利息理论第一章-1

合集下载

第一章 利息理论

第一章 利息理论

季度的实际利率为 3% :
年名义利率为 12% ,每年结转 4 次利息; 年名义利率为 12% ,每年复利 4 次; 年名义利率为 12% ,每个季度结转一次利息; 年名义利率为 12% ,每个季度复利一次。


相关术语
利息结转期:
interest conversion period ; 每月结转一次: convertible monthly ; 每季支付一次: payable quarterly ; 每半年复利一次: compound semiannually ;

例:

若在 1999 年 6 月 17 日存入 1000 元,到 2000 年 3 月 10 日取款,年单利利率为 8 %,试分别 按下列规则计算利息金额:
1 ) “ 实际 /365 ” 规则。 2 ) “ 实际 /360 ” 规则。Fra bibliotek( ( (
3 ) “ 30/360 ” 规则。
( 1 )从 1999 年 6 月 17 日到 2000 年 3 月 10 日的精确天数为267 ,因此在 “ 实际 /365 ” 规则下, t = 267/365 ,利息金额为:
单贴现与复贴现的关系( 了解 )

单贴现和复贴现对单个时期产生的结果相同。 对于较长时期,单贴现比复贴现产生较小的现值, 而对较短时期情况则相反。 单贴现模式并不对应着单利的贴现模式,而复贴 现模式对应复利的贴现模式。
小结:


计算累积值和现值,既可以用利率,也可以用 贴现率。 如果 用利率计算累积值和现值 ,则有
期末的 1 元在期初的现值为:
此现值用贴现率d表示即为:
故有下图:
根据利率的定义,有
利率i与贴现率d的关系(3)

利息理论第一章-1

利息理论第一章-1
n n 1
i 对整数n 1
故常数的复利意味着常数的实际利率,且两者相等, 从而虽然复利利率与实际利率定义不同,但其实两 者是一致的。
19
例题

例3 某银行以单利计息,年息为6%,某人存入 5000元,问5年后的积累值是多少?
A(5) 5000 a(5) 5000(1 5 6%) 5000 1.3 6500
28
0时刻银行预收6%(即6元)的利息, 而仅付给张三94元;1年后,张三支付 给银行100元。 分析:从上面两个例子来看,实际利率是 对期末支付利息的度量,而实际贴现率 是对期初支付利息的度量。即实际利率 说明了资本在期末获得利息的一种能力。 而实际贴现率说明了资本在期初获得利 息的一种能力。
29
解:由于i=8%,故 a(4)=(1+8%) 4 从而现值 10000 pv=10000 a (4)= 7350.3 4 (1 8%)
1
即4年后支付10000元的现值为7350.3
24
1.1.3
实际贴现率
1、定义: 一个度量期内的实际贴现率为该度量期内 取得的利息金额与期末的投资可回收金额之比。 d 通常用字母 来表示实际贴现率 2、实际贴现率的表达式的推导
3
二、利息度量的基本概念: 1、本金:每项业务开始时投资的金额称为本 金。 2、积累值:业务开始一定时间后回收的总金 额称为该时刻的积累值(或终值)。 3、利息金额:积累值与本金的差额就是这一 时期的利息金额。 注意:假定 一旦给定了本金金额,在投资期间不再加入 或抽回本金。

4

故:对第一个度量期,即当t=1时,a(t)=a (t ); 当t 1时,a(t)>a* (t ); 当t 1时,a(t)<a* (t );

《利息理论》复习提纲

《利息理论》复习提纲

《利息理论》复习提纲第一章 利息的基本概念 第一节 利息度量 一. 实际利率某一度量期的实际利率是指该度量期内得到的利息金额与此度量期开始时投资的本金金额之比,通常用字母i 来表示。

利息金额I n =A(n)-A(n-1)对于实际利率保持不变的情形,i=I 1/A(0); 对于实际利率变动的情形,则i n =I n /A(n-1); 例题:1.1.1二.单利和复利考虑投资一单位本金,(1) 如果其在t 时刻的积累函数为 a(t)=1+i*t ,则称这样产生的利息为单利;实际利率 )()()()(1111-+=---=n i in a n a n a i n(2) 如果其在t 时刻的积累函数为a(t)=(1+i)t ,则称这样产生的利息为复利。

实际利率 i i n =例题:1.1.3 三.. 实际贴现率一个度量期的实际贴现率为该度量期内取得的利息金额与期末的投资可回收金额之比,通常用字母d 来表示实际贴现率。

等价的利率i 、贴现率d 和贴现因子(折现因子)v 之间关系如下:,(1),1111,,,1d ii d i i d d iv d d iv v i d idi=+==-+=-==-=+例题:1.1.6 四.名义利率与名义贴现率用()m i 表示每一度量期支付m 次利息的名义利率,这里的m 可以不是整数也可以小于1。

所谓名义利率,是指每1/m 个度量期支付利息一次,而在每1/m 个度量期的实际利率为()/m i m 。

与()m i 等价的实际利率i 之间的关系:()1(1/)m m i i m +=+。

名义贴现率()m d ,()1(1/)m m d d m -=-。

名义利率与名义贴现率之间的关系:()()()()m m m m i d i d m m m m-=⋅。

例题:1.1.9 五.利息强度定义利息强度(利息力)为()()()()t A t a t A t a t δ''==, 0()ts ds a t e δ⎰=。

利息理论第一章 1 优质课件

利息理论第一章 1 优质课件
注意:积累和贴现是相反的过程。
a(t)是1单位的本金在t个周期末的积累值,而a1(t) 是为使在t个周期期末的积累值为1,而在开始时 投资的本金金额。
23
例题1-5
已知年实际利率为8%,求4年后支付10000元的 现值。
解:由于i=8%,故
a(4)=(1+8%) 4 从而现值
pv=10000 a1(4)=
27
(2)实际利率是对期末支付的利息的度量, 而实际贴现率是对期初支付的利息的度量。
例:(1)张三到一家银行去,以年实际利率6% 向银行借100元,为期1年,则张三的借款流 程如下: 0时刻张三收到100元,。 1时刻张三支付100+100×6%=106元。
(2)张三到一家银行去,以年实际贴现率6% 向银行借款100元,为期1年,则张三的借款 流程如下:
(2)从积累形式来看
在单利下,上一个度量期上所产生的利息并不作为
投资本金在以后的时期再赚取利息。
16
在复利下,在任何时刻,本金和到该时刻为止所得到 的利息,总是用于投资以赚取更多的利息。
(3)单利与复利在计算上的区别 在常数的单利i下,积累函数a(t)=1+it;在常数的 复利i下积累函数a*(t)=(1+i)t。
28
0时刻银行预收6%(即6元)的利息, 而仅付给张三94元;1年后,张三支付 给银行100元。 分析:从上面两个例子来看,实际利率是 对期末支付利息的度量,而实际贴现率 是对期初支付利息的度量。即实际利率 说明了资本在期末获得利息的一种能力。 而实际贴现率说明了资本在期初获得利 息的一种能力。
29
25
a(1) 1 i,a1(1) 1 。根据实际贴现率的定义,知 1 i

利息理论1

利息理论1
注:若i1 与 d1 等价,i 与 等价,则 i1 2 d2
i 4.988% 5% ,债券投资优于储蓄。 1 i
i2 当且仅当
d1 d 2

d与i之间的几种变形有一些有趣的字面解释: 1) 1/(1+i) =1-d -- 此方程两边均表示在期末支付 1的现值。 2) d=iv -- 本金为v产生的利息量d正好为本金v乘以 利率i 3 ) i-d=id -- 某人可借贷 1 而在期末归还 1+i ,也可 以借贷1-d而在期末归还 1 。表达式i-d是所付利 息的差额,此种差额是因为所借本金相差 d 而产 生的。金额d依利率i在一时期末的利息就是id.
d i i , d 4) 1 d 1 i
例 假设期初借款人从贷款人处借入10000元,并约
定一年到期时还10500元。如果借款人希望期初时
即付给贷款人利息,1年到期时偿还本金10000元, 问:期初借款人实际可得金额是多少?
1 0.9524, d iv 0.04762 解:贴现因子 v 1 i
8
n 1, t2 n 时, 记
A(t2 ) A(t1 ) I t1 ,t2 A(t1 ) A(t1 )
表示从投资之日算起第n个时期的利率.
如果记息期为标准时间单位, 通常是一年,一月或 一季,或”一个时期”,则所得利率常称为实(质)利 率. 定义1.4 (实)利率i是指在某一时期开始时投资1 单位本金时,在此时期内应获得的利息。 如:一年期存款,年利率i=2.25%, 故 a(1)=1+2.25% 本金100元,年末累积值为 100(1+2.25%)=102.25元 显然, A(n)=A(n-1)(1+in)
定义 利息就是掌握和运用他人资金所付的代价或转

第1章利息理论

第1章利息理论


i ( m ) m 1 [1 ] m
[1
i
(m)
m
]m
2.名义贴现率:现率为
(m)
表示每
d ( m ) 计息的名义贴现率,设与之等价的实际 贴现率 m
1 m
个度量期以实际
d ,则有:
( m)
d m 1 d (1 ) m
a ( s) 0 s ds 0 a(s) ds ln a(t )
t t
'
0 s ds a(t ) e

t
a(t ) (1 i) 时, t ln( 1 i)
t
e 1 i

例:如果 t 0.01t , 0 t 2,确定投资1000元 在第1年末的积累值和第2年内的利息金额。
例1:某人从银行贷款20万元用于购买住房,规定的 还款期是20年,假设贷款利率为5%,如果从贷款第 2年开始每年等额还款,求每年需要的还款数额。
20万元
0 1 2

19
20
x
解得
x
x
x
xa20 200000
0.05 x 200000 16048.52 20 1 1.05
例:计算年利率为3%的条件下,每年年末投 资3000元,投资20年的现值及积累值。如果 投资在每年年初进行,那么投资20年的现值 及积累值又分别是多少?
n 2 n
sn i
2. 期初付n期年金的现值和终值
1
0
1
1
1
2


1
n-1 n
1 vn 1 vn n 1 v v 2 v n1 a 1 v d n n 1 v (1 i) 1 n n n an (1 i) s (1 i) d d

利息理论第一章 利息的基本概念

利息理论第一章 利息的基本概念
t t t 0
从而有,
∫0 δ s ds = A(t ) = a (t ) = a(t ) e A(0) a (0)
t
这样我们便得到了利息强度和积累函数之间的关 系。如果已知各个时刻利息强度,便可以求得人一时 刻的积累函数。 例、如果δ t = 0.01t , 0 ≤ t ≤ 2, ,确定投资1000元 ,确定投资1000元 在第一年末的积累值和第二年内的利息金额。 解:
在《利息理论》这门课程中,我们将着重讨 论以下几个方面的问题: 1、金融产品价格的确定。例如,年金、 债券、股票等。 2、分析投资的可行性,确定投资的收益率。 3、设计债务人的各种偿还计划,并且分析 各种偿还计划的特点。 4、分析企业的财务状况,如固定资产的折 旧和固定资产的选择。
在西方资本主义发达的国家,《利息理论》 这门课程也被称作《Financial Mathematics》 这门课程也被称作《Financial Mathematics》, 即《财务数学》。也就是说《利息理论》这门 课程实际上是利用数学的方法定量分析个人、 企业的财务状况,包括:投资收益分析、融资 成本分析、债务偿还分析以及企业自身内部的 固定称的分析。因此,学好利息理论这门课程 十分必要,它是我们先前所学到的诸如《财务 管理》、《金融市场学》等课程的必要补充, 能帮助我们用数学的方法精确的度量各种金融
前面定义的各种利息度量方式都是用来度量在规定 的时间去间内的利息。实际利率和实际贴现率度量的是 一个度量期内的利息,而名义利率和名义贴现率则用来 度量在1/m 度量在1/m个度量期内的利息。 在很多情形下,我们还希望能度量在每一时间点上 的利息,也就是在无穷区间上的利息。这种对利息在各 个时间点上的度量叫做利息强度。 利息强度 δ t 定义如下:

利息理论 第1章 利息的基础知识

利息理论 第1章  利息的基础知识

3)贴现率与利率
d=
或:
an an1 an
=
(1+i )n (1+i ) n1 (1+i ) n
=
i 1+i
d = i v i=
d 1 d
4)贴现率与折现因子
公式一 公式二
d = 1 v
及:
vt = v = (1 d )
t
t
及:
v = 1 d
at = (1 d )
t
日的积累值为1, 例:94年1月1日的积累值为 ,000元,d=10% 年 月 日的积累值为 元 日的现值为多少? 求:1)90年1月1日的现值为多少? ) 年 月 日的现值为多少 2)年利率为多少? )年利率为多少 3)折现因子为多少? )折现因子为多少? 解: 1)A0=1000(1-d)4 =656.1元 2) d 1d
m→∞
(m)
δ = lim m[(1 + i ) 1]
1 m
m →∞
= lim
= lim
m →∞
1 (1 + i ) m 1 m
1
m→∞
= lim
1 ) m2
1 [( 1+ i ) m 1 ( m )'

1 ] '
m→∞
1 ln(1+i )(1+ i ) m
(
12 m
= lim (1 + i) ln(1 + i)
(1)单利 设年利率为i ,期初本金为1
1 1+i 1+2i 1+it
0
1
2
t
at=1+it
复利
设利率为i,期初本金为1。

利息理论第一章 利息的基本概念

利息理论第一章 利息的基本概念

A′(t ) a′(t ) δt = = A(t ) a(t )
称 δ t 该投资在t时的利息强度,即 δ t 为利息在时刻t一 该投资在t 为利息在时刻t 种度量,通过如上定义可将 δ 表示为如下形式:
t
d d δ t = ln A(t ) = ln a (t ) dt dt
对两边积分可得,
A(t ) ∫0 δ s ds = ∫0 d ln A(s) = ln A(s) | = ln A(0)
利息理论
绪论
利息是债务人(borrower) 利息是债务人(borrower)对债权人 (lender)因为资金被借用而牺牲了当前消费, lender) 以及对其面对的机会成本的一种补偿。不同经济 学以及货币银行学等课程讨论利息是如何形成的 以及分析决定利息大小的具体因素,在本门课程 中假定存在于债权人和债务人之间的利息是一种 既定的事实,并在此基础上分析债权人和债务人 之间的权利与义务的关系。
假如不是以年实际利率6%,而是以年实际贴现率 假如不是以年实际利率6%,而是以年实际贴现率 6%向银行借款,为期一年,则银行将预收6% 6%向银行借款,为期一年,则银行将预收6% (即6元)的利息,仅付给张三94元。一年后, (即6元)的利息,仅付给张三94元。一年后, 张三将还给银行100元。 张三将还给银行100元。 由此可见,实际利率和实际贴现率反映的 是一个先后付息的问题。
就是只有本金生息,本金产生的利息并不积累 生息。 (2)如果单位投资在t时的积累值为: )如果单位投资在t a(t)=(1+i)t )=(1+i) 那么,则称该笔投资以每期复利i计息, 那么,则称该笔投资以每期复利i计息,并将 这样产生的利息称为复利。实际上,复利就是 指民间俗称的“利滚利”,即当其产生的利息 计入本金,在下一期可以生息。

利息理论——第一章1.1

利息理论——第一章1.1

1

这里我们引入一个新的概念:现值。我们把 为了在t期末得到某个积累值,而在开始时 投资的本金金额称为该积累值的现值(或折 现值,Present Value)。

我们将 k a (t ) 代入(1.1.1)式,可以得到
1
1 A(t ) ka(t ) a(t ) 1 a(t )

例1 甲向乙借款1 000元,两人商定从2006年 12月31日归还,且归还时,甲一次性向乙支 付利息100元。
在该项借贷往来中,可将乙借钱给甲看成是一项投 资,其初始投资为1 000元,即本金为1 000元 ( P=1 000元);投资期从2006年1月1日至2006年12月 31日,为期1年( n=1年);乙的该项投资在1年后除 了收回本金外,还额外可得100元,即利息( I=100元)。 因为两人商定利息是在1年结束时才一次性支付,即1年 才计算一次利息,所以计息期为1年。且其单位本金获得 的利息为0.1元( 100/1 000=0.1),所以年利率为10% ( i=10%)。在2006年12月31日时,该项投资的积累值 为1 100元。
利息

我们将从投资日起第n个时期所得到的利息 金额记为I n ,则 I n A(n) A(n 1) 对整数n≥1 (1.1.2)

注:这里注意 I n 表示的是一个时间区间上 所得利息的量,而A(n)则是在一特定时刻的 积累量。
§1.1.1

实际利率



定义:某一度量期的实际利率(Effective Rate of Interest) 是指该度量期内得到的利息金额 与此度量期开始时投资的本金金额之比。通常, 实际利率用字母i表示。 实际利率i是利息的第一种度量方式,由定义可 以看出,实际利率是一个不带单位的数,实务 中常用百分数来表示; 它与给定的时期有关; 它其实是单位本金在给定的时期上产生的利息 金额。

利息理论第一章课后答案

利息理论第一章课后答案

利息理论第一章课后答案利息理论第一章课后答案1. 已知A (t )A (t ) 2t(1)对应的a (t );A (0)=5 a (t )=A (0)=5++1(2)I 3;II 4A (4)-A (3)===A (3)(3)i 4; i4=A (3)2. 证明:(1)A (n ) -A (m ) =I (m+1) +I (m +2) +..... +In (2)A (n )=(1+in ) A (n -1).A (n ) -A (m ) =A (n ) -A (n -1) +A (n -1) -A (n -2) +.... A (m +1) -A (m ) =In +In -1+... +Im +1 (mIn A (n )-A (n -1)=A n -1A n -1inA (n -1) =A (n ) -A (n -1)A (n ) =(1+i n ) A (n - 13.(a)若k 是时期k 的单利利率(k=1,2...,n)证明a(n)-a(0)= (b)若k 是时期k的复利利率(k=1,2....,n)证明i 1+i 2+... +i nA (n ) -A (0)=I 1+I 2+.... +I ni n +i n -1+..... +i 1(a )a(n)-a(0)=a(n)-a(n-1)+a(n-1)-a(n-2)+...+a(1)-a(0)=(b )A (n ) -A (0)=A (n ) -A (n -1) +A (n -1) -A (n -2) +... +A (1)-A (0)=I n+I n -1+... +I 14. 已知投资500元,3年后得到120元的利息。

试分别确定以相同的单利利息,复利利息投资800元在5年后的积累值。

I =A (3) -A (0=) ①单利 a (t ) =1+it 3500+(1i 3-*=1)=0.08150*3 A (5)=800(1+5*0.08)=11205⎡00+(i 1-⎡⎡⎡) =t (3) -A (0=) a (t ) =(1+i ) I =A ②复利 35A (5) =800+(1i =) i 18005*/1. =241144. 975. 已知某笔投资在三年后的积累值为1000元,第一年的利率为1=10%,第二年的利率为i 2=8%,第三年的利率为i 3=6%,求该笔投资的原始金额 A (3)=A (0)(1+i 1)(1+i2)(1+i 3) A (0) =(1+i 1) (+1i 2) +(1i 3)=794. 101. 1*1. 08*1. 0 66. 证明:设当前所处时刻为0,则过去n 期的一元钱的现值与未来n 期后的一元钱的现值之和大于等于2(1+i ) (1+i ) 过去n 期1元钱的现值为,未来n 期后一元钱的现值为 (1+i ) n +(1+i ) n(当n=0时,等号成立)7. (1)对于8%的复利,确定d 4; d 4;(2)对于8%的单利,确定I 4(1+8%)4-(1+8%)31d ===1-=0.0744t 4a (t ) =(1+8%)a (4)1.08(1+8%)(1)I 41+8%*4-1-8%*38%===0.061a (4)1+8%*41.321+i (m ) ) 1+=(m i (6)6,确定m 8. 已知i (5)i (5) 5*m1+(1+) 5m m m (m ) (m )-i i m 5556301+=() 1+i =(1+) ==(1+i ) =(1+i ) m (6)6*m m i (6)i1+(1+) 66 6 ∴m =30&A (t ) =ka b d 9. 如果,其中k,a,b,c,d 为常数,求t 的表达式A (t ) =ka t b t d cA '(t ) ka t b t d c ln a +2kta t b t d c ln b +kc t a t b t d c ln d ln c t&t ===ln a +2t ln b +c ln d ln c 2tt c t A (t ) ka b d10. 确定下列导数:2t 2t 2td d d d d d i σd d d d (a )t ;(b ) d ;(c )v (d )σ。

利息理论第一章

利息理论第一章


本课程以北美精算师协会考试课程2中利息理 论部分的内容为主要线条,对其中基础部分进 行了压缩,介绍利息的基本计算概念和方法, 以及年金计算基本工具函数,这些内容是进入 金融定量分析领域的基础。随后是金融计算和 分析中的常用的两大类方法:投资收益率分析 和现金流的本金利息分解过程。

从实务的角度看,金融学可以分为投资和融资 两大部分,在金融市场中,大多数参与者及其 进行的活动都可以归在这两类中。而其中尤以 投资学中的计算问题为多。本课程在引进基本 的现金流计算方法之后,对主要的投资工具: 固定收益产品(债券为主)的计算问题进行了 详细的介绍。
利息理论及其应用
福州大学管理学院财金系 陈志军
课程简介


金融领域的许多计算问题具有共同的数学特征 和模型,大量的计算和分析实践的基础是现金 流分析和货币的时间价值(累积和贴现)计算。 例如:银行的资产负债分析、融资成本和投资 收益分析、金融市场产品的定价和保险精算分 析等。 本课程的基本目的:掌握基本的金融计算的概 念和原则,同时对一些基础性的金融工具的进 行现金流价值分析。


利息理论是北美精算师协会(Society of Actuaries, SoA)的准精算师(Associate-ship) 资格考试中的经济金融课程的主要部分 。 北京大学金融系从1997-1998学年第一学期 (1997年秋季)开始,将课程“利息理论与应 用”作为金融系本科生的第一门专业基础课。

最后,用两章的篇幅介绍学生深入进行金融数学 学习的准备知识:利率风险分析和随机模型。利 率风险分析和管理是金融领域很重要的一个主题, 已有一些现成的工具和算法;随机模型在金融风 险分析,特别是衍生工具定价和套期保值技术中 成为基本和必不可少的一部分,本课程只是介绍 了最基本的工具和方法,希望对进入这个领域有 一定的帮助。

利息理论

利息理论
23
未知时间问题
计算方法
利用计算器 利用复利表 利用Taylor展式 利用 展式 非整数期部分采用单利近似替代
72律:利率为i时,使得积累值是本金的 律 利率为 时 2倍所需的时间大致是 倍所需的时间大致是72/i。 倍所需的时间大致是 。
24
预定在第1、 、 、 年末分别付 例1.2.4 预定在第 、3、5、8年末分别付 款200元、400元、300元、600元,假设 元 元 元 元 实际年利率为5%,试确定一个付款 实际年利率为 ,试确定一个付款1500 元的时刻,使这次付款与上面4次付款等 元的时刻,使这次付款与上面 次付款等 价。
6
二 实际利率
某一度量期的实际利率是指该度量期内 得到的利息金额与此度量期开始时投资 的本金金额之比,通常用字母i来表示 来表示。 的本金金额之比,通常用字母 来表示。 对于实际利率保持不变的情形, 对于实际利率保持不变的情形,i=I1/A(0); ; 对于实际利率变动的情形, 对于实际利率变动的情形,则in=In/A(n1); ;
(m)
/ m)
m
1 − d = (1 − d ( m ) / m) m: 名义贴现率与名义利率之间的关系: 名义贴现率与名义利率之间的关系
i (m) d (m) i (m) d (m) − = ⋅ m m m m
15
例1.1.9 (1)求与实际利率 等价的每年 )求与实际利率8%等价的每年 计息2次的年名义利率 以及每年计息4次的 次的年名义利率, 计息 次的年名义利率,以及每年计息 次的 年名义贴现率;( ;(2)已知每年计息12次的 年名义贴现率;( )已知每年计息 次的 年名义贴现率为8%,求等价的实际利率。 年名义贴现率为 ,求等价的实际利率。 例1.1.10 求1万元按每年计息 次的年名义利 万元按每年计息4次的年名义利 万元按每年计息 投资三年的积累值。 率6%投资三年的积累值。 投资三年的积累值 以每年计息2次的年名义贴现率为 例1.1.11 以每年计息 次的年名义贴现率为 10%,在6年后支付 万元,求其值。 年后支付5万元 , 年后支付 万元,求其值。

利息理论课件 (1)

利息理论课件 (1)

(1-4)
n≥1 为整数 (1-5)

例1-1 某人到银行存入1000元,第一年末 他存折上的余额为1050元,第二年末他存 折上的余额为1100元,问:第一年、第二 年银行存款的实质利率分别是多少?
例1-2 某人借款10000元,为期一年,年实质 利率为 10% 。问:一年后,此人需要还款 多少?其中利息为多少?
例1-7 重新考虑例1-1中存款,所述的事件 不变,求第一、第二年的实质贴现率。
“等价”
对于同一笔业务,用不同的率去度量,其结 果是“等价”的。
等价 关系式
i=d/(1-d) i-id=d d(1+i)=i d=i/(1+i) d=iv d= i/(1+i)=1-1/(1+i) =1-v v=1-d d =iv=i(1-d) =i-id i-d=id (1-12A) (1-12B) (1-12C) (1-12D) (1-12E) (1-12F) (1-12G) (1-12H) (1-12I)
d (m) d ( m ) m 1 (1 ) 贴现: m m
d ( m) d ( m) m2 (1 ) m m
d (m) d (m) (1 ) m m
d (m) 1 m
d ( m) m ) 余额: 1 d (1 m
d ( m ) m 1 (1 ) m

d (m) 2 (1 ) m
d (m) 1 m
1
图(1-2B) 名义贴现率图
例1-9 ( 1 )求与实质利率 8% 等价的每年计息 2 次的年 名义利率以及每年计息4次的年名义贴现率; (2)已知每年计息12次的年名义贴现率为8%, 求等价的实质利率; (3)已知i(3/2)=8%,求等价的d(12)。

利息理论第一章.ppt

利息理论第一章.ppt
7
注意:积累和折现的区别
积累和折现是两个相反的过程,积累值 和过去支付的款项有关,现值和未来得 到的款项有关。
a(t)是0时刻的1单位本金在t时刻的积累 值;a1(t) 是t时刻的1单位本金在0时刻的 现值。
8
8、利息金额 把从投资日起第n个时期所得的利息金额记为 In ,则
In A(n) A(n 1) In 表示在一个时间区间上所产生的,在最后 时刻支付利息的量,A(n) 表示在一特定时刻的积累量。
2
例如:1000元以年实际利率5%存款1年, 可得利息50元。
3、利息的定义 总结来说,利息是一定时期内,资金拥有 人将资金的使用权转让给借款人后得到的 报酬。
注意:理论上利息和资金可以不均为货币 形式,但几乎所有的实际应用中,资金和 利息均是用货币来表示的,故本书中的所 有的资金和利息均为货币形式。
假设每期以单利 i 计息,则在投资期间,每一度量
期产生的利息均为常数i ;令 in (n 1)为第n个度
量期内的实际利率,则
in
a(n) a(n 1) a(n 1)
(1 in) [1 i(n 1 i(n 1)
1)]
i
i
对整数n 1
1 i(n 1)
in关于n递减,且当n取值较大时,实际利率in将变得较小。 故常数的单利意味着递减的实际利率。
6
6、t期折现因子
▪(1)定义: 称积累函数a(t)的倒数 a1(t) 为t期折 现因子或折现函数。特别地,把一期折现因子 a1(1)
简称为折现因子,并记为 v 。
▪ (2)意义: 第t期折现因子a1(t) 是为了使在t 期末的积累值为1,而在开始时投资的本金金额。
7、现值或折现值
我们把为了在t期末得到某个积累值,而在开始时投 资的本金金额称为该积累值的现值(或折现值)。在 t期末支付k的现值为k a1(t)

利息论第一章

利息论第一章
2
17
1-4 实质贴现率(effective rate of discount) 实质贴现率为该度量期限内产生的利息金额 与期末积累值的比值。记为 d
P a 1 P I1 d A 1 P a 1
注意:实质上实质利率是对期末支付利息的 度量;而实质贴现率是对期初支付利息的度 量。
27
m
名义贴现率—— d 类似,可以定义 d ( m) 为在一个标准度量期 ( m) 内,换算m次,以实质贴现率 d /m在每 一个1/m期初支付利息一次。 同样,利用等价定义可以得到等价的 名义贴现率与实质贴现率之间的关系:
m m d m d 1 1 d m m 1 d 1 m 1 1 m m m d m 1 1 d m 1
24
有关名义利率的几个概念 利息换算期(interest conversion period) 月换算(convertible monthly) 季换算(payable quarterly) 半年换算(compounded semiannually) ( m) 名义利率—— i m 1 为一个度量期 中付息m次的名义利率. 也就是说, 名义利率i ( m ) (m) i 指每1/m个度量期支付实质利息为 /m的利 息一次。
12
事实上: 1、单利率下
A n A n 1 P 1 in P 1 i n 1 in A n 1 P 1 i )n 1 i n 1 1 i n 1
第n期实质利率期数的递减函数。 n 1 2、复利率下 A n A n 1 i 1 i
n
a n
1 i n

《利息理论》—教学课件

《利息理论》—教学课件
2、实际利率常用百分数表示。如:i=8%。
3、在该度量期本金的数额保持不变,即没有新本金投入 也没有本金被取出。
4、实际利率是度量期末支付利息的一种度量。
支付利息的二种方式 ❖ 期末支付
这是常见的支付利息的方式,又称滞后利息。 例:设某人向银行借了1000元钱,约定一年后还本,借贷
款利率为8%的滞后利率,则此人在年末时要偿还银行本 金1000元,另加80元利息。 ❖ 期初支付 这种支付利息的方法不常见,又称预付利息。它是在投入 资本之时即获得利息。
显然,In关于n单调递增。而对于每期的实际利率,有
in
a(n) a(n 1) a(n 1)
(1
i)n (1 i)n1 (1 i)n1
(1 i) 1
1
i
与n无关。这样,尽管定义不同,但复利与实际利率是相同 的,这也是复利与单利区别之一。
❖ 单利与复利的比较 1、单利的利息并不作为投资资金而再赚取利息,而复利则不 然,它采用的是“利滚利”。 2、由积累函数看,相同数值的单利对于不同的时期会有不同 的关系:对于单个度量期,它们产生的结果是相同的;对于 较长时期,由于t≥1时,有(1+i)t≥1+it,所以复利比单利产 生更大的积累值;而对于较短时期则相反,因为t≤1时, (1+i)t≤1+it;
三、实际利率
利率的第一种形式称为“实际利率”,用i表示。 定义:我们将一个度量期内得到的利息金额与此度量期开始时投资
的本金金额之比,称为该期的实际利率。 ❖ 用积累函数来定义即为:
i=a(1)-a(0) 或 a(1)=1+i
❖ 关于这个定义有几点值得注意:
1、“实际”这个词的使用不是很直观,这个概念用于每 个计息期支付一次利息的利率,它是与“名义利率” 相 对的。“名义利率”是一个计息期内支付多次利息的利率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

i 指第一个度量期上的实际利率,实际上它是单位
本金在第一个度量期内产生的利息金额。
则:
10
a(1) a(0) i 1 i i 1 i 1 a(1) a(0) a(1) a(0) a(0) A(1) A(0) A(0) I1 A(0)
11
第n个度量期的实际利率表达式:
a(n) a(n 1) (1 in) [1 i(n 1)] in a(n 1) 1 i(n 1) i 对整数n 1 1 i (n 1)
i
in关于n递减,且当n取值较大时,实际利率in 将变得较小。 故常数的单利意味着递减的实际利率。
18
假设每期以复利 i 计息,则在投资期间,不同度 量期将产生不同的利息;实际上
n n 1
i 对整数n 1
故常数的复利意味着常数的实际利率,且两者相等, 从而虽然复利利率与实际利率定义不同,但其实两 者是一致的。
19
例题

例3 某银行以单利计息,年息为6%,某人存入 5000元,问5年后的积累值是多少?
A(5) 5000 a(5) 5000(1 5 6%) 5000 1.3 6500
2、复利
t a ( t ) (1 i ) 如果其在t时的积累值为:
则说这笔投资以每期复利 i 计息,并将这样产生的利 息称为复利。
15
3、单利和复利的比较 (1)从利息的角度

在常数的单利i下,每一个度量期上产生的利息量都 相同,均为常数i。
在常数的复利i下,每一个度量期上产生的利息量不同, 实际上,In a(n) a(n 1) i(1 i) n1随着n而增大。
27

(2)实际利率是对期末支付的利息的度量, 而实际贴现率是对期初支付的利息的度量。
例:(1)张三到一家银行去,以年实际利率6% 向银行借100元,为期1年,则张三的借款流 程如下: 0时刻张三收到100元,。 1时刻张三支付100+100×6%=106元。 (2)张三到一家银行去,以年实际贴现率6% 向银行借款100元,为期1年,则张三的借款 流程如下:
(2) 积累函数的性质
a(t )是t的函数,且a(0) 1
5
a(t )一般为t的单增函数; a(t )一般为t的连续函数。
5、总量函数A(t)
0时刻投资的 k 单位本金在时刻t的积累值,称为总 量函数。符号为 A(t )
则有 A(t ) k a(t )
6
1 a (1)定义: 称积累函数a(t ) 的倒数 (t ) 为t期折 现因子或折现函数。特别地,把一期折现因子 a1 (1)
假设I n为从投资日算起第n个度度量期的实际利率,则 In a(n) a(n 1) A(n) A(n 1) in a(n 1) A(n 1) A(n 1) 对整数n 1
12
例题

例1 某人到银行存入1000元,第一年末他存 折上的余额为1050元,第二年末他存折 上的余额为1100元,问:第一年、第二 年的实际利率为少?
21
贴现函数的定义
一般的,对应于积累函数a(t ),a 1 (t )就是为使在t个周期期末的 积累值为1,而在开始时投资的本金金额。a 1 (t )称为贴现函数。 1 在常数的单利i下,a (t ) , 1 it 1 1 在常数的复利i下,a (t ) . t ( 1 i)
1
28
0时刻银行预收6%(即6元)的利息, 而仅付给张三94元;1年后,张三支付 给银行100元。 分析:从上面两个例子来看,实际利率是 对期末支付利息的度量,而实际贴现率 是对期初支付利息的度量。即实际利率 说明了资本在期末获得利息的一种能力。 而实际贴现率说明了资本在期初获得利 息的一种能力。
29
I n a(n) a(n 1) (1 i)n (1 i)n1 i (1 i)n1 i a(n 1)
令in (n 1)表示第n个度量期内的实际利率,则 a(n) a(n 1) (1 i ) (1 i) in n 1 a(n 1) (1 i)
在此假定下,决定积累值的两个最主要的因 素就是本金金额和投资期的长度。 投资期的长度可以用不同的时间单位来度量。 例如:日、周、月、季、半年、一年等。用 来度量投资期的长度时间的单位称为“度量 期”或“期”,最常用的是年。(以后除非 另外说明,均可认为一个度量期为一年。) 4、积累函数 (1)定义
0时刻投资一单位的本金,在t时刻的积累值称为 该时刻的积累函数,记为a(t )
4、实际贴现率与单、复利之间的关系
(1)若每期以单利i计息,则第n个度量期上的 a(n) a(n 1) i 实际贴现率为d n , a ( n) 1 in 可见,d n为n的,则第n个度量期上的
a(n) a(n 1) ( i 1 i) n i 实际贴现率为d n 常数 n a ( n) (1 i) 1 i
6、t期折现因子
简称为折现因子,并记为 v 。
(2)意义: 第t期折现因子a1 (t ) 是为了使在t 期末的积累值为1,而在开始时投资的本金金额。
7、现值或折现值
我们把为了在t期末得到某个积累值,而在开始时投 资的本金金额称为该积累值的现值(或折现值)。在 1 k a (t ) t期末支付k的现值为
30
例题
例6 某人到银行存入1000元,第一年末他 存折上的余额为1050元,第二年末他存 折上的余额为1100元,问第一年、第二 年的实际贴现率为多少?
31
引例
某人有一张在一年以后到期的100元的票 据,由于现在急需现金到银行去贴现, 若银行只支付给他90元,即预先扣除了 10元的贴现值,则银行的实际贴现率为 10%,银行在期初支付了90元,在期末 可以得到100元,故其实际利率11.11%。
解:由于i=8%,故 a(4)=(1+8%) 4 从而现值 10000 pv=10000 a (4)= 7350.3 4 (1 8%)
1
即4年后支付10000元的现值为7350.3
24
1.1.3
实际贴现率
1、定义: 一个度量期内的实际贴现率为该度量期内 取得的利息金额与期末的投资可回收金额之比。 d 通常用字母 来表示实际贴现率 2、实际贴现率的表达式的推导
32
5、“等价”的概念:
( 1)定义
如果对于给定的投资金额,在同样长的时期内,它 们产生同样的积累值,则称两个“率”是“等价”的。 (2)实际利率与实际贴现率等价的关系式:
一般地,若某人以d 借款1,则实际上贷出者的 本金为1 d , 而利息为d,对贷出者来说,若这笔 d 业务的实际利率为i,则i ,i d。 1 d i 将上式整理得,d 。 1 i
I n 表示在一个时间区间上所产生的,在最后
时刻支付利息的量,A(n) 表示在一特定时刻的积累量。
9
1.1.1
实际利率
1、定义:某一个度量期的实际利率是指该度量期内 得到的利息金额与此度量期开始时投资的本金金额之 比。通常,实际利率用字母 表示。 i 注意:这里的度量期为标准的时间单位,如:年、 季、月等,本书中若无特别说明,实际利率一般指的 年实际利率 2、实际利率的公式推导
7
注意:积累和折现的区别

积累和折现是两个相反的过程,积累值 和过去支付的款项有关,现值和未来得 到的款项有关。
a(t ) 是0时刻的1单位本金在t时刻的积累 1 a 值; (t ) 是t时刻的1单位本金在0时刻的 现值。
8

8、利息金额
把从投资日起第n个时期所得的利息金额记为 I n ,则
I n A(n) A(n 1)
(2)从积累形式来看 在单利下,上一个度量期上所产生的利息并不作为 投资本金在以后的时期再赚取利息。
16
在复利下,在任何时刻,本金和到该时刻为止所得到 的利息,总是用于投资以赚取更多的利息。
(3)单利与复利在计算上的区别 在常数的单利i下,积累函数a(t)=1+it;在常数的 复利i下积累函数a*(t)=(1+i)t。
3
二、利息度量的基本概念: 1、本金:每项业务开始时投资的金额称为本 金。 2、积累值:业务开始一定时间后回收的总金 额称为该时刻的积累值(或终值)。 3、利息金额:积累值与本金的差额就是这一 时期的利息金额。 注意:假定 一旦给定了本金金额,在投资期间不再加入 或抽回本金。

4

20
例4 如果上述银行以复利计息,其他条件不变, 重解上例。 解: 5

A(5) 5000 a(5) 5000(1 6%) 6691.13
附加内容:(贴现函数或现值) 本金为1的投资在第一个度量期末将会有1+i的积累值,1+i称为 积累因子。反之,为使第一个度量期末的积累值为1,在期初 投资的本金额必须是(1+i)1。(1+i)1称为贴现因子。记为v
13

例2 某人投资1000元于一年期证券上,该证 券年实际利率为10%,问:一年后,此 人将得到的金额为多少?其中的利息为 多少?
14
1.1.2 单利和复利
1、单利
考虑投资一单位本金,如果其在t时的积累值为:
a(t ) 1 it
则说这笔投资以每期单利 i 计息,并称这样的利息称 为单利。
故:对第一个度量期,即当t=1时,a(t)=a (t ); 当t 1时,a(t)>a* (t ); 当t 1时,a(t)<a* (t );
*
17
(4)常数的单复利与实际利率的关系 假设每期以单利 i 计息,则在投资期间,每一度量 期产生的利息均为常数i ;令 in (n 1)为第n个度 量期内的实际利率,则
相关文档
最新文档