数据挖掘试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12/13 年第2学期《数据挖掘与知识发现》期末考试试卷及答案

一、什么是数据挖掘?什么是数据仓库?并简述数据挖掘的步

骤。(20分)

数据挖掘是从大量数据中提取或发现(挖掘)知识的过程。

数据仓库是面向主题的、集成的、稳定的、不同时间的数据集合,用于支持经营管理中的决策制定过程。

步骤:

1)数据清理(消除噪声或不一致数据)

2) 数据集成(多种数据源可以组合在一起)

3 ) 数据选择(从数据库中检索与分析任务相关的数据)

4 ) 数据变换(数据变换或统一成适合挖掘的形式,如通过汇总或聚集操作)

5) 数据挖掘(基本步骤,使用智能方法提取数据模式)

6) 模式评估(根据某种兴趣度度量,识别表示知识的真正有趣的模式;)

7) 知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)

二、元数据的定义是什么?元数据包括哪些内容?(20分)

元数据是关于数据的数据。在数据仓库中, 元数据是定义仓库对象的数据。

元数据包括:

数据仓库结构的描述,包括仓库模式、视图、维、分层结构、导出数据的定义, 以及数据集市的位置和内容。

操作元数据,包括数据血统(移植数据的历史和它所使用的变换序列)、数据流通(主动的、档案的或净化的)、管理信息(仓库使用统计量、错误报告和

审计跟踪)。

汇总算法,包括度量和维定义算法, 数据所处粒度、划分、主题领域、聚集、汇总、预定义的查询和报告。

由操作环境到数据仓库的映射,包括源数据库和它们的内容,网间连接程序描述, 数据划分, 数据提取、清理、转换规则和缺省值, 数据刷新和净化规则, 安全(用户授权和存取控制)。

关于系统性能的数据,刷新、更新定时和调度的规则与更新周期,改善数据存取和检索性能的索引和配置。

商务元数据,包括商务术语和定义, 数据拥有者信息和收费策略。

三、在O L A P 中,如何使用概念分层? 请解释多维数据模型中的OLAP上卷下钻切片切块和转轴操作。(20分)

在多维数据模型中,数据组织成多维,每维包含由概念分层定义的多个抽象层。这种组织为用户从不同角度观察数据提供了灵活性。有一些O L A P 数据立方体操作用来物化这些不同视图,允许交互查询和分析手头数据。因此,O L A P 为交互数据分析提供了友好的环境。

上卷:上卷操作通过一个维的概念分层向上攀升或者通过维归约,在数据立方体上进行聚集。

下钻:下钻是上卷的逆操作,它由不太详细的数据到更详细的数据。下钻可以通过沿维的概念分层向下或引入新的维来实现。

切片:在给定的数据立方体的一个维上进行选择,导致一个子方。

切块:通过对两个或多个维执行选择,定义子方。

转轴:转轴是一种目视操作,它转动数据的视角,提供数据的替代表示。

四、什么是数据变换?数据变换涉及的内容有哪些?(20分)

数据变换是将数据转换成适合于挖掘的形式。数据变换可能涉及如下内容:

1).平滑:去掉数据中的噪声。这种技术包括分箱、聚类和回归。

2).聚集:对数据进行汇总和聚集。例如,可以聚集日销售数据,计算月和年销售额。通常,这一步用来为多粒度数据分析构造数据立方体。

3).数据概化:使用概念分层,用高层次概念替换低层次“原始”数据。例如,分类的属性,如s t re e t ,可以概化为较高层的概念,如 c i t y 或 c o u n t ry 。

类似地,数值属性,如 a g e ,可以映射到较高层概念,如young, middle-age 和s e n i o r 。

4).规范化:将属性数据按比例缩放,使之落入一个小的特定区间,如-1 .

0 到1 . 0 或0 . 0 到1 . 0 。

5).属性构造(或特征构造):可以构造新的属性并添加到属性集中,以帮助挖掘过程。

五、用Apriori、FP-growth、GSP、Prefixspan、SPAM算法中任意一到两种算法,挖掘出所有的频繁项集(表1)或频繁序列(表2),并写出具体过程。假设事务数据库D如下:最小支持度计数为2。(20分)以Apriori算法为例。

相关文档
最新文档