联合驱油技术在油田开发中具有良好的应用前景。

聚合物驱油技术的研究与应用

聚合物驱油技术的研究与应用
聚区动态反 映特 点进行综合调 整是改善聚合物驱效 果的必要技术 措 施。虽然聚合 物驱工业化应用取得 了很好 的效果 . 但驱油机 理仍 有待 研究 . 下步特别要 开展聚合物分子 构效关系研究 . 进一步提高综 合性 能。同时开展聚合物驱经济评价研究 , 确定各类油藏 开展 聚合物驱的 经济技术界限. 并对方案设计 、 工艺流程设计施工 、 运行管理 效果 评价 和后续水驱进行优化 . 提高聚合物驱综合效益 。
行 了配套优化 , 形成 了新的思路和成熟的聚合物驱配套技 术 , 文对此进行 了详尽地介 绍, 本 很值 的借鉴 。
【 关键词 】 聚合物驱 ; ; 索 试验 探
聚合 物驱技术涉及 到注入参 数和注入方式 的优 化、油藏数值 模 拟、 聚合物的配制 、 聚合物溶液 的注入 、 生产方式 的改进 、 出液 的处 采 理 以及动态监测等多个环节 . 仅仅实现单项技术 的突破 . 不形成 配套 技 术就无法实现科研成果 向现实生产力 的转 化以及工业化 的推 广应 用。 为此 。 地面工艺和油藏工程等各 方面协 同攻关 , 从 形成 了具有最新 特点的聚合物驱配套技术
1建立完善的配套工艺 .
2聚合物驱分层注入研究 .
1 优化 聚合物配制站和注入站 的布局 . 1 大量的室内实验 和矿场研究表 明. 聚合物驱 的层 内和层 间调剖作 三次采油开发方式具有集中配制和分散注入 的特 点 . 聚合物配制 用是显著 的 . 层内调剖好 于层 间调剖 . 且 这就是单 层注聚效果好 于多 站必须在空间和时 间上对几个 区块提供共享服务 . 由此 . 带来 了聚合 层注聚效果的主要原 因。当一套开发层系油层较 多、 问渗透率差异 层 物配制站 、 注入站的优化布局问题。从数学 规划和系统工程的角度 出 较大时 . 聚合物驱就难 以发挥其调剖 的优势 。 因此 , 要改善多层聚合物 发, 应用网络流规划方法优化布局模型 , 以投资最省为 目的 , 化选 出配 驱 的效果 . 注采层 系进行 简化 . 对 减小层 间差异就显得 十分 重要 。目 制站个数、 规模 和位置 。 前 . 注采 研究大多是 注人工艺 的研究 . 此种方法一方 面 由于剪 分层 但 1 . 2全过程 动态分析 ・ 切严重 . 注入的聚合物 溶液粘度大 幅度下降 . 造成 另一方 面大大地增 聚合物驱阶段性强 , 与水驱相 比开采时间短 , 调整余地小 , 调整难 加 了设备 的投资 。 使经 济效 益下降 。本文 利用室 内实验 、 值模拟结 数 度大 。针对聚合 物驱特有 的动态反映特点 , 把整个注聚 区调整管理分 果 , 对分层注聚采油进行了研究 。 为注聚前调 整、 注聚前和后续注水 2 阶段 , 个 对注入井 和油井开展单 21 内实验 .室 井动态分析 、 组动态分析和 区块 动态趋 势分析 . 井 确定各 个阶段存在 211 验 条 件 .. 实 的主要矛盾 . 逐一提 出解决 问题的方法 , 并落实解 决。 实验模型是用石英砂制作的均质管式 模型 . 采用双管模型 以模拟 1 - 3分层注入法 油层 的多层情况 。模型 尺寸为 2 x Om,渗透率分别为 30 l- . 3e 5 0 x0 、 3 0 0。z 。 根据聚合物 驱吸水剖面显示 . 在笼统注入方式下 。 高渗透层 的相 15 0x1 Im。 对吸入量远高 于中 、 低渗透层 . 随着间渗透率级 差的增大 以及低 并且 聚合物 为法 国 S F 司生产 的 3 3 S 注入量 为 4 0 V m4 N 公 50 . 5P . v L 实验用 水矿化度为 5 2 mg C 2 Mg 含量 为 1 8 / 模拟油 77 / a+  ̄ L. + 0 mgL 渗透油层所 占厚度 比例的增加 . 注聚合物 的开采效果变差 。在高 渗透 层 聚合物深 液低 效注入 . 在低渗 透层聚合物驱 的动用 程度低 . 约了 粘度为 2 ~0 P 制 0 3m a 聚合物 的整体开发效果。应用分层注入技术 . 较好地解决 了层 间吸聚 2 .驱油实验及结果分析 .2 1 差异 较大的问题 . 提高 了较 差层 段的注入强度 . 制较好层段 的注入 控 驱替 实 验 中 .首 先水 驱 油 至含 水率 9 % .然后 注 入 浓 度 为 5 量, 进一步扩大 了波及体积 , 控制注聚后期综合含水 的回升速度 。 改善 1 0 m / 50 g L的聚合 物溶 液段塞 . 转注水 .直至产 出液含水 率 9 %以 再 8 了区块最终开发效果 上。 1“ . 一井一制” 4 注入法 聚合 物溶液 的注入采用合注和分注 。 合注是通过单泵控制双管注 针对注聚井的注入能力和地层 的不 同特点 . 取不 同的单井 注入 入 。 采 注入速度 为 O 6 Lm n: . m / i 分注是单 泵控制单 管 , 4 控制 两个模 型的 浓度 ( 括加 交联剂 ) 包 和段塞 注入量 , 及时进行调 整 , 由于每 1井 的注 注人量 . : 3 注入速度为 0 3 L i .m/n 2 m 入段塞均不相 同. 故把它称 为“ 一井一制 ” 注入法 。“ 一井一制 ” 注入法 实验结果表 明 . 分注效果好 于合 注分注时 . 在双 管注入量相 同情 不仅解决 了部分注人压力迅速上升 的矛盾 . 而且低 压井 高浓度 注入有 况下 , 提高采 收率 幅度最大 。 也就是说 , 分注可以有效地控制不同渗透 效地封堵 了高渗透带 , 减少 了聚全 物窜流 . 高了驱替效率。同时 . 提 对 率层 的注入量 ; 注时, 而合 主要 吸水的是高渗透层 , 低渗 透层几 乎不吸 不能正常混 注的高压井实施间歇注聚 . 保证 了高压井的正常注入 . 取 水 , 虽然高渗透层的分层提高采收率幅度较高 , 但低渗 透层没 有动用 , 得了很好 的效果 因此提高采收率幅度也 就低 15添加 交 联 剂 . 2 数值模拟研究 . 2 交联聚合物驱油是 在聚合物驱油 的基 础上发展起来 的新 型驱油 221 型 建 立 .. 模 技术 。 它是采用接 近聚合 物驱的聚合物深 液 . 加入少量缓 交联型交联 平面模型选用了四个 反五点井 网, 共有油井 四 口. 九 口. 水井 井距 剂 , 之在地层 内产生缓慢 、 使 轻度交联 , 提高地层阻力系数和残余阻力 2 0 纵 向上分两个小层 , 8m; 每小层的砂岩厚 度为 8 有 效厚度 5 上 m, m, 系数 , 改善油藏 的非 均质状况 . 在大量交联 聚合物深液 注入过程 中以 层为低渗透层 , 下层为高渗透层 , 共设计模型七个。 及弱交联和交联后溶液被后续注入液体 推动时 . 会产生像聚合物驱一 模型垂 向渗透率为平 面渗透率 的 1 初 始含油饱和度均为 O 5 %: . : 6 样的驱油效果 . 从而起到调剖和驱油的综 合作用 。随着聚合物驱油技 其他 如高 压物性 、 相对渗透 率曲线 、 岩石及 流体性质等数据都借 用了 术的 日趋成熟和聚合物驱规模的逐年加大 . 聚合物驱油技术 已成为保 孤东油 田的数值 ;网格 为 2 x 5 2 5 2 x 的均匀直角网格 系统 , 、 x Y方 向的 持持续稳产及高含水后期油 田开发水平的重要技术手段 网格步长均 为 2 m 动态模型 的聚合物特性参数是 孤东八 区聚合物驱 9 1 . 6研究方向 跟踪拟合后得到 的参数 。根据研究 目的的不同 , 建立了多个动态数据 实施多层系同时注入可明显降低单层注人风险 . 防止 管外窜 流造 模型 . 但是所 有模 型的总注入速 度基本都保 持在 01V a注 入聚合 . /. P 成 的低效注入 。 提高药剂利用率 , 同时可实现分层 、 单层 、 选层 、 多层注 物浓度为 20 m / , 聚合物溶液 0 5 V 0 0 g 注入 L .P。 2 入. 对进一 步拓展聚合物驱 发展 空间 , 提高孤东 油 田采收率具有 重要 2 .层 间渗透率差异对驱油效果 的影 响 .2 2 的理论和实践意义 首先研究 了合 注合 采过程 中层 间渗透 率的差异对 聚合物 驱效果 对工业化 聚合物驱 的高含 水、 高采 出程度 和高渗透率 区块 , 宜采 的影响。根据胜利 油区开发的实际情况 , 数模过程 中首先水驱至含水 用 6 0 V. g 0P m / L以上高浓度注入段塞 . 当最大注入量 达到 7 0 V m L 率 9 %, 0P ・ d 5 然后注入聚合物段塞 , 最后水驱 至含水率 9 %。 8 时可取得最佳技术经济效果。 此外 , 有针对性地采取分层注入 , 根据注 驱油效果表 明, 提高采收率 的幅度 最大 , 也就是 ( 下转第 3 7 ) 1页

聚合物驱提高石油采收率的驱油机理

聚合物驱提高石油采收率的驱油机理

1 聚合物驱提高石油采收率的驱油机理聚合物的驱油机理主要是利用水溶性高分子的增粘性,改善驱替液的流度比,在微观上改善驱替效率、并且在宏观上能提高平面和垂向波及效率,从而达到提高采收率的目的。

以下是水油流度度比的定义式:Mwo=(1)经典的前沿理论认为,降低油水流度比,能够改变分流量曲线。

聚合物驱的前沿含油饱和度和突破时的的含油饱和度都明显高于水驱,这表明聚合物驱能降低产出液含水率,提高采油速度,具有更好的驱替效果;(2)聚合物驱通过改善水驱流度比,可以改善水驱在非均质平面的粘性指进现象,提高平面波及效率;在垂向非均质地层,聚合物段塞首先进入高渗层,利用高粘度特性“堵”住高渗层,使后续水驱转向进入低渗层,增加了吸水厚度,扩大了垂向波及效率。

以下是聚合物驱和水驱的对比聚合物驱和水驱的波及系数(3)聚合物在通过孔隙介质时发生吸附、机械捕集等作用而滞留,改变了聚合物所在孔隙处的渗透率。

被吸附的聚合物分子链朝向流体的部分具有亲水性,能降低水相相对渗透率而不降低油相相对渗透率,即堵水不堵油;同时聚合物的滞留能增加阻力系数和残余阻力系数,表明渗流阻力增加,引起驱动压差增大,有利于驱动原来不曾流动的油层,提高油层波及体积。

(4)由于聚合物溶液粘滞力的作用,使得其很难沿孔隙夹缝和水膜窜进,在孔道中以活塞式推进,克服了水驱过程中产生的“海恩斯跳跃”现象,避免了孔隙对油滴的捕集和滞留。

(5)另外,聚合物溶液具有改善油水界面粘弹性的作用,使得油滴或油膜易于拉伸变形,更容易通过狭窄的喉道,提高驱油效率。

2 驱油用聚合物的性能要求通过对聚合物驱油机理的分析,可以知道驱油用水溶性聚合物的性能指标主要是能增加油水流度比,即具有增粘性。

另外,聚合物溶液由于要在地层条件下能通过多孔介质运移传播,并最终被采出地面。

所以还应具有滤过性、粘弹性、稳定性以及无污染性等性能(1)增粘性。

应该尽量获取在较低浓度下就具有较高表观粘度的水溶性聚合物。

聚合物驱油技术应用研究

聚合物驱油技术应用研究

聚合物驱油技术应用研究摘要:但随着油田的开采,尤其是高含水开采阶段,经济、技术指标都将变差。

聚合物驱已是国内外公认的能够提高原油采收率的油田开发技术,在国内外都进行了大量试验研究。

本文介绍了聚合物乳液的流变特性与粘弹性,并分析了聚合物驱油的宏观、微观机理以及所受的影响因素,对聚合物驱油技术的发展有一定参考价值。

关键词:聚合物驱油机理影响一、引言石油是国家经济发展的重要经济命脉。

但随着油田的开采,尤其是高含水开采阶段,无论是经济指标,还是技术指标,都将变差。

油井含水增加,产量下降,基本建设投资增加,成本增大。

如何经济有效地开采水驱开发后残留在地层中60-70%的剩余油,已成为世界各国油藏工程专家努力攻关的课题。

聚合物驱技术是化学驱中比较可行的一种提高采收率的技术。

目前在油田已开始大规模工业化应用。

聚合物驱提高采收率主要靠增加驱替液粘度,降低驱替液和被驱替液的流度比,从而扩大波及体积。

在微观上,聚合物由于其固有的粘弹性,在流动过程中产生对油膜或油滴的拉伸作用,增加了携带力,提高了微观洗油效率。

水驱的采收率一般为40%左右,通常聚合物驱采收率为50%左右,比水驱提高10%。

二、聚合物乳液的流变特性与粘弹性1、流变特性传统的驱油机理认为,聚合物的粘性特性是提高驱油效率的主要原因。

在聚合物驱油过程中,聚合物溶液的流变特性不仅直接影响其驱油效果,而且影响其渗流特性。

无论是对聚合物驱油效果的评价,还是对油井产能的预测,都必须首先研究聚合物溶液在渗流过程中的流变特性。

聚合物流变性是指其在流动过程中发生变形的性质,主要体现在有外力场作用时,溶液粘度与流速或压差之间的变化关系。

高分子的形态变化导致了聚合物溶液宏观性质的变化。

聚合物溶液通常具有高粘性,这是它的主要特征之一。

产生高粘性的原因有:1)聚合物的分子所占体积较大,阻碍了介质的自由移动;2)大分子的溶剂化作用,束缚了大量的“自由”液体。

大分子链在溶液中呈规则松散线团状存在,线团内充满溶剂,大分子又具有很厚的溶剂化膜,致使水动力学体积庞大,流动阻力大;3)大分子间的相互作用。

国内外聚合物驱油应用发展与现状

国内外聚合物驱油应用发展与现状

国外聚合物驱油应用发展与现状一、聚合物驱油机理聚合物驱(Polymer Flooding)是三次采油(Tertiary Recovery)技术中的一种化学驱油技术。

聚合物有两种驱油机理,一是地层中注入的高粘度聚合物溶液降低了油水流度比,减小了注入水的指进,提高了波及系数(图1和图2),从而提高原油采收率[1-6]。

二是由于聚合物溶液属于非牛顿流体,因此具有一定的粘弹性,提高了微观驱油效率[7-13],从而提高采收率。

常使用两种类型的聚合物[14],一种是合成聚合物类,如聚丙烯酰胺、部分水解的聚丙烯酰胺等;另一种是生物作用生产的聚合物,如黄胞胶。

在长达30 年的聚合物驱室研究和现场试验中,使用最为广泛的聚合物是部分水解聚丙烯酰胺和生物聚合物黄胞胶两种。

由于生物聚合物黄胞胶的价格比较昂贵且易造成井底附近的井筒堵塞,除了在高矿化度和高剪切的油藏使用外,油田现场都使用人工合成的部分水解聚丙烯酰胺作为聚合物驱的驱剂。

图1 平面上水驱与聚驱示意图图2 纵向上水驱与聚驱示意图二、国外驱油用聚合物现状及发展趋势2.1国外驱油用聚合物的发展由于经济政策和自然资源的原因,国外对聚合物驱油做了细致的理论及实验研究,但未作为三次采油的主要作业手段。

驱油用聚合物的理论自80年代成熟以来,并未有较大突破,而其发展主要受限于成本因素。

理论上,在油气开采用聚合物中,可以选用的聚合物有部分水解聚丙烯酰胺(HPAM)、丙烯酰胺与丙烯酸的共聚物、生物聚合物(黄胞胶)、纤维素醚化合物、聚乙烯毗咯烷酮等[15]。

但己经大规模用于油田三次采油的聚合物驱油剂仅有HPAM和黄胞胶两类。

人工合成的驱油用聚合物仍主要以水解聚丙烯酰胺为主。

已产业化的HPAM产品包括日本三菱公司的MO系列,第一制药的ORP系列,三井氰胺的Accotrol系列;美国Pfizer的Flopaam系列,DOW的Pusher系列;英国联合胶体的Alcoflood系列;国SNF的AN系列HPAM聚合物。

探讨聚合物驱油技术在过渡带油层驱油效果

探讨聚合物驱油技术在过渡带油层驱油效果

探讨聚合物驱油技术在过渡带油层驱油效果随着石油资源的日益枯竭,对于过渡带油层的开采工作变得尤为重要。

而在过渡带油层开采中,聚合物驱油技术被广泛应用,因其良好的增油效果和环保特性,成为了过渡带油层驱油的主要手段之一。

本文旨在探讨聚合物驱油技术在过渡带油层的驱油效果,并阐述其在油田开发中的应用前景。

一、聚合物驱油技术的原理聚合物驱油技术是指在油田开采过程中,通过注入聚合物溶液来改善油藏岩石性质和原油流动性的一种增注剂驱油方法。

其原理是通过聚合物溶液的注入,改善油藏岩石孔隙结构,提高原油的渗透率和驱油效率,从而达到提高采收率的目的。

在油田开采过程中,过渡带油层因水驱或其他驱油方式的不足导致原油渗透率低,采收率较低,聚合物驱油技术的主要作用就是针对这些问题提供解决方案。

通过调整聚合物的浓度、粘度和分子量等性质,使其与地层中的油井岩层发生反应,形成一层保护膜,改善岩石孔隙结构,提高原油的渗透率,从而增加原油的采收率。

二、聚合物驱油技术在过渡带油层的应用在过渡带油层的驱油过程中,聚合物驱油技术被广泛应用。

通过实验室模拟地层条件,选取适合的聚合物,并进行实验验证其在地层中的渗透效果。

通过地质勘探手段了解地下地质构造,确定合适的注入压力和注入井位,保证聚合物溶液能够均匀地渗透到地层中。

根据地层条件和聚合物性质,制定合理的注入方案,保证聚合物溶液能够有效地改善地层孔隙结构,提高渗透率。

在过渡带油层的实际应用中,聚合物驱油技术取得了显著的效果。

通过注入聚合物溶液,原油的渗透率得到了明显的提高,采收率也随之增加。

聚合物溶液对地下水资源的污染较小,环保性能较好,得到了广泛的认可和应用。

相比传统的水驱和气驱等驱油技术,聚合物驱油技术在过渡带油层地层驱油中具有以下显著的优势:1. 增加原油的渗透率:聚合物溶液的注入能够改善地层油井的孔隙结构,提高原油的渗透率,从而增加采收率。

2. 减少地下水资源的污染:聚合物溶液对地下水资源的污染较小,环保性能较好,对环境友好。

聚合物驱油技术创新思路在采油工程中的应用

聚合物驱油技术创新思路在采油工程中的应用

3 _ 1 氐 浓度交联 聚合物 的应用
低浓度 聚合 物与交联剂通过分子 内交联 和少 量的分子间交联 。 形 注 入工艺 的研 究 . 但 此种方 法一方 面由于剪切 严重 , 造成 注入 的聚合 没有形成常规凝胶的连续三维 网络结构。 其最 大的流变 物溶 液粘度 大幅度下 降. 另 一方面大 大地增加 了设备 的投 资, 使 经济 成分散 的胶束, 低浓度交联 聚合 物体系 的流动状态 和 效益 下降. 下 面是利用室 内试验 擞 值模 拟结果 . 对 分层 注聚采油研 究 学特点是 高于某一转变压力下。 未交联 的聚合物溶液相似: 在低于转变压力的条件下。 表现 出凝胶 的性 的过程 。 质. 低 浓度交联 聚合 物体系具有 聚合物浓 度小 、 交 联时 间易控制 的特 2 . 1 室 内实验 可 以大剂 量注入地层 . 能够解决 聚合 物驱技术 中部 分水解 聚丙烯 实验模 型是用 石英 砂制作的均质管式模 型, 采用 双管模型 以模 拟 点 . 耐温及抗盐性差等问题。 油 层 的 多 层 情 况 .模 型 尺 寸 为 2 . 5 x 3 0 c m 渗 透 率 分 别 为 酰胺用量高 、 调驱机理。 在井眼附近 , 低浓度交联聚合物体系流速和压差 大 . 不 3 0 0 x l O , 1 5 0 0 x 1 0 u m . 聚合物为法 国 S N F 公 司生产的 3 5 3 0 S , 注入量 为 可大剂量 地注人地层深 4 5 0 P V . m g / L 实验用水 矿化度为 5 7 2 7 m g / L C a + Mg 含量为 1 0 8 m g / L 模 拟 能与交联剂充分反应形成凝胶。因此粘度小 . 流速变慢 , 压差减小 , 交联反应完成 , 表现 出凝 油粘度为 2 0 — 3 0 m P a 驱替实验 中首先水驱油至含水率 9 5 % 。 然后 注入 部 。随着体系 的推进 , 浓度为 1 5 0 0 m g / L的聚 合物溶液段塞, 再转 注水, 直 至产 出液含水率 胶 性质 。其提 高采 收率的机理 为 : 在客观上 . 进 入地层 深部的低浓度 9 8 %以上. 聚合物溶 液的注入采用合注和分注 . 合 注是通过单泵控制双 交 联 聚合物 体 系对高 渗层 产生 物理封 堵 .导致 后续 流体 流 向的改 对 低渗透 层 中未波 及或 波及程 度低 的 区域产 生驱 替作 用 . 提高 管 注入, 注入速 度为 O . 4 6 分 注是 单泵控 制单管 , 控制 两个 模型 的注入 变 . 微 观上 在井 筒周 围形成 的凝 胶 团 , 经 过地 层水 冲刷 和地 量, 注入 速度为. 实验结 果表 明. 分 注效 果好于合 注分注时, 在双 管注入 波 及体 积 ; 向地层深 部运移过程 中重新分 布、 聚集 改变 了多孔 介质微 量相 同情况下。 提高采收率 幅度 最大. 也 就是说 。 分注 可以有效地 控制 层 剪切 . 破 坏油 滴 的受力 平衡 . 对剩 余 油产生 驱 不 同渗透层 的注入 量: 而合注 时 主要 吸水 的是 高渗透层 , 低渗透 层几 应 力和剩 余油 粘滞力 分 布 . 乎不吸水。 虽然高渗透层 的分层提高采收率幅度较高, 但低 渗透层没有 替作 用。 有机交联体系 。 粘度是温度 的函数 。 它随温度的变化而变化 , 在一 动用’ 因此提高采收率也就低 定温度范 围内 。 温度对粘度 影响特别 大。有试验表 明 。 在测试温 度差 2 . 2数值模拟研究 O 度时 , 交联 聚合 物的粘度相差 3 6 %。针对高温油藏 . 国外采 油专家 模型建立 . 平面模 型选用 了四个 反五 点井 网, 共 有油井 四 口. 水 井 2

【技术】聚合物驱油技术的研究

【技术】聚合物驱油技术的研究

【关键字】技术摘要近几年来,聚合物驱油技术在油田得到广泛应用。

为适应油田聚合物驱的需求,本文在聚驱提高原油采收率原理的根底上,通过物理模拟实验和数值模拟技术,研究了聚合物的弹性效应、聚合物分子构型、聚合物段塞组合、油层厚度和油层垂向渗透率对聚驱开发效果的影响。

结果表明:聚合物的弹性效应可提高原油采收率,其弹性作用最佳质量浓度为1.0~2/L;清水聚合物溶液中聚合物分子以网状构型为主,增粘效果较好,污水聚合物溶液中聚合物分子以枝状构型为主,增粘效果较差;聚合物段塞尺寸和粘度是影响聚驱效果的决定因素,段塞尺寸保持不变时,溶液粘度越高,采收率增幅越大,溶液粘度保持不变时,段塞尺寸越大,采收率增幅越大;对于水湿油层,油层越厚,增采效果越好,而油湿油层的厚度对聚驱采收率影响不大;对于正韵律油层,垂向渗透性越强,聚驱增采幅度越高,反之,越低,对于反韵律油层,垂向渗透性越差,聚驱增采幅度越高,反之,越低。

文中还提出了一些改善聚驱开发效果的措施,包括:采用污水配制聚合物溶液、优选聚合物注入速度和优选井网井距。

本文对油田进行聚合物驱油具有一定的指导意义。

关键词:聚合物驱油;影响因素;改善措施;物理模拟;数值模拟AbstractIn recent years, polymer flooding technology was widely applied in oilfield. In order to adapt the demands of oilfield polymer flooding, in this paper, on the basis of polymer flooding EOR mechanism, by physical simulation experiments and numerical simulation techniques, we mainly studied the influential factors of polymer flooding effect, including polymer solution elastic effect, polymer molecular structure, polymer slug combination, reservoir thickness and reservoir vertical permeability. The result showed that the polymer solution elastic effect can enhance oil recovery, and its optimum quality concentration was 1.0~/L. Polymer molecular had the network structure in fresh water, and its solution had higher viscosity, on the other hand, polymer molecular had dendritically structure in sewage water, and its solution had lower viscosity. Polymer slug size and viscosity were the decisive factors which influenced polymer flooding effect. In the case of unchanged polymer slug size, the higher the solution viscosity was, the greater the polymer flooding increased recovery. When polymer solution viscosity was not changed, the larger the slug size was, the higher the oil increased. For water-wet oil reservoir, the thicker the oil reservoir was, the better the polymer flooding increased oil recovery, but for oil-wet reservoir, reservoir thickness had little influence on polymer flooding recovery. For positive rhythm reservoir, the better the vertical permeability was, the higher the polymer flooding increased oil recovery, on the contrary, the lower. For anti-rhythm reservoir, the worse the vertical permeability was, the higher the polymer flooding increased oil recovery, on the contrary, the lower. In this paper, we also raised some measures to improve the development of polymer flooding effect, including preparing polymer solution with sewage, optimizing polymer injection rate, optimizing well network pattern and well spacing. Thispaper had certain guiding significance to oil field using polymer flooding.Key words: polymer flooding; influential factors; improving measures; physical simulation; numerical simulation目录第1章概述 (1)1.1 聚合物驱的发展历史与现状 (1)1.2 本文的研究内容 (2)第2章聚合物驱提高原油采收率原理 (3)2.1 原油采收率 (3)2.2 聚合物驱提高原油采收率机理 (3)2.3 本章小结 (6)第3章聚合物驱开发效果影响因素 (7)3.1 聚合物溶液的弹性效应对开发效果的影响 (7)3.2 聚合物的分子构型对开发效果的影响 (10)3.3 聚合物的段塞组合对开发效果的影响 (14)3.4 地质因素对聚驱开发效果的影响 (17)3.5 本章小结 (20)第4章改善聚合物驱开发效果的措施 (22)4.1 采用污水配制聚合物溶液 (22)4.2 优选聚合物注入速度 (26)4.3 优选的井网井距 (31)4.4 本章小结 (33)第5章结论 (34)参考文献 (35)致谢 (37)第1章概述1.1 聚合物驱的发展历史与现状聚合物驱的发展历史聚合物驱始于50年代末和60年代初。

驱油用聚合物技术要求

驱油用聚合物技术要求

驱油用聚合物技术要求
1. 驱油用聚合物的分子量得合适吧!就像挑选手套,得大小正好合适才能更好干活呀!比如分子量太小了,可能效果就不好咯!
2. 溶解性得强啊,不然怎么能快速发挥作用呢!这就像糖在水里,溶解得快才能甜得快呀!要是溶解慢,那不耽误事儿嘛!
3. 稳定性可太重要啦!你想想,要是不稳定,一会儿就失效了,那不是白折腾嘛!就如同盖房子,根基不稳怎么行呢!
4. 耐温性必须得够呀!不然温度一高就不行了,那怎么应对各种环境呢!好比特种兵,啥恶劣情况都得能扛住啊!
5. 黏弹性也不能差呀!这就好像面条要有韧性一样,这样才能发挥更好的效果嘛!没有好的黏弹性怎么能行呢!
6. 抗剪切性也得注意哦!不能轻易就被破坏了呀,就像坚固的城墙,不会轻易被攻破一样的道理呀!
7. 注入性也要考虑呀,总不能很难注入吧!这就好比进门,门太窄了,进去不就费劲了嘛!
8. 与地层的配伍性得多好呀!要像好朋友一样和谐相处,才能发挥出最大作用呀!不然互相排斥可不行哦!
9. 成本也不能太高呀!不然怎么用得起呢!就像买东西,太贵了我们也会犹豫呀!
我的观点结论:驱油用聚合物的这些技术要求都很关键呀,每一项都得好好把关,这样才能让驱油效果达到最佳呀!。

石油开发中的聚合物驱油技术

石油开发中的聚合物驱油技术

石油开发中的聚合物驱油技术石油作为世界上最重要的能源资源之一,在能源供应中扮演着重要的角色。

然而,石油开采过程中普遍存在一系列问题,比如剩余石油的回收率较低、开发成本较高等。

为了克服这些问题,聚合物驱油技术应运而生。

本文将详细介绍石油开发中的聚合物驱油技术。

一、聚合物驱油技术简介聚合物驱油技术是一种利用高分子聚合物改善石油采收率的方法。

它通过向油层注入适量的聚合物溶液,改变油层中原有的渗透能力分布,提高油的驱替效果,从而增加采收率。

聚合物驱油技术具有驱油效果好、适应性广、操作简便等优点,因此在石油开发中得到了广泛应用。

二、聚合物的类型和选择聚合物驱油技术中使用的聚合物种类繁多,常见的有聚丙烯酰胺、聚乙烯醇、聚甲基丙烯酸甲酯等。

选择合适的聚合物种类是提高聚合物驱油效果的关键。

根据油藏条件、岩石性质和水质等因素,确定适宜的聚合物种类,并通过实验测试确定最佳用量和浓度。

三、聚合物驱油技术的工艺流程聚合物驱油技术主要包括注聚、驱油和调剖三个阶段。

注聚阶段:首先需要准备一定浓度的聚合物溶液,然后将其注入到油层中。

在注入过程中,要控制注入速度和注入量,以确保聚合物溶液充分分布于整个油层。

驱油阶段:聚合物溶液通过与油层中的原油混合,降低原油的黏度,提高原油的流动性。

这一阶段主要通过调节驱油剂浓度和注入压力来实现。

调剖阶段:当原油的驱替效果达到一定程度后,需要对聚合物驱油过程进行调剖,以防止聚合物溶液在油层中形成偏流通道。

调剖主要通过注入调剖剂,改变地层渗透能力,增加原油的驱替效应。

四、聚合物驱油技术的应用案例聚合物驱油技术在石油开发中已经得到了广泛的应用。

以下是几个成功案例的介绍:1. 美国XX油田:该油田使用聚合物驱油技术,实现了原本难以开发的低渗透油藏的高效开采。

通过注入合适浓度的聚合物溶液,提高了原油的采收率。

2. 中国XX油田:该油田应用聚合物驱油技术,成功实现了百万吨级的高效开采。

通过调整聚合物种类和用量,显著提高了原油的产量和采收率。

胜利油田聚合物驱的做法及效果

胜利油田聚合物驱的做法及效果

胜利油田聚合物驱的做法及效果聚合物驱油技术经过多年的探索发展日渐成熟,与之相关的配套技术和设备逐步完善,新型的聚合物在各方面性能都比较平衡,比如说具有超强的耐高温性、耐盐腐蚀性、价格低廉等特点。

目前,我国聚合物技术发展较为成熟,在使用范围较广并且在石油增产上效果十分显著。

聚合物驱的发展保障了我国石油产量的稳定高产,本文就胜利油田聚合物驱应用作法及其效果、现状三方面进行分析。

标签:聚合物驱;效果;现状我国于20世纪70年代左右将聚合物驱技术应用于大庆油田,经过一系列实验取得不小的成就,而在胜利油田进行注聚先导试验的时间是1992年,相对前者来说时间较晚。

在之后两年时间内经过实验拓展,技术不断成熟。

经过试验证明,使用聚合物驱技术在降低油田原油含水量方面效果明显。

随着聚合驱物技术与其配套技术的完善,我国石油开采增油量得到巨大的提升。

1 聚合物驱应用做法1.1 注入方式由低浓度小段塞改为高浓度大段塞为探索聚合物驱提高采收率,国内外研究机构进行长久的试验,最终得出,低浓度小段塞效果较好。

所以大部分油田是使用低浓度小段塞的技术,其中低浓度的界限是聚合物使用量200PV·mg/L。

使用低浓度聚合物能够提高2%-5%采收率。

与大多数油田不同的是,胜利油田具有含水量高、采出程度大、高渗透率等特点,低浓度小段塞不适用胜利油田高渗透区域状况。

在此条件下,不断对聚合物驱油藏适应性特点进行研究,发现当聚合物使用量逐渐增加时,采收率提高幅度会逐渐增加。

当使用量界于200PV·mg/L到400PV·mg/L这个范围之间时,提高幅度最大,当超过400PV·mg/L时,增长幅度成反比例增长。

因此我国胜利油田多采用高浓度大段塞技术来提高采油率。

1.2 对不同区域,有针对性的进行分层注聚合物将聚合物驱油技术应用于胜利油田的采油中时,我们发现每个区域吸水剖面不同,依据这些数据我们得出高渗透层的相对吸入量最高,远远高于中渗透层和低渗透层。

聚合物驱油技术应用研究

聚合物驱油技术应用研究

聚合物驱油技术应用研究摘要:在油田开采过程,开采到高含水区时,无论是开采技术指标,还是开采经济指标都会发生变化。

利用聚合物驱油能够将原油采收率有效提升,因为聚合物本身具有流变特点,兼具粘弹性,流动过程可以增加对油膜的携带能力。

下文简要介绍常见的聚合物,分析聚合物驱油应用原理,并对其具体应用进行分析。

关键词:聚合物;驱油技术;应用引言:石油属于国家发展重要能源之一,在开采量不断增加的背景下,油井内部含水率不断增加,导致产油能力下降,随着基建投资也不断提升。

因此,怎样使用经济的手段对于开采区剩余石油进行开采需要相关人员着重思考。

聚合物驱油属于高采收率技术之一,使用过程将驱替液黏度增加,控制被驱液流速,进而提高洗油效率。

对比而言,水驱油采收率通常能够达到40%,聚合物驱油采收率能够达到50%。

因此,研究该技术的应用对于提高油田开采效率具有重要影响。

一、常用的聚合物类型可使用天然黄胞胶材料作为聚合物驱油,此类物质虽然粘性强,颗粒稳定,因为凝胶强度相对较弱,因此可能对于长期冲刷的耐力较弱,在调剖、采油等环节应用需要进行改善。

还可使用聚丙烯酰胺这类物质作为聚合物,分为胶体、胶乳、粉状物质,还可以利用其离子形式,通常油田利用粉状阴离子。

酯类化合物组成结构包含酰胺基官能团,兼具烯烃、酰胺等功能结构,利用过程可能出现降解类型化学反应,还可能出现生物降解和机械剪切等反应。

若分子量高,那么物质浓度大、水解度低、矿化度低、黏度大。

除此之外,还有梳形抗盐类聚合物和疏水缔合聚合物也较为常用。

二、聚合物的驱油原理介绍聚合物驱油主要是向油井当中注入高黏度流体,进而对于油藏内水油等物质流速比进行调节。

从微观角度分析,利用该技术可以将水流流速之比加以改善,对于其体积扩大也有影响。

若水油流速比超过1,则表示水流能力比原油强,水流出现“指进”现象,使得波及系数会下降,难以将原油驱替出来。

此时,可将聚合物添加至水中,降低其渗透力,并将其黏性提升,控制水的流动性。

油田化学聚合物驱油技术的研究与应用

油田化学聚合物驱油技术的研究与应用

油田化学聚合物驱油技术的研究与应用摘要:随着油气勘探开发的深入,低渗透油藏越来越多,已成为石油工业发展的重要潜力,此类油藏具有孔隙及喉道半径小、储层纵向和平面非均质性强等特征,在开发过程中存在储层吸水能力不足、注采比偏高、油水井间有效驱动体系不健全等问题。

因此,本文以H油田为研究对象,采用物理模拟方法对H油田高注采比成因、储层吸水能力不足等问题进行研究。

研究表明:有人工裂缝的复合岩性模型建立有效驱动体系所需的注入倍数较大,有人工裂缝模型储层吸水比例由62%下降至54%。

关键词:低渗透油藏;注采比;储层吸水特征;储层吸水能力;我国石油资源总量940×108吨,低渗透资源量210×108吨,占22.3%,在全国累计探明储量中,低渗透油藏的资源量约占41%。

目前,国内油田如何高效、高质量的开发低渗透油藏已成为热点,所以应加强对低渗透油田的开发研究。

低渗透油田开发过程中,注入水一般会在注水井近井地带憋压,导致井筒附近地层压力偏高,压力传导速度降低;对存在裂缝的储层,一定压力下注入水会沿裂缝发生窜流现象,不能使能量及时传导给采油井,因此,使得注水的效率下降或消失;另一方面储层因长期产液,导致地层压力下降,形成了压降漏斗,产液和产油能力下降,注采比不断升高。

油田的油层压力及产液量并未得到明显恢复和提升,与油田开发的物质平衡理论相悖,因此很有必要。

一.H油田目前开发现状H油田是一个裂缝性低渗透油田,注水开发已25年,该油田共有5个区块,M区块为该油田主力区,已进入高含水开发期,其他非主力区块经大规模的加密调整,已进入中含水期。

目前,该油田在注水开发存在着注采比过高、油水井间压力传导滞后等问题,截止到2020年10月H油田平均年注采比2.80,累计注采比3.12,与其他油田平均注采比1.09相比,注采比偏高,并且不同区块间注采比存在差异。

M区块年注采比2.91,累计注采比3.33,饱和压力为6.9MPa,油井地层压力7.9MPa,保持在原始地层压力8.3MPa附近;其他非主力区块年注采比2.36,累计注采比2.71,饱和压力为7.3MPa,油井地层压力7.77MPa,保持在原始地层压力8.0MPa附近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章聚合物驱油地面工艺技术第一节聚合物驱油地面工艺流程及装置聚合物注入工艺流程:聚合物干粉与低压水经混合头进入分散装置溶解罐,形成聚合物混合液。

通过混输泵进入熟化罐经2小时熟化后,形成一定浓度的标准母液,最后进入储存罐。

然后通过过滤器经螺杆泵升压后到达注聚泵入口。

注聚泵根据单井配注方案,调整至一定流量,聚合物母液二次升压后,在静态混合器与注水站送来的高压污水配制成一定段塞浓度的聚合物溶液,经单井管线进入注聚井。

即配比→分散→熟化→转输→过滤→储存罐→螺杆泵升压→过滤器→柱塞泵配比→混合器混合→注入。

目前许多注聚流程中已经不存在储罐,配置好的母液在熟化罐中熟化好后,就等待外输,见图6-1。

图6-1 聚合物注入工艺流程聚合物驱油地面工艺流程的关键环节是如何配制聚合物溶液。

聚合物主要有3种物理形态:即乳液聚合物、水溶液聚合物和固体粉状聚合物。

使用乳液聚合物、水溶液聚合物进行驱油时,只需将其用注入泵点注到注入水中即可,而使用固体粉状聚合物进行驱油时,就要考虑聚合物的分散、溶解、熟化等溶液配制过程。

需要特别指出的是,整个配制及注人过程都要防止聚合物溶液产生降解。

本节主要介绍固体粉状聚合物的配注工艺过程,包括目的液流程和在线混配流程。

一、聚合物溶液配制过程聚合物溶液配制过程为:聚合物干粉配比→分散→熟化→转输→过滤→储存,见图6-2图6-2 聚合物溶液配制过程图所谓“配比”就是在水和聚合物干粉分散混合之前,对水和聚合物干粉分别进行计量,并使水和聚合物干粉按一定比例进入下一道“分散”工序。

所谓“分散”就是将聚合物干粉颗粒均匀地散步在一定量的水中,并使聚合物干粉颗粒充分润湿,为下一道工序“熟化”准备条件。

所谓“熟化”就是将聚合物干粉颗粒在水中分散体系转变为溶液的过程。

聚合物属高分子物质,其溶解与低分子物质的溶解不同。

首先聚合物分子与水分子的尺寸相差悬殊,两者的运动速度也相差很大,水分子能比较快地渗入聚合物分子,而聚合物向水中的扩散却非常缓慢。

这样,聚合物溶解过程要经过两个阶段,首先是水分子渗入聚合物分子内部,使聚合物体积膨胀,这称为“溶胀”;然后才是聚合物分子均匀分散在水分子中,形成完全溶解的分子分散体系,即溶液。

所谓“转输”是利用螺杆泵为聚合物溶液的过滤和输送提供动力,由熟化罐到达储罐或由储罐进入注入站。

采用螺杆泵主要是为了减少聚合物溶液的机械降解。

“过滤”是为了除去聚合物溶液中的机械杂质和没有充分溶解的结块和“鱼眼”。

具体配制步骤:(1)聚合物干粉的添加。

采用人工或天吊吊运聚合物干粉加入料斗,料斗的添加口处应安装过滤筐,过滤干粉中的杂物。

(2)聚合物干粉的分散润湿。

该过程是聚合物溶液配制的关键,主要是通过下料器频率来控制溶液的浓度,所以定期校验计量下料器频率和聚合物母液浓度的关系曲线至关重要。

在分散润湿过程中要及时在现场通过看窗检查计量下料器和水粉混合器的工作状态,发现问题及时处理。

(3)聚合物母液的熟化。

熟化是聚合物在水中部分水解并充分溶解,以获得所要求粘度的化学变化和物理变化的综合过程。

聚合物干粉经分散装置润湿后,仍需悬浮在水中一定时间,一般为2小时,才能充分溶解,若水温过低还需更长时间,工艺上把这段时间称为熟化。

经分散装置配成的聚合物母液进入熟化罐后的熟化时间不低于2小时,在熟化时间内搅拌机应连续运转,母液在熟化罐内的停留时间不得超过24小时。

(4)聚合物母液的转输过滤。

母液从熟化罐到储罐的转输是由螺杆泵来完成的。

转输过程中同时进行的两级过滤,主要是严格控制两级过滤器的总压差,及时更换精滤器的滤袋。

图6-3 注聚站工艺流程配制好的聚合物溶液,经高压往复泵(或计量)泵增压,按配制要求计量,进入到高压注水管线中,与注入水的低矿化度水、经静态混合器混合稀释注入井中,见图6-3。

至此,配制过程和注入过程全部完毕。

二、已经形成的聚合物驱油地面工艺流程经过多年的不断实践和试验研究,已经形成了几种聚合物驱油地面工艺流程。

从大的范围看,这些流程可以分为配注合一流程和配注分开流程两大类。

所谓配注合一流程,就是将聚合物溶液的配制过程和注入过程合二为一,统一建在一个站内的流程;配注分开流程,就是集中建设大型聚合物配制站,分散建设注入站,一座配制站供给多个注人站的流程。

配注合一流程主要适用于配制注入量较小的小规模聚合物驱油区块;配注分开流程更适合于大规模进行聚合物驱油的区块。

图6-4给出的是一个典型的聚合物溶液配制流程图。

图6-4聚合物溶液配制流程图聚合物母液输送一般采用螺杆泵,远距离输送应使用二级或三级螺杆泵;输送管线的长度、内径及聚合物溶液在管线中的流速,对聚合物溶液的粘度损失都有影响,试验研究表明:聚合物配制站到最远注入站的母液输送管线不应大于6km,流速不应大于0.6m/s,剪切速率不应大于90s-1。

目前我国聚合物注入流程主要有两种,一种是单泵单井流程,另一种是多井流程。

单泵单井流程,就是由一台柱塞泵供给高压高浓度聚合物溶液,该溶液与高压离心泵供给的高压水混合,然后送给注入井,一台泵对一口井。

这种流程的优点是每台泵与每口的压力、流量均互相对应,不需节流,能量利用充分,单井注入方案比较容易改变,缺点是设备多,投资高,维护量大。

一泵多井流程,就是一台泵给多口注入井供液,注入井井口加流量调节器调控液量及压力。

该流程的优点是柱塞泵、静态混合器等设备少,流程简化,投资少,维护工作量少,缺点是全系统为一个压力,注入井单井压力、流量调节损失能量,单井注入方案不好调整,增加了流量调节器的成本。

三、聚合物驱油地面工艺流程的特点聚合物驱油地面工艺流程与水驱地面工艺流程相比,具有以下几个特点:1、水驱地面工艺流程中,不存在聚合物的分散、熟化、储存等问题;而聚合物的分散、熟化、储存是聚合物驱油地面工艺流程中的重要内容。

2、水驱地面工艺流程中,水的输送、升压注人,均采用离心水泵;而聚合物驱油地面工艺流程中,聚合物溶液的输送、升压注入,均采用容积式泵,其中聚合物溶液的输送多采用螺杆泵,升压注入多采用高压往复泵。

这一方面是由于离心泵输送粘稠液体时效率很低,另一方面是由于聚合物溶液经过离心泵高速剪切后,会造成降解。

3、水驱地面工艺流程中,水的计量多采用速度式流量计(如普通蜗轮流量计) ;而聚合物驱油地面工艺流程中,聚合物溶液的计量不能采用速度式流量计,而是采用容积式流量计 (如弹性刮板流量计或电磁流量计)。

这是由于聚合物溶液是剪切稀化型非牛顿流体,而增大压降后,剪切稀化流体的流量增大的幅度比牛顿流体要大得多。

由于牛顿流体与幂律流体的压降与流量的关系不同,因此,不能把以牛顿流体压降原理设计的流量计移用于幂律流体。

同时由于剪切稀化流体其压降对流量变化的反应是不灵敏的。

对高度非牛顿性流体也不宜采用压降原理设计流量计。

4、注入泵供液方式不同。

水驱地面工艺流程中,注水泵多为高压离心泵,也有少量规模较小的注水站采用高压往复泵,注入泵供液方式大多是自吸式和离心泵喂液方式。

而聚合物驱油地面工艺流程中,聚合物溶液的注入泵采用高压往复泵,而往复泵的入口,往往需0.03MPa左右的供液压力。

为了满足这一条件,聚合物驱油地面工艺流程中,注入泵的供液采用了以下几种方式:(1)调速螺杆泵喂液方式。

由于螺杆泵和注入泵都是容积式泵,所以为了供液和注入泵的平稳,喂液用螺杆泵必须考虑能够调整排量;(2)螺杆泵喂液加部分回流方式。

这种方式是在螺杆泵选型时,使其排量稍大于注入泵的总注入量,在注入泵汇管上增加一根回流管道,将多余的聚合物回流到聚合物溶液的储存罐内,从而保证注入泵的平稳运行。

这种供液方式的关键是,回流管在聚合物溶液储存罐内的出口一定要高于3.5m;(3)高架储罐自然供液方式。

这种方式是将聚合物储罐高架至3.5m以上,然后靠聚合物溶液的自然压头给注入泵供液。

这几种供液方式各有特点,在聚合物驱工程中均有应用。

第二节聚合物分散装置一、概述聚合物干粉分散装置是注聚合物工艺中的核心设备。

这套装置的性能将直接影响整套注聚合物系统的运行和驱油效果的优劣。

因此,选定聚合物干粉分散装置的性能参数时,要慎重考虑,制定出合理、可行的设计方案。

分散装置的主要技术参数包括供水压力、额定配制溶液量、额定配液浓度、整机功率等。

聚合物干粉分散装置的作用,是把一定重量的聚合物干粉均匀的溶于一定重量的水中,配制成确定浓度的混合溶液,然后输送到熟化罐中熟化。

这就决定了聚合物干粉分散装置的工作原理和基本结构大致上都是相同或相似,其差别只是规模的大小和自动化控制程度的高低。

聚合物干粉分散装置都由以下五个基本部分组成:1)加聚合物干粉部分;2)加清水部部分;3)混合、搅拌部分;4)混合溶液输送部分组成;5)自动控制部分。

聚合物是一种高分子化合物,溶于水后粘度很大,注入油层之后,可以增加波及体积,提高原油采收率。

但是,聚合物(聚丙稀酰胺)是一种化学结构性质不很稳定的物质,一些物理、化学、温度、细菌微生物等因素都要破坏其分子结构,导致溶液粘度的下降。

因此,在设计和选用聚合物干粉分散装置的零部件时,一定要充分考虑到这些因素,防止由于存在这些素而使聚合物溶液的粘度下降。

据美国《提高原油采收率》一文介绍,化学因素能使聚合物溶液的粘度下降90%以上。

因此和选用聚合物干粉分散装置时,应把化学因素放在首位。

聚合物溶液对铁离子十分敏感,首先要消除其对聚合物溶液的影响。

所以在材质上要求:凡是和聚合物溶液接触的管线、容器、泵和阀门等均应选用不锈钢或环氧树脂玻璃钢衬里结构,考虑到我国材料的现状,若全都采用不锈钢材质其造价就会大幅度上升而影响装置经济性。

所以尽可能地应用环氧树脂玻璃钢衬里结构或其它新型结构,以降低其制造成本。

其次还要引入一个剪切速率的概念:即运动部件在聚合物溶液中做剪切方向运动时的速率。

一般来说,在聚合物溶液运动部件的剪切速率过大,则聚合物分子将受到不同程度的破坏,导致聚合物溶液粘度的下降,所以在设计和选用聚合物干粉装置时也应充分注意到这一点,应尽可能降低部件的剪切速率来达到降低聚合物溶液粘度损失的目的。

据对现有注聚合物装置的调查来看,泵类的剪切速率小于60s一1,搅拌器类的剪切速率小于500s-1,聚合物的粘度损失是较小的。

溶液通过泵、管线、阀门等设备,造成管径、磨擦阻力、流速的变化均能造成聚合物粘度的下降,这些也应给予充分的考虑。

此外,温度、微生物等对聚合物粘度的影响,也应进行综合考虑。

二、聚合物分散装置的类型及其工作原理关于聚合物分散装置的分类,现在还没有一个统一的方法,但人们习惯根据水粉的接触方式来分类,按照这种分类方法,现在使用的聚合物分散装置有以下几种类型:喷头型、水幔型、射流型和瀑布型。

所谓喷头型,是指水和聚合物干粉的解触,集中在一个所谓的喷头中进行,喷头需特殊设计制作,如图6-5示,水由入口沿芯子切线方向进入水粉混合器,并在水粉混合器的下部形成一个封闭旋转的圆形水幔,聚合物干粉从入口进入,并迅速扩散,干粉遇水后迅速溶解,制成混合溶液。

相关文档
最新文档