电力系统中谐波论文
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统质量的一个不容忽视的因素。
谐波不仅会导致电力设备的损坏,还会增加电能损耗,降低电力系统的可靠性。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有十分重要的意义。
一、谐波的产生要理解谐波,首先需要了解它的产生原因。
谐波主要来源于电力系统中的非线性负载。
常见的非线性负载包括各种电力电子设备,如变频器、整流器、逆变器等,以及电弧炉、荧光灯等。
以变频器为例,它通过对电源进行快速的通断控制来实现对电机转速的调节。
在这个过程中,电流和电压的波形不再是标准的正弦波,而是包含了各种频率的谐波成分。
整流器在将交流电转换为直流电的过程中,由于其工作特性,也会产生谐波。
同样,电弧炉在工作时,电弧的不稳定燃烧会导致电流的剧烈变化,从而产生谐波。
二、谐波的危害谐波的存在给电力系统带来了诸多危害。
对电力设备而言,谐波会使变压器、电动机等设备产生额外的损耗,导致设备发热增加,缩短使用寿命。
对于电容器来说,谐波电流可能会使其过载甚至损坏。
在电能质量方面,谐波会导致电压和电流波形的畸变,使电能质量下降,影响用电设备的正常运行。
例如,对于计算机等精密电子设备,谐波可能会引起数据丢失、误操作等问题。
此外,谐波还会增加电力系统的无功功率,降低功率因数,从而增加线路损耗和电能浪费。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析。
目前,常用的谐波分析方法主要有傅里叶变换、小波变换和瞬时无功功率理论等。
傅里叶变换是谐波分析中最常用的方法之一。
它可以将一个复杂的周期性信号分解为不同频率的正弦波分量,从而得到各次谐波的幅值和相位信息。
然而,傅里叶变换在处理非平稳信号时存在一定的局限性。
小波变换则能够很好地处理非平稳信号,它通过对信号进行多尺度分析,可以更准确地捕捉到信号在不同时间和频率上的特征。
浅谈电力系统谐波检测及抑制方法
浅谈电力系统谐波检测及抑制方法摘要:电力系统谐波是由于现代电子设备日益普及而产生的一种新型电能质量问题。
本文在分析电力系统谐波特征的基础上,探讨了目前谐波检测技术的发展状况,同时介绍了几种谐波抑制方法。
最后,本文提出了针对电力系统谐波的合理解决方案,以期有效降低谐波对电力设备的影响。
关键词:电力系统,谐波检测,谐波抑制,电能质量正文:随着现代电子设备的普及和高速发展,电力系统谐波问题越来越引起人们的关注。
由于电力系统中存在着各种电器设备,这些设备中存在许多非线性元件,产生的非线性负载将会导致电能质量的恶化,从而引起谐波问题。
针对电力系统谐波问题,需要采取有效的技术手段进行检测和抑制。
一、谐波检测技术谐波检测技术可以通过准确测量电压电流波形上的失真程度,确定电力系统中的谐波状况。
现代电子设备的高频特点和非线性元件的存在,使得传统的模拟测量方法越来越无法满足工程需要。
目前,数字信号处理技术成为了谐波检测技术的主要手段,数字化谐波分析仪的应用也日益广泛。
二、谐波抑制方法目前,谐波抑制方法主要包括直接方法和间接方法两种。
1、直接方法直接方法是指通过增加滤波器等装置直接消除谐波分量或基波分量的方法。
目前较为普遍的直接方法是谐波滤波器。
谐波滤波器分为有源谐波滤波器和无源谐波滤波器两种,其中有源谐波滤波器包括H营和L营两类,无源谐波滤波器包括平行谐波滤波器和串联谐波滤波器两类。
2、间接方法间接方法主要是指改善电路的结构和控制方法,从而达到抑制谐波的目的。
较为典型的间接方法包括电容补偿、电感滤波、交流电调压、功率因数补偿等。
三、谐波抑制综合方案充分综合采用直接方法、间接方法以及电力系统的调整等多种手段,才能制定出一套具有可行性的谐波抑制方案。
本文提出的谐波抑制综合方案包括:1、采用电力电容器组和电感滤波器,通过直接方法降低电力系统谐波水平。
2、在电力系统的控制中加入波形纠正功能,实现无功功率和有功功率之间的分离,调整电力系统的谐波响应。
2024年电力系统中谐波的危害与产生(3篇)
2024年电力系统中谐波的危害与产生引言:随着电力系统的发展和电力负荷的增加,谐波问题在电力系统中变得越来越严重。
谐波是指在电力系统中具有频率为整数倍于基波频率的电压或电流。
谐波的产生与许多因素有关,包括非线性负载(如电动机、电子设备等)和电力质量问题。
本文将从谐波对电力系统和用户的危害以及谐波的产生机制两个方面进行探讨。
一、谐波对电力系统的危害1. 电力设备的损坏:谐波会导致电力设备的温升和损坏,其中包括变压器、电容器、电抗器和电动机等。
谐波电流会导致设备中的铁芯饱和,进而产生过大的损耗和热量,从而缩短设备的使用寿命。
此外,谐波电压也会导致设备中的绝缘损坏,增加维修和更换成本。
2. 系统能量损耗:谐波会导致电力系统中的能量损耗增加。
谐波电流会增加输电线路和变压器的有功损耗,从而减少系统的效率。
此外,谐波还可能导致电力变压器的谐波损耗和谐波电流的损耗。
3. 电力系统的电压波动:谐波会导致电力系统的电压波动增加。
谐波电流通过电力系统中的阻抗元件(如变压器和线路)时会引起电压波动。
不同谐波的相长和相消作用会导致电压波动的增加,使得用户的供电质量下降。
4. 电力系统的谐波共振:谐波会导致电力系统中的谐波共振现象。
当电力系统的谐波阻抗与非谐波阻抗相近时,谐波电流会通过共振回路增加,从而引发电力系统的振荡和不稳定性。
二、谐波的产生机制1. 非线性负载:谐波的主要产生源是非线性负载,如电子设备、电动机等。
这些设备在工作过程中会引入谐波电流,主要是由于设备内部的非线性元件产生的。
非线性元件的存在使电流波形失真,从而引入谐波。
2. 系统谐振:电力系统中的电抗器、电容器和线路电感等元件的谐振现象也会导致谐波的产生。
当这些元件的谐振频率和谐波频率相近时,谐波电流会增加。
3. 外部干扰:电力系统中的谐波也可能是由外部干扰引起的。
例如,当电力系统与其他频率干扰源(如脉冲电源)相连接时,这些干扰源的谐波也会传入到电力系统中,从而引入谐波。
电力谐波
配电网谐波的治理电子学论文摘要:经济的飞速发展带来供电紧张,为解决供电紧张,一方面要建设许多新的电厂和输电线路,另一方面要高效利用现有的电力资源,减少电力损耗。
谐波是导致电力损耗增加,供电质量下降的重要因素。
本文分析谐波基本性质和测量方法,对配网中谐波的来源和危害进行了详细说明,总结和提出了治理谐波的若干方法。
关键词:电能质量谐波治理配电网供电质量包括系统电压、频率的合格率,峰值、超限电压持续时间、停电时间,以及电网谐波含量等诸多方面。
其中,谐波问题一直是主要的电能质量问题。
谐波存在于电力系统发、输、配、供、用的各个环节。
治理好谐波,不仅能降低电能损耗,而且能延长设备使用寿命,改善电磁环境,提高产品的品质。
1 电力系统谐波的基本特性和测量谐波是一个周期电气量的正弦波分量,其频率是基波频率的整数倍数。
理论上看,非线性负荷是配电网谐波的主要产生因素。
非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。
周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。
非线性负荷除了产生基频整次谐波外,还可能产生低于基频的次谐波,或高于基波的非整数倍谐波。
电力系统中出现系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。
要治理谐波改善供电品质,需要了解谐波类型。
谐波按其性质和波动的快慢可分成四类:准稳态谐波、波动谐波、快速变化的谐波和间谐波四类。
因其多样性和随机性,在实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7标准中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行测量。
兼顾数理统计和数据压缩的需要,标准对测量时段以及通过测量值计算谐波值提出了表1建议。
国标GB/T 14549-1993采用观察期3s有效测量的各次谐波均方根值的95%概率作为评价谐波的标准。
为简便实用,将实测值按由大到小的方式排序,在舍去前5%个大值后剩余的最大值,近似作为95%的概率值。
毕业论文《电力系统谐波的检测》
摘要随着电力系统的发展以及电力市场的开放,电能质量问题越来越引起广泛关注。
由于各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重。
谐波是目前电力系统中最普遍现象,是电能质量的主要指标。
电力系统谐波是电能质量的重要参数之一,随着电力电子技术的发展,大量的非线性负载和各种整流设备被广泛的应用于各行各业,使电网谐波含量大大增加,电能质量下降。
谐波给供电众业的安全运行和经济效益带来了巨大影响。
所以,抑制谐波污染、改善供电质量成为迫切需要解决的问题。
因此,谐波及其抑制技术己成为国内外广泛关注的课题。
对电力系统谐波的治理,需要电力部门和用户共同参与。
一方面,用户需要电力部门公共电网电能质量能确保用户正常生产用电;另一方面,电力部门也要求用户的生产用电不影响公共电网的正常供电,特别是对于一些会对公必电网电能质量造成睡大影响的大型用户,从源头上进行电能质量的治理是必须的。
本文介绍了谐波的概念、检测及危害,详细介绍了谐波产生的来源于,电力系统中的谐波来自电气设备。
也就是说来自发电设备和用电设备。
同时介绍了谐波的危害,包括对电网运行和用电设备的危害,还包括对继电保护和自动装置的影响。
为了有效补偿负荷产生谐波电流,首先对谐波的成分有精确认识,因而需要实时检测负载电流中的谐波。
本文着重介绍了基于三相电路瞬时无功功率理论的谐波测量的理论。
进而研究了电力系统谐波的抑制措施,消除或抑制谐波的对策,可以有效地减小谐波对电网的影响,以消除和防止谐波的影响。
关键词:电力系统谐波;危害;p、q检测方法,;ip、iq检测方法目录摘要 (I)目录 (I)第1章绪论 (3)1.1 谐波的提出及意义 (3)1.2国内外研究状况及进展 (4)1.2.1国外研究现状 (4)1.2.2国内研究现状 (6)1.3本文主要研究的内容 (7)第2章电力系统谐波的分析 (8)2.1 谐波的基本概念 (8)2.1.1 谐波的定义 (8)2.1.2 电力系统谐波的表达式 (8)2.1.3 电力系统谐波的标准 (9)2.2 电力系统谐波的产生 (10)2.3 电力系统谐波的危害 (12)2.3.1 对电机的危害 (12)2.3.2对变压器的危害 (12)2.3.3 对线路的危害 (13)2.3.4 对电容器的影响 (13)2.3.4 对继电保护、自动装置工作的影响 (14)2.3.5 对其通信系统的影响 (14)2.4 本章小结 (14)第3章电力系统谐波的检测 (16)3.1谐波检测的几种方法比较 (16)3.2基于三相电路瞬时无功功率理论的谐波测量 (18)3.2.1 瞬时有功功率和瞬时无功功率 (18)3.2.2 瞬时有功电流和瞬时无功电流 (20)3.2.3 基于瞬时无功功率的p、q检测方法 (21)3.2.4 基于瞬时无功功率的ip、iq检测法 (22)3.2.5 检测示例 (24)3.3本章小结 (26)结论 (27)参考文献 (28)附录1 (29)附录2 (32)致谢 (337)燕山大学毕业论文评审意见表 (38)个人简介 (40)第1章绪论1.1 谐波的提出及意义“谐波”一词起源于声学。
电力系统谐波检测与分析毕业设计论文
毕业设计(论文)题目:电力系统谐波检测与分析毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
电力系统中谐波的危害与产生(三篇)
电力系统中谐波的危害与产生电力系统中的谐波是由于电力设备的非线性特性引起的。
在电力系统中,谐波的危害包括对电力设备的损坏、电能质量的恶化以及对用户的影响等方面。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
谐波对电力设备的损坏是谐波危害的主要方面之一。
谐波会引起设备的绝缘老化、过热、机械振动等问题。
尤其是对于变压器和电动机等设备来说,由于谐波的存在会引起电流和电压的畸变,导致设备的工作效率下降,甚至引发设备的故障和停机。
此外,谐波还会引起电容器的谐振和过电压问题,增加电力设备的工作负荷,缩短其使用寿命。
谐波对电能质量的恶化也是谐波危害的重要方面之一。
谐波会导致电能质量的下降,主要表现为电压和电流的畸变,波形失真,功率因数的下降等。
这不仅会影响电力设备的正常工作,还会对电力系统的稳定性和可靠性造成影响。
谐波还会引起电力设备的谐振现象,导致设备振动,造成噪音污染,影响人们的生活质量。
谐波对用户的影响主要体现在电力质量的下降和对电子设备的损坏。
谐波会引起电压的波动和电流的畸变,导致电子设备的正常工作受到干扰,增加设备的故障率,降低设备的使用寿命。
尤其是对于一些对电力质量要求较高的用户来说,如计算机、通讯设备、医疗设备等,谐波对其正常工作的影响更为显著。
此外,谐波还会导致电能的浪费,增加用户的用电成本。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
非线性负载是产生谐波的主要原因之一。
非线性负载如电子设备、电力电子器件等在工作过程中会产生非线性电流,其含有大量谐波成分。
此外,电力设备的设计及运行也会引起谐波的产生,如电容器的谐振,变压器的匝间谐振等。
而电网的接地情况也会影响谐波的产生和传播,如电网的接地方式不当会引起谐波回流和间接接触问题。
为了减少谐波的危害,需要采取一系列的措施。
首先,可以通过合理选择电力设备和设备的工作参数来降低其谐波产生的概率。
其次,可以采用滤波器等设备对谐波进行抑制和补偿。
电力系统中的谐波与电磁干扰分析
电力系统中的谐波与电磁干扰分析导言:电力系统是现代社会运转的重要基础设施之一,但在其运行过程中,常常会面临谐波和电磁干扰的问题。
谐波是指电力系统中出现的频率是基波频率的整数倍的电压或电流成分,而电磁干扰则是指电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。
本文将深入分析电力系统中的谐波和电磁干扰的原因、危害以及相应的解决方法。
一、谐波的形成和危害1. 谐波的形成谐波是由于非线性负荷在电力系统中的存在引起的。
非线性负荷如电子电器、电感、电容等设备,在工作时会产生非线性电流,在电源电压的作用下,会将谐波电流注入电力系统中。
这些谐波电流会使电力系统中的电流波形变成失真的非正弦波形。
2. 谐波的危害谐波对电力系统和设备都会造成一定的危害。
首先,谐波会引起电力系统中的电流和电压的失真,导致电能质量下降。
其次,谐波会引发电力系统中的共振问题,进而损坏电容器、互感器等设备。
此外,谐波还会导致电力系统中的电机运行不稳定,降低设备的寿命,甚至引起设备的故障和损坏。
因此,谐波问题应引起足够的重视。
二、电磁干扰的产生和危害1. 电磁干扰的产生电磁干扰是电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。
电力系统中各种设备和传输线路中的电流和电压会产生电磁场,这些电磁场以无线电波的形式辐射出去,与其他设备和系统产生相互作用,引起电磁干扰问题。
2. 电磁干扰的危害电磁干扰会带来许多危害。
首先,电磁干扰会影响通信系统的正常运行,导致通信中断、信息传递错误等问题。
其次,电磁干扰会影响其他电子设备的正常工作,引起设备的故障和损坏。
此外,电磁干扰还可能对人体健康造成一定的影响,引起生理和心理方面的问题。
三、谐波和电磁干扰的解决方法为了解决电力系统中的谐波和电磁干扰问题,可以采取以下方法:1. 谐波的解决方法(1)降低非线性负荷的影响:通过选用低谐波电器设备、采用滤波电容器等措施来减少非线性负荷对电力系统的谐波注入。
(2)滤波器的应用:在电力系统中安装合适的谐波滤波器,可以过滤掉谐波成分,减少谐波的产生和传播。
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统性能的一个重要因素。
谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。
一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。
在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。
2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。
3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。
二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。
2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。
3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。
4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。
常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。
通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。
2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。
电力系统中的谐波监测与分析研究
电力系统中的谐波监测与分析研究随着电力系统的快速发展和电子设备的普及,电力系统中的谐波成为一个关注的焦点。
谐波信号的存在可能会导致电力系统出现很多问题,如设备损坏、功率质量恶化等。
因此,对电力系统中的谐波进行监测和分析,对确保电力系统的稳定运行和提高电力质量具有重要意义。
电力系统中的谐波是指频率为原信号频率整数倍的信号,产生谐波的主要原因包括非线性负载、变电站设备以及不完善的系统设计等。
谐波信号的存在会导致电流和电压的畸变,从而引起电力设备的过载、损坏和降低电力质量。
因此,及时监测和分析电力系统中的谐波信号,可以帮助电力公司识别问题,并采取措施来减少谐波对系统的影响。
要实现电力系统中谐波的监测和分析,需要安装谐波监测装置。
这些装置通常由采样单元和数据处理单元组成。
采样单元用于采集电力系统中的电流和电压信号,并将其送到数据处理单元进行处理。
数据处理单元对采样数据进行滤波、提取频谱等处理,以获取谐波信号的频率、幅值等关键参数。
通过对谐波信号的监测和分析,可以了解电力系统中谐波的产生机理和影响程度,并采取相应的措施进行调整和优化。
在谐波信号的分析中,频域分析是一种常用的方法。
频域分析可以将时域信号转换为频域信号,从而得到信号的频率谱。
通过对频率谱的分析,可以得出电力系统中谐波信号的频率和幅值分布情况。
另外,谐波监测装置通常还可以进行时间域分析,用于观察谐波信号的波形变化。
通过对时域波形和频域谱线的分析,可以深入了解电力系统中的谐波特性,并对其进行进一步的研究。
除了谐波的监测和分析,还需要进行谐波的研究工作。
谐波的研究可以深入探索谐波的产生机理、传输特性以及对电力系统的影响。
通过对谐波的深入研究,可以制定出相应的谐波限值标准和措施,来保障电力系统的稳定运行和电力质量的提高。
此外,谐波的研究还可以为电力系统的设计和运行提供参考和指导,以避免或减少谐波问题的出现。
综上所述,电力系统中的谐波监测与分析研究对于确保电力系统的稳定运行和提高电力质量具有重要意义。
电力系统谐波分析与抑制技术研究
电力系统谐波分析与抑制技术研究近年来,随着电力系统规模的扩大和电气设备的普及,电力系统中出现的谐波问题日益严重。
谐波是指电力系统中频率为整数倍于基频的电压或电流成分。
谐波存在的问题包括增加了线路损耗、降低了电力设备的效率、加剧了电力系统的振荡、对电网稳定性造成影响,并给生产设备以及电力质量带来了诸多负面影响。
为了解决这些问题,电力系统谐波分析与抑制技术应运而生。
谐波分析是针对电力系统中谐波问题进行的研究,旨在找出谐波成因,并进行定性和定量的分析。
首先,对系统中各个谐波的频率、幅值、相位进行测量和监控,建立一套全面的谐波分析系统。
其次,通过对电力设备的测试和检测,确定哪些设备是谐波主要的源头,并对其进行分析。
从而得出谐波问题的成因以及谐波的传播路径。
谐波分析的结果可以帮助电力系统的维护人员,对具体的问题设备进行改造或者维修,以减少谐波的产生和传播。
谐波抑制技术是在谐波分析的基础上,采取相应的措施来减少或抑制谐波的传播和影响。
目前,常用的谐波抑制技术包括主动型和被动型两种。
主动型谐波抑制技术通过添加补偿电路,可以实时地检测到谐波的存在,并产生与其相等但相位相反的电流进行抵消。
这种技术主要应用于大型电力系统和交流输电系统上,可以有效降低谐波对电网的影响。
被动型谐波抑制技术则是通过添加谐波滤波器或者调整负载电路来减少或抑制谐波的传播。
这种技术主要应用于建筑物内部或者小型电力系统中,对于特定谐波频率的抑制效果明显。
除了主动型和被动型谐波抑制技术之外,还有一些先进的谐波抑制技术值得关注。
例如,采用多电平逆变器技术可以有效降低谐波对电力设备的影响。
多电平逆变器可以将主要负责产生谐波的电力设备接入到中性点,减少谐波的传播。
同时,改进电力设备的设计和制造工艺,可以降低谐波的产生。
此外,合理设计和规划电力系统的拓扑结构,可以减少谐波的传播路径,降低谐波对电力设备和电网的影响。
谐波问题的解决不仅需要技术手段的支持,还需要政府、企业以及社会各界的共同努力。
电力系统中电流谐波的监测与治理
电力系统中电流谐波的监测与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,电流谐波的存在却给电力系统带来了诸多问题。
电流谐波不仅会影响电力设备的正常运行,降低电能质量,还可能引发电力故障,甚至造成严重的安全隐患。
因此,对电力系统中电流谐波的监测与治理成为了电力领域的一个重要课题。
一、电流谐波的产生要理解电流谐波的监测与治理,首先需要了解它的产生原因。
电流谐波主要来源于电力系统中的非线性负载。
常见的非线性负载包括电力电子设备,如变频器、整流器、逆变器等;电弧炉、电焊机等工业设备;以及一些家用电器,如节能灯、计算机电源等。
这些非线性负载在工作时,其电流和电压的关系不再是简单的线性关系,从而导致电流波形发生畸变,产生了谐波成分。
例如,在变频器中,通过对电源进行整流和逆变操作来改变电机的转速。
在这个过程中,由于半导体器件的开关动作,电流会出现高频的脉动,从而产生谐波。
二、电流谐波的危害电流谐波对电力系统的危害是多方面的。
首先,它会增加电力设备的损耗。
谐波电流在电力线路和变压器中流动时,会产生额外的热量,导致设备温度升高,降低其使用寿命。
其次,谐波会影响电力测量仪表的准确性。
例如,电能表可能会因为谐波的存在而计量不准确,给电力用户和供电部门带来经济损失。
再者,谐波还会干扰通信系统。
在电力线路附近的通信线路中,谐波可能会引起噪声,影响通信质量。
此外,严重的谐波还可能导致电力系统的电压波动和闪变,影响电气设备的正常运行,甚至引发电力系统的故障。
三、电流谐波的监测为了有效地治理电流谐波,首先需要对其进行准确的监测。
电流谐波的监测方法主要包括以下几种:1、基于傅里叶变换的谐波分析这是目前最常用的方法之一。
通过对采集到的电流信号进行快速傅里叶变换(FFT),可以将其分解为不同频率的谐波分量,从而得到各次谐波的幅值和相位信息。
2、谐波功率测量除了测量谐波的电压和电流幅值外,还可以通过测量谐波功率来评估谐波的影响。
电力系统中的谐波检测与特征提取算法研究
电力系统中的谐波检测与特征提取算法研究摘要:电力系统中的谐波问题对系统运行与电能质量产生了很大的影响。
因此,谐波检测与特征提取成为了电力系统中一个重要的研究领域。
本文将介绍电力系统中谐波的概念,谐波检测的方法以及谐波特征的提取算法,并讨论了它们在电力系统中的应用。
1. 引言在电力系统中,谐波是指频率为原电力频率的整数倍的波动,在电力系统中产生的主要原因是非线性负载和电力设备的存在。
谐波问题对电力设备的正常运行和电能质量产生了很大的影响,因此谐波检测与特征提取算法的研究变得尤为重要。
2. 谐波检测方法谐波检测是指通过某种方法对电力系统中的谐波进行检测和测量。
目前常用的谐波检测方法包括频谱分析法、滤波法和基于小波变换的方法。
2.1 频谱分析法频谱分析法是通过分析系统中的频谱成分来检测谐波。
常用的频谱分析方法包括傅里叶分析法和快速傅里叶变换(FFT)法。
这些方法可以将电力信号从时域转换到频域,通过分析信号频谱得到谐波的频率和幅值信息。
2.2 滤波法滤波法是通过设计合适的滤波器来滤除谐波信号。
常用的滤波器包括低通滤波器、带通滤波器和高通滤波器。
通过将电力信号经过滤波器处理,能够滤除谐波成分,从而实现谐波检测。
2.3 基于小波变换的方法小波变换是一种时频分析方法,可以同时提供时域和频域信息。
基于小波变换的谐波检测方法能够更加准确地检测到各个谐波的频率和幅值。
3. 谐波特征提取算法谐波特征提取是指通过某种算法从谐波信号中提取出有用的特征信息,以便于进一步的分析和处理。
常用的谐波特征提取算法包括峰值检测算法、谐波分解算法和小波包分析算法。
3.1 峰值检测算法峰值检测算法是一种简单直观的特征提取方法,通过检测谐波信号中的峰值点来提取谐波特征。
该算法适用于谐波幅值较大的情况,但对于低幅值的谐波较难检测到。
3.2 谐波分解算法谐波分解算法是一种将谐波信号分解为基波和谐波成分的方法,常用的算法包括快速傅里叶变换和小波变换。
浅谈电力系统中谐波污染的危害与治理
浅谈电力系统中谐波污染的危害与治理摘要:目前,谐波污染已成为影响电力系统安全稳定运行的主要因素之一。
谐波会影响电力系统中的电能质量,产生附加的谐波损耗,降低发电、输电及用电设备的效率,对谐波污染进行有效的治理,对于保证电力系统正常的经济运行具有重要的意义。
本文介绍了电力系统中常见的谐波污染源种类,分析了谐波污染的危害,并对谐波治理方法进行了总结。
关键词:电力系统;谐波治理abstract: at present, the harmonic pollution has become one of the main factors that affect the safe and stable operation of power system. harmonics will affect the quality of the electrical energy in the power system, generate additional harmonic losses, reducing the efficiency of power generation, transmission and distribution of electrical equipment, of harmonic pollution effective governance, is of great significance to ensure normal economic operation of power systems . this article describes a common kind of harmonic pollution sources in the power system, harmonic pollution hazards, and harmonic treatment methods are summarized.keywords: power systems; harmonic control 中图分类号:tm712 文献标识码:a 文章编号:2095-2104(2012)1.电力系统中谐波的来源谐波是指对周期性非正弦交流量进行傅里叶级数分解所得到的大于基波频率整数倍的各次分量,而基波是指其频率与工频相同的分量。
电力系统谐波问题分析及防治措施论文
电力系统谐波问题分析及防治措施摘要:电力谐波会增加电能损耗、降低设备寿命,威胁电力设备和用电设备安全可靠运行,并对周边的通讯等设施造成干扰。
分析电网谐波的产生和影响,并及时提出谐波的综合治理办法,对于防止谐波危害、提高电能质量是十分必要的。
本文概述了谐波及其产生、谐波的危害,以及谐波治理方法。
关键词:电力系统;谐波;来源;危害;治理方法中图分类号:tm732 文献标识码:a文章编号:谐波的定义与来源1、谐波的定义国际上对谐波公认的定义是:“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。
在电力系统中,谐波分为谐波电压和谐波电流,其对系统的影响通常用“谐波含有率”和“总谐波畸变率”两个参数来衡量。
具体定义如下:谐波含有率:第h次谐波分量方均根值与基波分量方均根值之比。
hru(h次谐波电压含有率),hri(h次谐波电流含有率);总谐波畸变率:除基波外的所有谐波分量在一个周期内的方均根值与基波分量方均根值之比。
u, i;thd(总谐波电压畸变率),thd(总谐波电流畸变率);谐波含有率仅反应单次谐波在总量中的比重,而总谐波畸变率则概括地反映了周期波形的非正弦畸变程度。
谐波按矢量相序又可分有正序谐波、负序谐波和零序谐波。
所谓正序是指,3个对称的非正弦周期相电流或电压在时间上依次滞后120°,而负序滞后240°,零序則是同相。
其特征如表1: 表1 正序谐波=3h-2,负序谐波=3h-1,零序谐波=3h。
在平衡的三相系统中,由于对称关系,不会在供电电网中产生任何偶次谐波。
谐波的定义与来源具体来说谐波产生的原因有以下三个方面:(1) 发电源的质量不高而产生的谐波发电机的结构中,由于三相绕组在制作上无法做到绝对对称,铁心也很难做到绝对均匀一致,所以磁通密度沿空间的分布只能做到接近正弦分布,所以磁通中都有高次谐波,电势中也就有高次谐波,其中三次谐波占主要成分[2]。
(2) 输配电系统产生的谐波在输配电系统中则主要是变压器产生谐波,变压器饱和时的励磁电流只含有奇次谐波,以3次谐波最大,可达额定电流0.5%,对于三相变压器,3倍次谐波的磁通经由邮箱外壳构成闭合磁路,因而磁通中对应该次的谐波较小(单相铁芯的10%),绕组中有三角形接法时,零序性谐波电流在闭合的三角形接线中环流而不会注入电网。
电力系统中的谐波陷波技术研究
电力系统中的谐波陷波技术研究电力系统中的谐波问题是一个常见而严重的问题,它会导致电力设备的故障、增加电力系统的能耗以及影响电力质量。
为解决谐波问题,研究人员提出了各种谐波陷波技术。
本文将对电力系统中的谐波问题进行介绍,并对谐波陷波技术进行研究。
1. 谐波问题的原因和影响电力系统中的谐波是电压或电流在非线性负载下引起的周期性不稳定信号。
谐波问题主要源于电力系统中存在的电弧炉、电力电子器件、非线性电阻和非线性电感等负载设备。
这些设备会引起谐波电流和电压,使电力系统的频谱发生变化,造成电能质量下降。
谐波问题对电力系统造成的影响有以下几个方面:1. 电力设备故障:谐波会导致设备内部绝缘和电子元器件的热量增加,从而加速设备的老化和损坏。
2. 电力损耗增加:谐波电流会导致电力系统中的有功功率损耗增加,使电力系统的效率下降,增加电网运行的能耗和运维成本。
3. 电能质量下降:谐波会导致电力系统中的电压失真增加,频谱扭曲,使得电压波形变形,引起电力设备不稳定运行,同时也会对电力用户的用电设备造成故障和影响。
2. 谐波陷波技术的研究现状为解决电力系统中的谐波问题,研究人员提出了各种谐波陷波技术。
这些技术主要分为被动滤波和主动滤波两大类。
被动滤波是一种通过谐波滤波器滤除谐波电流或电压的方法。
它通过选择合适的滤波器参数,将谐波电流或电压引导至地或其他负载上,从而减小其对电力系统的影响。
被动滤波器的设计通常基于频谱分析和滤波器的特性,能够有效滤除特定频率的谐波成分。
主动滤波是一种通过电力电子器件实现的主动补偿方法。
主动滤波器通过控制电力电子器件的开关状态和逆变电路的输出,生成与谐波相抵消的谐波电流或电压,并注入电力系统中,实现谐波补偿和陷波的目的。
目前,被动滤波和主动滤波技术都有一定的应用范围和优势。
被动滤波器在小功率和低频谐波陷波方面具有较好的效果,主要应用在家庭用电设备和小型工业设备上。
而主动滤波器由于具备快速响应和灵活的控制能力,在大功率和高频谐波陷波方面表现出色,适用于电力系统和大型工业设备。
电力系统谐波方法论文
浅论电力系统中的谐波分析方法[摘要]:近年来,随着电力系统与电子技术的不断发展,在电力系统中常常会应用到各种各样的变频设备。
在变频设备中,由于大量的电力电子设备和非线性负载的接入,导致产生了过多的谐波。
这些谐波使得电能的质量大打折扣,甚至会对电力设备或是电网产生极其严重的影响。
然而,现今各用电单位对于电的质量的要求也日益增高,如何准确有效地对谐波进行有效的分析成为现今电力系统部门进行研究的一项重要的课题。
[关键词]:电力系统谐波分析方法中图分类号:tm7 文献标识码:tm 文章编号:1009-914x(2013)01- 0015-01随着电力电子技术和电网的急速发展,非线性的负荷和电力电子变换器的大量使用,致使电力系统中的污染也日益加重。
谐波使得电能的质量、传输、生产及其利用效率大大降低,并且使得设备加速老化甚至将设备损坏,危害到了生产安全和稳定等等,已成为最直接、危害性最大的电力系统污染之一,而且谐波也会影响到通信质量和电子设备。
这些都引起了人们对于谐波的分析的高度关注及广泛的重视。
一、谐波的概述谐波是电流所含有的频率为基波整数倍的电量,一般说来,就是指对于非正弦周期电量进行傅里叶级数的分解,其大于基波频率电流所产生的电量,其实质就是一个正弦波的分量。
谐波主要来源于谐波电流源,是由于电压的波形(在非线性负载上加以正弦基波电压)与设备吸收的电流不同,所以电压与电流发生了畸变现象。
与此同时,又因电网与负载相连,所以当谐波电流进入电网,其电网质量受到很大影响。
电力系统中谐波源分为三类:(1)电源本身所产生的谐波。
由于发电机的制造问题,电枢的表面磁感应的强度分布偏离了正弦波,致使电流也偏离了正弦电流。
(2)非线性的负荷所产生的谐波。
例如,交直流换流设备,变、整流设备,pwm变频器等。
(3)非线性的谐波源产生的谐波。
例如,变压器,日光灯等。
二、谐波的危害供电系统中,正弦波是供电的主要方式。
正弦波的供电方式不仅仅为电力系统的设计与分析带来了方便,而且还可以最好的方式运行系统和设备,但是却常常会出现谐波,使电压波形和电流波形发生畸变。
电力系统的谐波分析与治理
电力系统的谐波分析与治理发布时间:2023-03-07T01:26:49.225Z 来源:《中国电业与能源》2022年第20期作者:朱茂章[导读] 伴随科技和设备制造的进步,朱茂章国家电投集团福建电力有限公司,摘要:伴随科技和设备制造的进步,国家对电能质量考核标准在不断提高,作为电力企业对提高电能质量也在不断努力以满足用户不断提高的需求,对系统谐波重视不亚于频率和电压,加大对谐波抑制和治理,实现绿色电能。
关键词:谐波来源、谐波危害、谐波抑制引言交流电作为电能输送的一种方式,电力设计中力求降低电流、电压波形畸变,使其波形接近正弦波,让谐波限制在可以接受的水平,但近来随着非线性电力电子设备大量使用,使得谐波污染问题变得日益严重,有时甚至损坏设备,这引起电力企业和用户的高度重视,电力企业通过研究谐波产生机理,加大科技研发投入和使用先进的低谐波或不产生谐波设备,以及对已经形成的谐波通过各种方式进行抑制,使系统各项电气参数符合规范要求,同时电力监管部门也加大对电力系统谐波的考核促进电力企业和用户加大对谐波治理,满足安全生产要求。
本文主要阐述谐波来源、谐波危害、谐波治理。
通过研究分析谐波产生来源、形成过程和机理,采取各种主动和被动的治理方式,提高电能质量。
1.谐波的来源谐波产生主要是电力系统中存在各种非线性元件。
当正弦交流电给非线性负载供电时产生非正弦电流,非正弦电流通过其他阻抗产生非正弦压降,整个系统中的电气参数波形就会产生变异。
电力系统中谐波来源主要有三种:一是发电机电能质量不高,不能提供严格的正弦电源。
二是变压器铁芯饱和,电流出现非正弦波。
三是非线性用电设备产生谐波,通常这些设备又不能被禁止使用,没有更先进的或少谐波产生设备代替,特别是大型电力电子变流设备产生大量高频谐波,影响电力系统电能质量和安全稳定运行。
2.谐波的危害电力系统中的谐波会对电气设备等产生严重危害。
第一,使变压器基波容量下降,降低变压器效率,而且使绝缘材料劣化,运行中的声音与没有谐波产生时明显不同。
谐波危害及抑制谐波的方法
谐波危害及抑制谐波的方法论文随着电网容量迅速增长,电网运行电压也不断提高,电网中谐波问题日益严重,谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变。
受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。
标签:电网谐波危害抑制随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力質量受到人们的日益重视。
由于用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。
近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。
集成度愈来愈高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。
因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。
一、电网谐波的产生1、电源本身谐波由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。
当几个电源并网时,总电源的电流也将偏离正弦波。
2、非线性负载谐波产生的另一个原因是由于非线性负载。
当电流流经线性负载时,负载上电流与施加电压呈线性关系,而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。
主要非线性负载装置包括开关电源的高次谐波、变压器空载合闸涌流产生谐波、单相电容器组开断时的瞬态过电压干扰、电压互感器铁磁谐振过电压、整流器和逆变器产生的谐波电压和电流以及电弧炉运行引起电压波动。
二、谐波的危害1、污染公用电网如公用电网的谐波特别严重,则不但使接入该电网的设备无法正常工作,甚至会造成故障,而且还会造成向公用电网的中性线注入更多电流,造成超载、发热,影响电力正常输送。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈电力系统中的谐波摘要:经济的飞速发展带来供电紧张,为解决供电紧张,一方面要建设许多新的电厂和输电线路,另一方面要高效利用现有的电力资源,减少电力损耗。
谐波是导致电力损耗增加,供电质量下降的重要因素。
过去,谐波电流是由电气化铁路和工业的直流调速传动装置所用的,由交流变换为直流电的水银整流器所产生的。
近年来,产生谐波的设备类型及数量均已剧增,并将继续增长。
电力系统中谐波对供配电线路、对电力设备的危害都是相当严重的。
所以,我们必须很慎重地考虑谐波和它的不良影响,以及如何将不良影响减少到最小。
本文分析谐波基本性质和测量方法,对配网中谐波的来源和危害进行了详细说明,总结和提出了治理谐波的若干方法。
关键字:电力系统电能质量谐波电流谐波危害谐波治理abstract: the rapid development of economy brings power supply nervous, to solve the power supply nervous, on the one hand, to build many new power plants and transmission lines, on the other hand to efficient use of the existing power resources, and reduce power consumption. harmonic is caused power loss increases, the quality of power supply of the decline of the important factors. in the past, the harmonic current is electrified railway and industry by dc speed control of transmission device used by the exchange transformation for the dc produced by mercury rectifier. inrecent years, the harmonic generation equipment types and quantity are already increase, and will continue to grow. in power system harmonic distribution circuit, for to the harm of electric power equipment is quite serious. so, we have to be very careful to consider the harmonic and its adverse impact, and how to minimize adverse effects. this paper analyzes the basic properties of harmonic and method of measurement, distribution network of sources and harms of the harmonic wave in a detailed illustration, summarizes and put forward the control method of harmonic number.key words: electric power system harmonic wave power quality harmonic current harmonic management中图分类号:tm7文献标识码:a 文章编号:一、谐波的成因谐波的产生一般来自于三个方面:一是发电源质量不高产生谐波;二是输配电系统产生谐波;三是用电设备产生的谐波。
其中用电设备产生的谐波最多。
谐波的产生在理想的干净供电系统中,电流和电压都是正弦波的。
在只含线性元件(电阻、电感及电容)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。
在实际的供电系统中,由于有非线性负荷的存在,当电流流过与所加电压不呈线性关系的负荷时,就形成非正弦电流。
任何周期性波形均可分解为一个基频正弦波加上许多谐波频率的正弦波。
谐波频率是基频的整倍数,例如基频为50hz,二次谐波为100hz,三次谐波则为150hz。
因此畸变的电流波形可能有二次谐波、三次谐波……可能直到第三十次谐波组成。
产生谐波的设备类型(1)开关模式电源(smps):大多数的现代电子设备都使用开关模式电源(smps)。
它们和老式的设备不同,它们已将传统的降压器和整流器替换成由电源直接由可控制的整流器件去给存贮电容器充电,然后用一种和所需的输出电压及电流相适合的方法输出所需的直流电流。
这对于设备制造厂的好处是使用器件的尺寸、价格及重量均可大幅度地降低,它的缺点是不管它是哪一种型号,它都不能从电源汲取连续的电流,而只能汲取脉冲电流。
此脉冲电流含有大量的三次及高次谐波的分量。
(2)气体放电类电光源:荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。
分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
电子荧光灯镇流器近年被大量采用。
它的优点是在工作于高频时可显著提高灯管的效率,而其缺点是其逆变器在电源电流中产生谐波和电气噪声。
使用带有功率因数校正的型号产品可减少谐波,但成本昂贵。
(3)直流调速传动装置:直流电动机的调速控制器通常采用三相桥式整流电路,它也称作六脉冲桥式整流电路,因为在直流输出侧每周波内有六个脉冲(在每相的半波上有一个)。
直流电动机的电感是有限的,故在直流电流中有300hz的脉动波(即为供电频率的6倍),这就改变了供电电流的波形。
(4)不间断电源(ups):根据电能变换方式和由外部供电到内部供电所用转换方式不同,ups有许多不同的类型。
主要的类型有:在线的ups、离线的ups和线路交互作用的ups。
由ups供电的负荷总是电子信息设备,它们是非线性并且含有大量的低次谐波。
(5)磁芯器件:在有铁芯的电抗器上的励磁电流和磁通密度之间的关系总是非线性的。
如果电流波形是正弦波(亦即电路中串联的电阻很大)那么磁场中会有高次谐波,这被认为是强迫磁化过程。
如果施加在线圈上的电压是正弦波形(亦即串联的电阻很小),则磁通密度也将是正弦波形,而电流波形则含有高次谐波,这被认为是自由磁化过程。
(6)在用电设备中,下面一些设备都能产生谐波。
晶闸管整流设备:由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置:变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉:由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
其中主要是2 -7次的谐波,平均可达基波的8% -20%,最大可达45%。
家用电器:电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。
在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。
这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。
二、谐波的危害1. 对供配电线路的危害(1)影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。
但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。
晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。
这样,谐波将严重威胁供配电系统的稳定与安全运行。
(2)影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。
如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。
另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2. 对电力设备的危害(1)对电力电容器的危害当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。
对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。
尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。
(2)对电力变压器的危害谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。
谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。
同时由于以上两方面的损耗增加,因此要减少变压器的实际使用容量,或者说在选择变压器额定容量时需要考虑留出电网中的谐波含量。
除此之外,谐波还导致变压器噪声增大,变压器的振动噪声主要是由于铁心的磁致伸缩引起的,随着谐波次数的增加,振动频率在1khz左右的成分使混杂噪声增加,有时还发出金属声。
(3)对电力电缆的危害由于谐波次数高频率上升,再加之电缆导体截面积越大趋肤效应越明显,从而导致导体的交流电阻增大,使得电缆的允许通过电流减小。
另外,电缆的电阻、系统母线侧及线路感抗与系统串联,提高功率因数用的电容器及线路的容抗与系统并联,在一定数值的电感与电容下可能发生谐振。
(4)对用电设备的危害对电动机的危害,谐波对异步电动机的影响,主要是增加电动机的附加损耗,降低效率,严重时使电动机过热。
尤其是负序谐波在电动机中产生负序旋转磁场,形成与电动机旋转方向相反的转矩,起制动作用,从而减少电动机的出力。
另外电动机中的谐波电流,当频率接近某零件的固有频率时还会使电动机产生机械振动,发出很大的噪声。