实验一 水体富营养化程度的评价
水体富营养化评价方法
![水体富营养化评价方法](https://img.taocdn.com/s3/m/d32fc460bceb19e8b9f6bae5.png)
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/ PPT论坛:
PPT模板下载:/moban/ 节日PPቤተ መጻሕፍቲ ባይዱ模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/
此模糊综合评价法是一种利用模糊数学进行综合评价的方法,可以将定性评价转化 为定量评价,从而对受到多种因素制约的事物或对象做出一个总体的评价。
人工神经网络法
主要结构包含输入、隐藏和输出三层,每层都由一个或多个节点(神经元)组成, 同层神经元之间没有连接,相邻两层的神经元通过权值连接。
1
水体富营养化
评价方法
主成分分析法
将原始变量减少为少数具有代表意义的新变量
遥感技术法 灰色关联法
遥感作为一种湖泊水体富营养化监测手段可进行大范围的湖泊富营养化调查评价。
在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高, 即可谓二者关联程度较高;反之,则较低。
评分法 ASSETS方法
此方法将湖泊富营养状态的贫营养-富营养采用0 -100 的一系列连续数字对湖泊 营养状态进行分级。在同一营养状态下, 指数值越高, 其营养程度越重.
水体富营养化评价试验
![水体富营养化评价试验](https://img.taocdn.com/s3/m/1e6eb905bcd126fff6050b0d.png)
水污染生物学实验一. 实验目的1. 了解水体富营养化评价方法,并通过对单一因子指标的测定,对模拟水体的富营养化程度进行评价。
2. 回顾水体单一污染因子测定方法,包括透明度(SD)、总磷(TP)、总氮(TN) 和高锰酸盐指数(CODMn)。
3. 掌握叶绿素Chla、TN、TP的测定方法,熟悉实验程序,了解各种仪器的工作原理和操作方法。
二.实验原理1. 叶绿素a的测定原理叶绿素a存在于所有植物中,约占有机物干重的1%~2%,是水体初级生产力和估算水体中浮游植物浓度的重要指标,对叶绿素a进行测定,可以了解水体的生产力和富营养化水平。
叶绿素不溶于水,但溶于乙醇、丙酮、乙醚等有机溶剂。
叶绿素a和b,分别在蓝紫光区和红光区对光谱有两个吸收峰。
因此,可以应用有机溶剂提取叶绿素,在特定波长下进行比色测定。
2.TN的测定原理--碱性过硫酸钾消解紫外分光光度法总氮:指可溶性及悬浮颗粒中的含氮量。
在60℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,硫酸氢钾在溶液中离解而产生氢离子,故在氢氧化钠的碱性介质中可促使分解过程趋于完全。
分解出的原子态氧在120~124℃条件下,可使水样中含氯化合物的氮元素转化为硝酸盐。
并且在此过程中有机物同时被氧化分解。
可用紫外分光光度法于波长220和275nm 处,分别测出吸光度A220及A275按公式求出校正吸光度A:A=A220-2A275 (1)按A的值查校准曲线并计算总氮(以NO3-N计)含量。
3. TP的测定原理总磷是指水体中各种形态的磷的总量,是反映水体所受污染程度和湖库水体富营养化程度的重要指标之一。
本实验采用过硫酸钾高温高压消解法进行预处理,使其中的含磷有机物转化成可溶的磷酸盐,同时也使偏磷酸盐和焦磷酸盐都转化成正磷酸盐,然后于波长700nm处测定吸光度,从标准曲线上查出含磷量。
三.实验仪器紫外分光光度计,高压蒸汽消毒器,10ml、25ml、50ml具塞玻璃磨口比色管,抽滤器,离心机。
总氮标准曲线
![总氮标准曲线](https://img.taocdn.com/s3/m/a427638e4128915f804d2b160b4e767f5acf803b.png)
总氮标准曲线
总氮是水体中的重要指标之一,它是评价水体富营养化程度的重要参数。
总氮
标准曲线是用来测定水样中总氮含量的一种方法,通过绘制标准曲线可以准确快速地测定水样中总氮的含量。
本文将介绍总氮标准曲线的制备方法和实验步骤。
首先,准备工作。
在进行总氮标准曲线的实验之前,需要准备好实验所需的试
剂和仪器设备。
试剂包括总氮标准品、硼酸-硫酸消解液、还原剂、催化剂等。
仪
器设备包括消解仪、分光光度计等。
其次,制备总氮标准曲线。
首先取一系列不同浓度的总氮标准品,分别加入硼
酸-硫酸消解液进行消解,然后加入还原剂和催化剂进行还原反应。
待反应完成后,用分光光度计测定各标准溶液的吸光度,并绘制吸光度与总氮浓度的标准曲线。
接下来,测定水样中总氮含量。
将待测水样进行前处理,然后按照同样的方法
进行消解和还原反应,最后用分光光度计测定水样的吸光度,并通过总氮标准曲线计算出水样中总氮的含量。
最后,数据处理和结果分析。
根据实验测得的吸光度和总氮含量,进行数据处
理和结果分析。
通过比对标准曲线和水样的吸光度,可以准确地计算出水样中总氮的含量,从而评价水质的富营养化程度。
总之,总氮标准曲线的制备和应用是水质分析中的重要内容,它能够准确快速
地测定水样中总氮的含量,为环境监测和水质评价提供了重要的技术支持。
希望本文的介绍能够对相关人员有所帮助,促进水质分析技术的进步和应用。
总磷标准曲线
![总磷标准曲线](https://img.taocdn.com/s3/m/92260ab1c9d376eeaeaad1f34693daef5ef71331.png)
总磷标准曲线总磷是指水体中的无机磷和有机磷的总和,是评价水体富营养化程度的重要指标之一。
总磷的浓度对水体生态环境和人类健康都有着重要的影响。
因此,建立总磷标准曲线是水质监测和评价工作中的重要内容之一。
总磷标准曲线是指在一定条件下,通过一系列实验测定得到的总磷浓度与其对应的光度值之间的关系曲线。
通过该曲线,可以方便快捷地测定水样中的总磷浓度,为水质监测提供了便利。
建立总磷标准曲线的关键是选择合适的试剂和仪器,以及严格控制实验条件。
首先,需要选择合适的试剂,通常采用的是磷钼酸铵分光光度法。
其次,需要选择合适的仪器,如分光光度计,确保测定结果的准确性和可靠性。
同时,实验条件的控制也至关重要,包括温度、pH值等因素的控制,以保证实验结果的准确性。
在进行实验时,首先需要准备一系列不同浓度的总磷标准溶液,然后分别测定它们的光度值。
通过测定得到的一系列光度值和对应的总磷浓度,就可以建立总磷标准曲线。
通常情况下,总磷标准曲线呈线性关系,通过线性回归分析可以得到标准曲线的方程,从而可以根据水样的光度值快速准确地计算出其总磷浓度。
建立好总磷标准曲线后,我们就可以将其应用于水质监测和评价工作中。
通过测定水样的光度值,再利用总磷标准曲线,就可以快速准确地得到水样中总磷的浓度。
这为水质监测工作提供了便利,也为水环境管理和保护提供了重要的技术支持。
总之,建立总磷标准曲线是水质监测和评价工作中的重要内容,它为水样中总磷浓度的快速准确测定提供了重要依据。
通过严格控制实验条件,选择合适的试剂和仪器,以及合理处理实验数据,可以建立准确可靠的总磷标准曲线,为水质监测和评价工作提供重要的技术支持。
通过综合指数法对校园水体富营养化程度进行评价的实验结论与讨论
![通过综合指数法对校园水体富营养化程度进行评价的实验结论与讨论](https://img.taocdn.com/s3/m/c59cbbf4db38376baf1ffc4ffe4733687f21fc64.png)
通过综合指数法对校园水体富营养化程度进行评价的实验结论与讨论
校园水体富营养化是指由于过多的营养物质(如氮、磷)输入而导致水体中生物生长过度的问题。
为了评价校园水体的富营养化程度,可以使用综合指数法,该方法综合考虑了多个指标,如水质指标和水生生物指标。
在进行实验评价时,我们首先需要采集水样,并进行水质分析,包括测定水体中的总氮、总磷、溶解氧、水温、pH值等指标。
同时,还可以检测水中叶绿素-a的含量,它是评估水体中藻类和水生植物生长状况的重要指标。
在测定完这些指标后,我们可以根据预先设定的标准,将每个指标的数值转化为相应的分数,并计算总分数。
总分数越高,富营养化程度越高。
通过对校园水体进行综合指数法评价,可以得出以下结论:
1. 根据总分数,可以将校园水体分为不同的等级,比如富营养化严重、中度富营养化、轻度富营养化和未富营养化等级,以便更好地了解当前校园水体富营养化的程度。
2. 可以通过分析各指标得分的变化趋势,确定导致校园水体富营养化的主要原因,比如是否是因为附近的生活污水直排或化肥使用过多。
3. 结合实地观察,可以确定校园水体的富营养化对水生生物的影响程度,如是否导致鱼类死亡、水生植物大量繁殖等。
4. 基于评价结果,可以采取相应的措施来改善校园水体的富营养化问题,比如加强污水处理、控制农业和园林绿化中的营养物质使用等。
总结起来,通过综合指数法对校园水体富营养化程度进行评价,可以帮助我们了解校园水体的环境状况,并为采取相应的管理和保护措施提供科学依据。
水体富营养化程度分析评价
![水体富营养化程度分析评价](https://img.taocdn.com/s3/m/fbd366ec81c758f5f61f6709.png)
水体富营养化程度分析评价水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
提到富营养化,普遍想到的就是营养盐总磷、总氮超标。
诚然,总磷总氮等营养盐是发生富营养化的必要条件。
如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。
富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。
因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。
尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。
但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:(1)总磷、总氮等营养盐相对比较充足;(2)缓慢的水流流态; (3)适宜的温度条件;只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。
其中的水流流态主要指以流速、水深为要素的水流结构。
一、水体富营养化的主要原因:水体富营养化的根本原因是营养物质的增加。
一般认为主要是磷,其次是氮,可能还有碳、微量元素或维生素等。
受控生态系统装置和试验湖区的研究结果表明磷是主要“限制因子”。
Vollenweider等关于磷负荷和初级生产关系的研究也表明磷的重要性.在氮磷比低于10: 1时,或在某个季节,氮也可能成为限制因子。
导致富营养化的营养物按其来源可分为点源和非点源(或面源)。
前者是排放集中、位置固定的污染源,也较容易测定:非点源污染是通过地表径流、降水、地下水等进入水体,较难以测定和控制。
校园内池塘水体富营养化状态评价
![校园内池塘水体富营养化状态评价](https://img.taocdn.com/s3/m/1ccd25bd65ce0508763213bb.png)
一,E 一 嵇, 如踞 彝 J6 _ 酶 軎 }
9 8 7
一 一 4 _ 6 薜睽缝 I 5
3
2
总的来说 , 营养化评价 方法大致 可 以分 为 以下 几类 : 富 营养 物浓度评价 、 生物 指标评 价和综合 评价 三种方 法 。 两种方 法偏重于 从某一方 面进行 富营养化 评价 , 前 而综合 评价则 是采用 多指标进 行评 价 , 能够 比较全 面地 反映出水体的营养状况 。 综合评价 主要有 特征法 、 参数法 和 营养状态 指数法【 考 虑到各 种评价 方法 的优缺点 , 引。 以及本实验室 的实验条件 , 本文采用综合 营养状态指数 法 (L) T/ 对三个池塘 富营养化状况进 行综合评价 。
∞
2 水 质调查结果及 分析
校 园 内三 口池塘 水体 中 , 氮 、 总 总磷 、 解 氧 、 溶 生化 需 氧 量 、 叶绿 素 口 透 明度 在 五周 内的变 化趋 势 见 下 、
图:
如
一,E 一 凄 骧缸 窿 J6 _ 冉
j
E
一
∞
托
替
躜 唾 世
池塘2的综合营养状态指数值稍高于池塘l说明池塘2的富营养程度更重但现实中池塘i在夏季暴发水华池塘2有一些症状但水华暴发程度次于池塘i说明池塘2中存在一种或几种限制因子如果该因子的值达到了水华暴发要求值后池塘2很快就会在夏季暴发水华具体那种因素是该池塘水华暴发的限速因子需要进一步研究
第 2 第 6期 8卷 2O O 8年 I 2月
叶绿 素 n含量 测定均 采用 国家标 准分析方 法【 。 4 ]
收 稿 日期 :08—0 20 5—1 4
作者简介:;必华(90一)女 , f l ; 17 , 博士, 剐教授 , 主要从事土壤学及水环境保护方丽研究
总磷标准曲线
![总磷标准曲线](https://img.taocdn.com/s3/m/6bcc38b4f605cc1755270722192e453610665b39.png)
总磷标准曲线总磷是指水体中的无机磷和有机磷的总和,是评价水体富营养化程度的重要指标之一。
总磷的含量直接影响着水体的生物多样性和生态平衡。
因此,建立准确的总磷标准曲线对于水质监测和环境保护具有重要意义。
总磷标准曲线是通过一系列实验数据建立起来的,它可以用来测定水样中总磷的浓度。
在建立总磷标准曲线时,需要先准备一系列已知浓度的标准溶液,然后使用适当的分析方法对这些标准溶液进行测定,得到一系列的测定值。
接着,将这些测定值与标准溶液的浓度进行对应,就可以得到一组标准曲线上的数据点。
最后,通过对这些数据点进行拟合,就可以得到总磷标准曲线的方程,从而可以根据水样的测定值反推出其总磷的浓度。
建立总磷标准曲线的过程中,需要注意一些关键问题。
首先,选择合适的分析方法和仪器是非常重要的。
不同的分析方法对总磷的测定精度和灵敏度有着不同的要求,因此在选择分析方法和仪器时需要根据具体的实验要求进行综合考虑。
其次,标准溶液的制备和保存也是至关重要的。
标准溶液的浓度必须准确,而且在长期保存过程中不能发生变化,否则就会影响到总磷标准曲线的准确性。
最后,实验操作的规范性和重复性也是建立总磷标准曲线过程中需要重点关注的问题。
只有保证实验操作的规范性和重复性,才能得到可靠的实验数据,从而建立起准确可靠的总磷标准曲线。
总磷标准曲线的建立不仅对于水质监测具有重要意义,同时也为环境保护和生态修复提供了技术支持。
通过对水体中总磷浓度的准确测定,可以及时发现并解决水体富营养化的问题,保护水生态系统的健康。
因此,建立总磷标准曲线是一项具有重要意义的工作,它为我们提供了一种科学、准确、可靠的手段来监测和评价水体中总磷的含量,为水环境的保护和治理提供了有力的技术支持。
总之,总磷标准曲线的建立是环境监测和保护工作中不可或缺的一部分。
它不仅可以为水质监测提供准确可靠的数据支持,同时也为环境保护和生态修复提供了技术保障。
因此,在实际工作中,我们需要充分重视总磷标准曲线的建立工作,确保其准确性和可靠性,为水环境的保护和治理提供有力的支持。
实验三 水体富营养化程度的评价(共享)
![实验三 水体富营养化程度的评价(共享)](https://img.taocdn.com/s3/m/3e5d6d8af021dd36a32d7375a417866fb84ac0fe.png)
实验三水体富营养化程度的评价(共享)水体富营养化是指水体中的营养物质过度富集,导致生物生长过度而影响水生态系统的稳定性和水质环境。
评价水体富营养化的程度是对水环境进行保护和治理的重要依据。
本实验将介绍几种常用的水体富营养化程度评价方法。
一、总氮和总磷浓度评价法总氮和总磷是导致水体富营养化的主要营养物质。
通过测定水体中的总氮和总磷浓度来判断水体富营养化的程度。
根据国家标准《地表水环境质量标准》(GB 3838-2002)中,对于湖泊、水库、坑塘等静态水体,总氮浓度标准为 1.0 mg/L,超过这一标准即为富营养化。
对于河流等动态水体,总氮浓度标准为 3.0 mg/L,超过这一标准也为富营养化。
二、叶绿素浓度评价法水体富营养化导致水中蓝藻、浮游植物等生物过度生长,促进叶绿素的积累。
通过测定水体中叶绿素 a 浓度来评价水体富营养化的程度。
叶绿素 a 是叶绿体中的主要成分,也是评价水中藻类生物量的指标。
三、营养盐指数评价法营养盐指数(Trophic State Index,TSI)是评价水体富营养化的一种综合指标,它包括水的透明度、浮游植物生物量、总磷和总氮等因素。
TSI 值越大,水体富营养化程度越高。
TSI 是通过测量透明度、总磷和总氮以及浮游植物生物量计算得出,可以根据下表计算TSI 值:|指标(单位)|TSI 分值||:--------:|:--------:||透明度(m)|10(INT (100/S))||总氮(mg/L)|10(INT (100/(1+s))^1.5)||总磷(mg/L)|10(INT (100/(1+p)))||浮游植物(mg/L)|10(INT (100/(1+u)))|其中,s、p、u 分别为总氮、总磷和浮游植物生物量对应的潜在比例。
INT 表示向下取整。
根据国家标准《地表水环境质量标准》(GB 3838-2002)中,TSI 值为 40 以下为清洁水体,40-50为轻度富营养化,50-60为中度富营养化,60 以上为严重富营养化。
水体富营养化评价
![水体富营养化评价](https://img.taocdn.com/s3/m/691d377df011f18583d049649b6648d7c1c708bf.png)
“水体富营养化评价”资料合集目录一、东平湖水体富营养化评价二、水体富营养化评价试验三、水体富营养化评价的多维正态云法与其他几种方法的对比分析四、水体富营养化评价方法及其应用五、铁岭莲花湖水体富营养化评价六、水体富营养化评价与治理东平湖水体富营养化评价水体富营养化是指水体在自然或人为因素影响下,导致水体中氮、磷等营养盐含量过高,引发水生生物异常繁殖,使得水体生态系统失衡的现象。
东平湖作为我国北方的重要湖泊,其水体富营养化问题备受关注。
本文将对东平湖水体富营养化进行评价。
近年来,东平湖的水体富营养化问题日益严重。
据监测数据显示,东平湖水体中的总磷、总氮含量持续升高,已超过国家标准。
湖泊中的藻类生物量也大幅增加,特别是在夏季,蓝藻大量繁殖,导致水体出现“水华”现象。
这不仅影响了湖泊的景观,还对周边居民的生活和健康造成了威胁。
东平湖水体富营养化的原因是多方面的。
随着周边地区经济的发展,大量含磷、氮的废水排入湖泊,导致营养盐积累。
湖泊周边农业生产中化肥的过量使用,也是导致水体富营养化的重要原因。
气候变化、湖泊水文条件等因素也可能对水体富营养化产生影响。
东平湖水体富营养化对湖泊生态系统造成了严重影响。
水生生物多样性降低,部分敏感物种受到威胁。
水体自净能力下降,水质恶化。
富营养化还可能导致湖泊生态系统崩溃,引发一系列环境问题。
东平湖水体富营养化问题严重,需采取有效措施加以解决。
加强污染源控制,减少含磷、氮废水的排放。
加大环境监测力度,建立水体富营养化预警系统。
开展湖泊生态修复工作,如投放适量生物控藻剂、种植沉水植物等。
加强环境教育,提高公众环保意识。
通过这些措施的实施,有望改善东平湖水体富营养化状况,保护湖泊生态系统的健康。
水体富营养化评价试验水体富营养化是当今全球面临的一个严峻环境问题。
它指的是由于人类活动,特别是农业和工业废弃物的排放,导致水体中营养物质(如氮、磷)过度积累,引发藻类等水生生物过度繁殖,最终导致水质恶化和生态系统崩溃。
环境化学实验
![环境化学实验](https://img.taocdn.com/s3/m/3b1e6fd50d22590102020740be1e650e52eacf64.png)
实验一碱度(总碱度、重碳酸盐和碳酸盐)水的碱度是指水中所含能与强酸定量作用的物质总量。
水中碱度的来源是多种多样的。
地表水的碱度,基本上是碳酸盐、重碳酸盐及氢氧化物含量的函数,所以总碱度被当作这些成分浓度的总和。
当水中含有硼酸盐、磷酸盐或硅酸盐等时,则总碱度的测定值也包含它们所起的作用。
废水及其他复杂体系的水体中,还含有有机碱类、金属水解性盐类等,均为碱度组成部分。
在这些情况下,碱度就成为一种水的综合性特征指标,代表能被强酸滴定的物质的总和。
碱度的测定值因使用的终点pH值不同而有很大的差异,只有当试样中的化学组成已知时,才能解释为具体的物质。
对于天然水和未污染的地表水,可直接用酸滴定至pH8.3时消耗的量,为酚酞碱度。
以酸滴定至pH为4.4~4.5时消耗的量,为甲基橙碱度。
通过计算,可求出相应的碳酸盐、重碳酸盐和氢氧根离子的含量;对于废水、污水,则由于组分复杂,这种计算无实际意义,往往需要根据水中物质的组分确定其与酸作用达终点时的pH值。
然后,用酸滴定以便获得分析者感兴趣的参数,并作出解释。
碱度指标常用于评价水体的缓冲能力及金属在其中的溶解件和毒性;是对水和废水处理过程的控制的判断性指标。
若碱度是由过量的碱金属盐类所形成,则碱度又是确定这种水是否适宜于灌溉的重要依据。
1.方法的选择用标准酸滴定水中碱度是各种方法的基础。
有两种常用的方法,即酸碱指示剂滴定法和电位滴定法。
电位滴定法根据电位滴定曲线在终点时的突跃,确定特定pH值下的碱度,它不受水样浊度、色度的影响,适用范围较广。
用指示剂判断滴定终点的方法简便快速、适用于控制性试验及例行分析。
二法均可根据需要和条件选用。
2.样品保存样品采集后应在4℃保存,分析前不应打开瓶塞,不能过滤、稀释或浓缩。
样品应于采集后的当天进行分析,特别是当样品中含有可水解盐类或含有可氧化态阳离子时,应及时分析。
酸碱指示剂滴定法概述1.方法原理水样用标准酸溶液滴定至规定的pH值,其终点可由加入的酸碱指示剂在该pH值时颜色的变化来判断。
实验三 水体富营养化程度的评价
![实验三 水体富营养化程度的评价](https://img.taocdn.com/s3/m/55845e89bceb19e8b8f6ba67.png)
实验三水体富营养化程度的评价富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。
这种自然过程非常缓慢,常需几千年甚至上万年。
而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。
水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。
水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。
局部海区可变成“死海”,或出现“赤潮”现象。
植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。
每人每天带进污水中的氮约50 g。
生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。
许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。
一、实验目的1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。
2. 评价水体的富营养化状况。
二、仪器设备及试剂1. 仪器(1) 可见分光光度计。
(2) 移液管:1mL、2mL、10mL。
(3) 容量瓶:100mL、250mL。
(4) 锥型瓶:250mL。
(5) 比色管:25mL。
(6) BOD瓶:250mL。
(7) 具塞小试管:10mL。
(8) 玻璃纤维滤膜、剪刀、玻棒、夹子(9) 多功能水质检测仪2. 试剂(1) 过硫酸铵(固体)。
(2) 浓硫酸。
(3) 1 mol/L硫酸溶液。
(4) 2 mol/L盐酸溶液。
(5) 6 mol/L氢氧化钠溶液。
(6) 1%酚酞:1g酚酞溶于90mL乙醇中,加水至100mL。
(7) 丙酮:水(9:1)溶液。
(8) 酒石酸锑钾溶液:将4.4gK(SbO)C4H4O6 ·1/2H2O溶于200mL蒸馏水中,用棕色瓶在4℃时保存。
水体富营养化程度的评价实验报告
![水体富营养化程度的评价实验报告](https://img.taocdn.com/s3/m/20f80c4d15791711cc7931b765ce050877327514.png)
水体富营养化程度的评价实验报告一、实验目的水体富营养化是当前面临的重要环境问题之一,本实验旨在通过对特定水体样本的分析和检测,评价其富营养化程度,为水资源的保护和管理提供科学依据。
二、实验原理水体富营养化主要是由于氮、磷等营养物质的过量输入,导致藻类等水生生物大量繁殖。
评价水体富营养化程度通常基于对水体中营养盐(如总氮、总磷)、叶绿素a 含量、透明度以及化学需氧量(COD)等指标的测定。
三、实验材料与仪器1、水样采集器2、实验室常用玻璃仪器(如容量瓶、移液管、比色管等)3、分光光度计4、消解装置5、总氮、总磷测定试剂盒6、塞氏盘四、实验步骤1、水样采集选择具有代表性的水体,使用水样采集器在不同深度和位置采集水样,混合均匀后装入干净的采样瓶中,尽快带回实验室进行分析。
2、指标测定(1)总氮(TN)的测定采用碱性过硫酸钾消解紫外分光光度法。
取适量水样于消解管中,加入碱性过硫酸钾溶液,在高温高压下消解,冷却后用紫外分光光度计在 220nm 和 275nm 处测定吸光度,计算总氮含量。
(2)总磷(TP)的测定采用钼酸铵分光光度法。
取适量水样加入过硫酸钾溶液进行消解,消解完成后加入钼酸铵试剂和抗坏血酸溶液,显色后用分光光度计在700nm 处测定吸光度,计算总磷含量。
(3)叶绿素 a 的测定水样经过滤后,用丙酮提取叶绿素 a,提取液在分光光度计 663nm和 645nm 处测定吸光度,计算叶绿素 a 的含量。
(4)透明度的测定使用塞氏盘在现场垂直放入水中,直至刚刚看不见盘体,记录深度即为透明度。
(5)化学需氧量(COD)的测定采用重铬酸钾法,在水样中加入一定量的重铬酸钾和硫酸银硫酸溶液,在加热回流条件下反应,然后用硫酸亚铁铵溶液滴定剩余的重铬酸钾,计算化学需氧量。
五、实验结果与分析1、实验数据记录将测定的各项指标数据记录在下表中:|水样编号|总氮(mg/L)|总磷(mg/L)|叶绿素 a(mg/L)|透明度(m)| COD(mg/L)||||||||| 1 |____ |____ |____ |____ |____ || 2 |____ |____ |____ |____ |____ || 3 |____ |____ |____ |____ |____ |2、富营养化评价标准根据相关标准和研究,通常采用以下指标来评价水体富营养化程度:|富营养化程度|总氮(mg/L)|总磷(mg/L)|叶绿素 a (mg/L)|透明度(m)| COD(mg/L)|||||||||贫营养|<02 |<002 |<0005 |>6 |<15 ||中营养| 02 05 | 002 005 | 0005 002 | 3 6 | 15 25 ||富营养|>05 |>005 |>002 |<3 |>25 |3、结果分析(1)将测定的各项指标数据与评价标准进行对比,判断水体的富营养化程度。
环境微生物:水体富营养化的监测与评价
![环境微生物:水体富营养化的监测与评价](https://img.taocdn.com/s3/m/74b3334832687e21af45b307e87101f69f31fb5d.png)
2. 水体富营养化的评价
下表为水体富营养化状态与氮、磷含量关系:一般来讲,
总磷和无机氮分别超过20mg/m3和300mg/m3,就可以认为是危
险状态。
状态
营养
极贫
贫中
中
中富
总磷(mg/m3) (mg/m3)
<5 <200
5~10 200~400
10~30 300~650
3~100 500~1500
优势种。
水体富营养化的评价标准
评价标准 从物理、化学和生物学三方面评价。
美国国家环保局湖泊富营养化阶段标准 经OECD组织湖泊营养分类系统评价
评价水体富营养化的方法是: ① 观察蓝藻等指示生物 ② 测定生物的现存量 ③ 测定原初生产力 ④ 测定透明度 ⑤ 测定氮和磷等导致富营养化的物质
氮含量超过0.2~0.3mg/L , 磷含量大于0.01~0.02mg/L , BOD 大于10mg/L, pH值7~9的淡水中细 菌总数超过10万个/mL,叶绿素 a 含量大于10ug/L。
营养物质—— 氮、磷限制因子在水中的含量决定 了藻类的生物量。
据计算:1g N
10.8g 藻
78g 藻
当水体中含氮量>0.3mg/L
含磷量>0.02mg/L
1g
P
藻类旺盛繁殖
国际经济合作与发展组织(OCED)提出:
N :P < 5时,N是限制性因素; N:P > 12时,P是限制性因素; 5 < N:P < 12时,则N、P均起作用。 当水中无机氮成为限制因子时,则能固氮的蓝细菌常成为
水体富营养化的监 测与评价
水体富营养化的监测 水体富营养化的评价
1. 水体富营养化的监测
水体富营养化程度评价
![水体富营养化程度评价](https://img.taocdn.com/s3/m/3eed156b27d3240c8447efa2.png)
水体富营养化程度评价一、实验目的与要求(1)掌握总磷、叶绿素-a及初级生产率的测定原理及方法。
(2)评价水体的富营养化状况。
二、实验方案1、样品处理2、工作曲线绘制取7支消解管,分别加入磷的标准使用液0.00、0.25、0.50、1.50、2.50、5.00、7.50mL以比色管中,加水至15ml。
然后按测定步聚进行测定,扣除空白试验的吸光度后,和对应磷的含量绘制工作曲线。
3、计算总磷含量以C(mg/L)表示,按下式计算:式中: M 试样测得含磷量,μgV 测定用水样体积,ml注意:每个小组做空白2-3个,标线5个,样品3-4个。
图1 采样布点分布三、实验结果与数据处理1、工作曲线绘制根据上表数据,绘制工作曲线如图2所示:图2 标准工作曲线从标准工作曲线图可以看出,其相关系数R² = 0.9969,高于实验室最低要求R²=0.995,可见其相关度较好,可用以求解水样中总磷的浓度。
2、八个水样数据结果与处理根据上表数据作水中磷质量浓度柱形图,如图2所示:图2 各组水中总磷质量柱形图四、实验结果1、实验结果分析从实验数据和图2可以看出,第一、三、四、五、八组数据比较准确,因为这几组平行样数据比较接近,而且跟稀释后所测的浓度也大约呈5倍关系,可以保留作为水中磷质量浓度评价,而其他组数据误差较大,故舍去。
根据各组原水样总磷质量浓度求评均整理下表。
从上表数据可以看出,第五组所测的水中总磷浓度较高,根据图1可知第五组采样点为第四饭堂附近,可能是由于饭堂平时清洁所用的洗涤剂含磷较高,排放入河涌的污水导致河水受污染。
2、污染程度分析表4 总磷与水体富营养化程度的关系本实验是以水体磷平均浓度平均参数,本次实验所得的监测采样点数据的平均浓度是0.205mg/L,测得的最小浓度为0.142mg/L,测得的最高浓度为0.311mg/L,由表1可知超过0.1mg/L就为水体富营养化,本次实验测得的最低浓度也超出0.1mg/L,本次实验所得数据均说明该水体富营养化。
水体富营养化程度分析评价
![水体富营养化程度分析评价](https://img.taocdn.com/s3/m/27d569abeefdc8d377ee328b.png)
水体富营养化程度分析评价水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
提到富营养化,普遍想到的就是营养盐总磷、总氮超标。
诚然,总磷总氮等营养盐是发生富营养化的必要条件。
如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。
富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。
因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。
尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。
但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:(1)总磷、总氮等营养盐相对比较充足;(2)缓慢的水流流态;(3)适宜的温度条件;只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。
其中的水流流态主要指以流速、水深为要素的水流结构。
一、水体富营养化的主要原因:水体富营养化的根本原因是营养物质的增加。
一般认为主要是磷,其次是氮,可能还有碳、微量元素或维生素等。
受控生态系统装置和试验湖区的研究结果表明磷是主要“限制因子”。
Vollenweider等关于磷负荷和初级生产关系的研究也表明磷的重要性.在氮磷比低于10: 1时,或在某个季节,氮也可能成为限制因子。
导致富营养化的营养物按其来源可分为点源和非点源(或面源)。
前者是排放集中、位置固定的污染源,也较容易测定:非点源污染是通过地表径流、降水、地下水等进入水体,较难以测定和控制。
三峡水库浮游植物群落特征及水体富营养化评价
![三峡水库浮游植物群落特征及水体富营养化评价](https://img.taocdn.com/s3/m/2b32dc7549d7c1c708a1284ac850ad02de800738.png)
三峡水库浮游植物群落特征及水体富营养化评价王顺天1,2,雷俊山1*,贾海燕1,杨传国2(1.长江水资源保护科学研究所,武汉430051;2.河海大学水文水资源学院,南京210000)摘要:基于2003—2017年三峡水库浮游植物群落结构、优势种群的变化和2017年水库干支流水质数据,全面分析浮游植物群落结构和演替特征,并运用综合营养状态指数法对水体富营养化程度进行评价。
结果表明,三峡水库浮游植物种类丰富,监测期间共鉴定出浮游植物7门62属,细胞密度在7.5×104~2.8×107cell/L 之间变化,Shannon-Wiener 多样性指数为1.0~3.0,在α-中污带和β-中污带之间,说明三峡水库水生态环境健康状况相对较好;三峡水库浮游植物季节性演替特征呈硅藻和甲藻向蓝藻和绿藻演替的趋势,年际变化特征分析发现浮游植物密度在2008年175m 实验蓄水后大量增长,且优势藻类由河道型藻类向湖泊型藻类转化。
通过监测数据分析,得出三峡水库干流处于中营养状态,支流在春季主要处于轻度富营养状态,秋季支流比春季支流的富营养化程度低,主要处于中营养状态,总氮(total nitrogen ,TN )、总磷(total phosphorus ,TP )和透明度(transparency ,SD )为水质主要影响因子。
关键词:三峡水库;浮游植物;群落结构;演替特征;富营养化评价中图分类号:X524文献标识码:A文章编号:2096-2347(2020)01-0032-10收稿日期:2020-02-29基金项目:国家重点研发计划项目(2017YFC0505302)。
作者简介:王顺天(1996—),男,硕士研究生,从事水环境保护及评价研究。
E-mail :152*****************通信作者:雷俊山(1979—),男,教授级高级工程师,从事水环境、水生态保护研究工作。
E-mail:*****************引用格式:王顺天,雷俊山,贾海燕,等.三峡水库浮游植物群落特征及水体富营养化评价[J].三峡生态环境监测,2020,5(1):32-41.Citation format:WANG S T,LEI J S,JIA H Y,et al.Characteristics of phytoplankton community and eutrophication evaluation of the Three Gorges Reservoir[J].Ecology and Environmental Monitoring of Three Gorges ,2020,5(1):32-41.DOI :10.19478/ki.2096-2347.2020.01.05Characteristics of Phytoplankton Community and Eutrophication Evaluation ofthe Three Gorges ReservoirWANG Shuntian 1,2,LEI Junshan 1*,JIA Haiyan 1,YANG Chuanguo 2(1.Changjiang Water Resources Protection Institute,Wuhan 430051,China;2.College of Hydrology and Water Resources,Hohai University,Nanjing 210000,China)Abstract:Based on the changes of phytoplankton community structure and dominant species in the Three Gorges Reservoir from 2003to 2017and the water quality data of the main stream and tributaries in 2017,the phytoplankton community structure and succession characteristics were comprehensively analyzed,and the eutrophication degree of the water body was calculated by the comprehensive nutritional status index method.The results showed that there were abundant phytoplankton in the reservoir.During the monitoring period,7type and 62genera phytoplankton were detected.The phytoplankton density varied from 7.5×104to 2.8×107cell/L,and the Shannon-Wiener diversity index from 1.0and 3.0was between the α-medium pollution zone and β-medium pollution zones,indicating that the health status of the water ecological environment was relatively good.The seasonal characteristics ofphytoplankton in the Three Gorges Reservoir showed the succession from diatoms and dinoflagellates to cyanobacteria and green algae.The interannual variation showed that the algae density increased significantly after experimental water storage of 175m in 2008,and the dominant showed transformed from river-type algae to lake-type algae.Monitoring data analysis showed that the main stream of the Three Gorges Reservoir was in a medium nutrient state;the tributaries were mainly in mild eutrophication in spring,三峡生态环境监测Ecology and Environmental Monitoring of Three Gorges2020年3月Mar.2020第5卷第1期V ol.5No.1□水生态风险评估与评价第5卷第1期33朝天门寸滩御临河龙溪河珍溪河渠溪河黎香溪乌江乌江清溪河龙河池溪河东溪河黄金河汝溪河壤渡河沱口苎溪河磨刀溪长滩河大溪河汤溪河小江梅溪河草堂河抱龙河官渡口神女溪大宁河神农溪吒溪河香溪河青干河九畹溪太平溪童庄河监测断面河流三峡库区县区010********kmN EWS图例and the eutrophication was lower in autumn than in spring,mainly in a medium nutrient state.Total nitrogen (TN),total phosphorus (TP),and transparency (SD)were the main influencing factors of water quality.Key words:Three Gorges Reservoir;phytoplankton;community structure;succession characteristics;eutrophication evaluation三峡工程是治理和开发长江的关键性骨干工程,也是长江流域重要的生态屏障。
环境化学实验教程
![环境化学实验教程](https://img.taocdn.com/s3/m/c7b9f80f02020740be1e9baf.png)
实验一水体富营养化程度的评价--水体中总磷和叶绿素含量的测定前言富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。
这种自然过程非常缓慢,常需几千年甚至上万年。
而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。
水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。
水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。
局部海区可变成“死海”,或出现“赤潮”现象。
植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。
每人每天带进污水中的氮约50 g。
生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。
许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。
一、实验目的1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。
2. 评价水体的富营养化状况。
二、仪器设备及试剂1. 仪器(1) 可见分光光度计。
(2) 移液管:1mL、2mL、10mL。
(3) 容量瓶:100mL、250mL。
(4) 锥型瓶:250mL。
(5) 比色管:25mL。
(6) BOD瓶:250mL。
(7) 具塞小试管:10mL。
(8) 玻璃纤维滤膜、剪刀、玻棒、夹子(9) 多功能水质检测仪2. 试剂(1) 过硫酸铵(固体)。
(2) 浓硫酸。
(3) 1 mol/L硫酸溶液。
(4) 2 mol/L盐酸溶液。
(5) 6 mol/L氢氧化钠溶液。
(6) 1%酚酞:1g酚酞溶于90mL乙醇中,加水至100mL。
(7) 丙酮:水(9:1)溶液。
总磷的测定方法 钼酸铵
![总磷的测定方法 钼酸铵](https://img.taocdn.com/s3/m/730caec6f80f76c66137ee06eff9aef8951e485f.png)
总磷的测定方法钼酸铵一、前言总磷是指水中存在的各种无机磷和有机磷的总和,是评价水体富营养化程度的重要指标之一。
因此,准确测定水样中总磷含量对于环境监测具有重要意义。
钼酸铵法是目前常用的测定总磷含量的方法之一,本文将详细介绍该方法。
二、实验原理钼酸铵法是通过钼酸铵与总磷反应生成黄色的钼酸铵-总磷复合物,并利用分光光度法测定其吸收值来确定总磷含量。
三、实验步骤1. 标准曲线制备(1)取0.5 mL 0.1 mol/L KH2PO4溶液,加入50 mL容量瓶中,加纯水至刻度。
(2)分别取出0 mL、0.5 mL、1 mL、2 mL、3 mL和4 mL上述KH2PO4溶液,加入不同的50 mL容量瓶中,并分别加纯水至刻度。
(3)将上述6个容量瓶标记为0 mg/L、1 mg/L、2 mg/L、4 mg/L、6 mg/L和8 mg/L。
(4)将上述6个标准溶液分别加入6个试管中,每个试管加入2 mL钼酸铵试剂和1 mL稀盐酸,摇匀后放置30分钟。
(5)用分光光度计测定各标准溶液的吸光度值,并绘制标准曲线。
2. 水样处理(1)取适量水样,过滤去除杂质,将滤液加入50 mL容量瓶中。
(2)根据实际情况,选择合适的稀释倍数进行稀释。
一般情况下,水样含量过高时需进行适当稀释。
3. 总磷测定(1)将上述处理好的水样分别加入6个试管中,每个试管加入2 mL钼酸铵试剂和1 mL稀盐酸,摇匀后放置30分钟。
(2)用分光光度计测定各水样的吸光度值,并根据标准曲线计算出总磷含量。
四、实验注意事项1. 手套、护目镜等防护措施是必须的。
2. 实验室操作要规范、认真、仔细,避免误差产生。
3. 实验前应检查仪器是否正常。
4. 钼酸铵试剂需保存在干燥、阴凉处,避免受潮。
5. 实验过程中应注意稀盐酸的腐蚀性,避免接触皮肤和眼睛。
6. 标准曲线制备时,应注意标准溶液的浓度和数量的准确性。
7. 水样处理时,需注意水样的采集方法和保存方式,避免污染和挥发等影响测定结果的因素。
水质总磷的测定实验数据处理
![水质总磷的测定实验数据处理](https://img.taocdn.com/s3/m/eef03005590216fc700abb68a98271fe910eafe0.png)
水质总磷的测定实验数据处理水质中的总磷浓度是衡量水体富营养化程度的重要指标之一、为了保护水环境,需要对水体中总磷浓度进行准确测定。
本文将介绍总磷测定实验的数据处理方法,并进行详细解析。
一、实验目的本次实验的目的是测定水样中的总磷浓度。
总磷是水体中无机磷和有机磷的总和。
水质中过高的总磷含量容易引发富营养化问题,导致水体变浑浊,寄生物增多,甚至死亡。
因此,准确测定水样中的总磷含量对水环境保护具有重要意义。
二、实验原理本次实验使用的是浓度法测定总磷含量。
首先,将水样中的总磷转化为含有草酸盐离子的磷酸盐。
然后,通过稀硫酸与还原剂的反应,将草酸盐还原为草酸。
最后,根据草酸的浓度,利用紫外光谱法测定样品中总磷的含量。
三、实验步骤1. 使用1个10ml量筒分别取0.5ml、1ml、1.5ml和2ml的0.5mol/L H2SO4溶液,分别加入4个实验烧杯中,并标记为A、B、C和D。
2.使用4个移液管分别取4个水样并加入前述的烧杯中。
3. 在4个移液管中分别加入0.5、1.0、1.5和2.0ml的10g/L草酸钠溶液。
4.向A、B、C和D烧杯中加入相应的稀硫酸和还原剂,并加热反应。
5. 冷却后,将反应产物过滤,收集滤液,并分别转移到4个25ml容量瓶中。
6.选取滤液的适当波长,在紫外光谱仪上进行测定。
7.记录测定结果,并进行数据处理。
四、数据处理1.利用紫外光谱仪测得4个容量瓶中溶液的吸光度值(A),并记录下测定所用的适当波长。
2.根据草酸的摩尔吸光系数与吸光度的线性关系,计算出草酸的摩尔浓度(C)。
3.根据反应方程,总磷的摩尔浓度等于草酸的摩尔浓度。
将上述计算的草酸的摩尔浓度作为总磷的摩尔浓度。
4.根据草酸的摩尔浓度和实验过程中使用的体积,计算出水样中总磷的质量浓度。
5.根据实验所用水样的体积和质量浓度,计算出水样中总磷的质量。
五、实验注意事项1.在实验过程中,要严格按照操作步骤进行。
特别是加入稀硫酸和还原剂的时候,要小心操作,以免发生意外。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一水体富营养化程度的评价
一、实验目的和要求
1、掌握总磷、叶绿素-a的测得原理及方法。
2、评价水体的富营养化状况。
二、实验原理和方法
富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。
在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。
这种自然过程非常缓慢,常需几千年甚至上万年。
而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。
水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。
水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。
局部海区可变成“死海”,或出现“赤潮”现象。
植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。
每人每天带进污水中的氮约50 g。
生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。
许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。
1、磷的测定
在酸性溶液中,将各种形态的磷转化成磷酸根离子(PO43- )。
随之用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。
砷酸盐与磷酸盐一样也能生成钼蓝,0.1 μg/mL的砷就会干扰测定。
六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。
三、仪器设备及试剂
1、仪器
(1) 可见分光光度计。
(2) 移液管:1 mL、2 mL、10 mL。
(3) 容量瓶:100 mL、250 mL。
(4) 锥型瓶:250 mL。
(5) 比色管:25 mL。
(6) BOD瓶:250 mL。
(7) 具塞小试管:10 mL。
(8) 玻璃纤维滤膜、剪刀、玻棒、夹子。
2.试剂
(1) 过硫酸铵(固体)。
(2) 浓硫酸。
(3) 1 mol/L 硫酸溶液。
(4) 2 mol/L 盐酸溶液。
(5) 6 mol/L氢氧化钠溶液。
(6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。
(7) 丙酮:水(9:1)溶液。
(8) 酒石酸锑钾溶液:将4.4 g K(SbO)C4 H4 O6 ·1/2H2 O溶于200 mL蒸馏水中,用棕色瓶在4℃时保存。
(9) 钼酸铵溶液:将20g (NH4 )6M O7 O24 ·4 H2 O溶于500 mL蒸馏水中,用塑料瓶在4℃时保存。
(10) 抗坏血酸溶液:0.1 mol/L(溶解1.76 g抗坏血酸于100 mL蒸馏水中,转入棕色瓶,若在在4℃时保存,可维持一个星期不变)。
(11)混合试剂:50 mL 2 mol/L硫酸、5 mL酒石酸锑钾溶液、15 mL钼酸铵溶液和30 mL抗坏血酸溶液。
混合前,先让上述溶液达到室温,并按上述次序混合。
在加入酒石酸锑钾或钼酸铵后,如混合试剂有浑浊,须摇动混合试剂,并放置几分钟,至澄清为止。
若在4℃下保存,可维持1个星期不变。
(12) 磷酸盐储备液(1.00 mg/mL磷):称取1.098 g KH2 PO4,溶解后转入250 mL容量瓶中,稀释至刻度,即得1.00 mg/mL磷溶液。
(13) 磷酸盐标准溶液:量取1.00 mL储备液于100 mL容量瓶中,稀释至刻度,即得磷含量为10 μg / mL的工作液。
四、实验步骤
1、标准曲线的绘制:分别吸取10 μg / mL磷的标准溶液0.00、0.50、1.00、1.50、2.00、2.50、3.00 mL于50 mL比色管中,加水稀释至约25 mL,加入1 mL 混合试剂,摇匀后放置10 min,加水稀释至刻度,再摇匀,10 min后,以试剂空白作参比,用1 cm比色皿,于波长880 nm处测定吸光度。
2、水样处理:水样中如有大的微粒,可用搅拌器搅拌2~3 min,以至混合均匀。
量取100 mL水样(或经稀释的水样)2份,分别放入250 mL锥型瓶中,另取100 mL蒸馏水于250 mL锥型瓶中作为对照,分别加入1 mL 2 mol/L H2 SO4,3 g (NH4 )2 S2 O8,微沸约1 h,补加蒸馏水使体积为25~50 mL(如锥型瓶壁上有白色凝聚物,应用蒸馏水将其冲入溶液中),再加热数分钟。
冷却后,加一滴酚酞,并用6 mol/L NaOH将溶液中和至微红色。
再滴加2 mol/L HCl使粉红色恰好褪去,转入100 mL容量瓶中,加水稀释至刻度,移取25 mL至50 mL比色管中,加1 mL混合试剂,摇匀后,放置10 min,加水稀释至刻度再摇匀,放置10 min,以试剂空白作参比,用1cm比色皿,于波长880 nm处测定吸光度(若分光光度计不能测定880 nm处的吸光度,可选择710 nm波长)。
五、数据处理
1、总磷的测定
由标准曲线查得磷的含量,按下式计算水中磷的含量:
式中,P为水中磷的含量,g/L;
Pi为由标准曲线上查得磷含量,μg;
V为测定时吸取水样的体积(本实验V=25.00mL)。
六、思考题
1.水体中氮、磷的主要来源有哪些?
2.被测水体的富营养化状况如何?。