七年级数学上册数学压轴题专题练习(解析版)
七年级上册数学 压轴解答题专题练习(解析版)
![七年级上册数学 压轴解答题专题练习(解析版)](https://img.taocdn.com/s3/m/12c1ad2e6bec0975f565e23b.png)
七年级上册数学 压轴解答题专题练习(解析版) 一、压轴题 1.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题.(1)请直接写出a 、b 、c 的值. a = b = c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.2.如图一,点C 在线段AB 上,图中有三条线段AB 、AC 和BC ,若其中一条线段的长度是另外一条线段长度的2倍,则称点C 是线段AB 的“巧点”.(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”) (问题解决)(2)如图二,点A 和B 在数轴上表示的数分别是20-和40,点C 是线段AB 的巧点,求点C 在数轴上表示的数。
(应用拓展)(3)在(2)的条件下,动点P 从点A 处,以每秒2个单位的速度沿AB 向点B 匀速运动,同时动点Q 从点B 出发,以每秒4个单位的速度沿BA 向点A 匀速运动,当其中一点到达中点时,两个点运动同时停止,当A 、P 、Q 三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间()t s 的所有可能值.3.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由. 4.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB .(1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.5.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?6.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?7.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 8.综合与实践问题情境 在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3(1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程)②若AB a ,AC b =,则MN =___________;(直接写出结果)(2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON .③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果)(3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)9.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .10.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.11.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.12.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x)+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB值的不随着时间t的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(1)是;(2)10或0或20;(3)152t=;t=6;607t=;t=12;907t=;454t=.【解析】【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;(3)根据题意先用t 的代数式表示出线段AP ,AQ ,PQ ,再根据新定义列出方程,得出合适的解即可求出t 的值.【详解】解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点, 故答案为:是;(2)设C 点表示的数为x ,则AC=x+20,BC=40-x ,AB=40+20=60,根据“巧点”的定义可知:①当AB=2AC 时,有60=2(x+20),解得,x=10;②当BC=2AC 时,有40-x=2(x+20),解得,x=0;③当AC=2BC 时,有x+20=2(40-x ),解得,x=20.综上,C 点表示的数为10或0或20;(3)由题意得()()60601026046601015t t AP t AQ t PQ t t -≤≤⎧⎪==-=⎨-≤⎪⎩,,<, (i )、若0≤t ≤10时,点P 为AQ 的“巧点”,有①当AQ=2AP 时,60-4t=2×2t , 解得,152t =, ②当PQ=2AP 时,60-6t=2×2t ,解得,t=6;③当AP=2PQ 时,2t=2(60-6t ), 解得,607t =; 综上,运动时间()t s 的所有可能值有152t =;t=6;607t =; (ii )、若10<t ≤15时,点Q 为AP 的“巧点”,有①当AP=2AQ 时,2t=2×(60-4t ),解得,t=12;②当PQ=2AQ 时,6t-60=2×(60-4t ), 解得,907t =; ③当AQ=2PQ 时,60-4t=2(6t-60), 解得,454t =. 综上,运动时间()t s 的所有可能值有:t=12;907t =;454t =.故,运动时间()t s 的所有可能值有:152t =;t=6;607t =;t=12;907t =;454t =. 【点睛】 本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解.3.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论;【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3;∴AB=9;∵P 到A 和点B 的距离相等,∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t -分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.4.(1)3.(2)存在.x 的值为3.(3)不变,为2.【解析】【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.【详解】解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1∴A,B 两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P 点在A 、B 之间,x+2+1-x=7,此方程不成立;②若P 点在B 点右侧,x+2+x-1=7,解得x=3.答:存在.x 的值为3.(3)BC AB -的值不随运动时间t (秒)的变化而改变,为定值,是2.理由如下: 运动t 秒后,A 点表示的数为-2-t,B 点表示的数为1+2t,C 点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.BC=6+5t-(1+2t)=5+3t.所以BC-AB=5+3t-3-3t=2.【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.5.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论.【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧,∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,∴点A 表示的数为20,∴数轴上表示如下:AB 之间的距离为:20-(-10)=30;(2)∵线段OB 上有点C 且6BC =,∴点C 表示的数为-4,∵2PB PC =,设点P 表示的数为x ,则1024x x +=+,解得:x=2或-6,∴点P 表示的数为2或-6;(3)由题意可知:点P第一次移动后表示的数为:-1,点P第二次移动后表示的数为:-1+3=2,点P第三次移动后表示的数为:-1+3-5=-3,…,∴点P第n次移动后表示的数为(-1)n•n,∵点A表示20,点B表示-10,当n=20时,(-1)n•n=20;当n=10时,(-1)n•n=10≠-10,∴第20次P与A重合;点P与点B不重合.【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系.6.(1)2;(2)1cm;(3)910秒或116秒【解析】【分析】(1)将x=﹣3代入原方程即可求解;(2)根据题意作出示意图,点C为线段AB上靠近A点的三等分点,根据线段的和与差关系即可求解;(3)求出D和B表示的数,然后设经过x秒后有PD=2QD,用x表示P和Q表示的数,然后分两种情况①当点D在PQ之间时,②当点Q在PD之间时讨论即可求解.【详解】(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;故k=2;(2)当C在线段AB上时,如图,当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,∵D为AC的中点,∴CD=12AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910 ②当点Q 在PD 之间时,∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.7.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或10114 【解析】【分析】(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可;【详解】解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线,∴∠BOD=90°,∠BOE=∠DOE=12∠BOD =45° ∵85AOE ∠=∴∠AOB=∠AOE +∠BOE=130°∵OC 是AOB ∠的角平分线,∴∠AOC=∠BOC=12AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20°(2)由原图可知:∠COD=∠DOE -∠COE=25°,故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ;①当05t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20°∴∠AOD ≠∠COE∴∠AOD +∠COD ≠∠COE +∠COD∴此时AOC DOE ∠≠∠;②当59t <<时,如下图所示∵∠AOD=∠AOB -∠BOD=40°,∠COE=20°∴∠AOD ≠∠COE∴∠AOD -∠COD ≠∠COE -∠COD∴此时AOC DOE ∠≠∠;③当913t <<时,如下图所示:OC 和OE 旋转的角度均为5t此时∠AOC=65°-5t ,∠DOE=5t -45°∵AOC DOE ∠=∠∴65-5t=5t -45解得:t=11综上所述:当t =11时,AOC DOE ∠=∠.(3)OE 与OB 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷10°=6.5s ; OC 为OA 的反向延长线时运动时间为(180°+65°)÷10=24.5s ;OE 为OB 的反向延长线时运动时间为(180°+45°)÷5=45s ;①当0 6.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=65°-10m ,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴65-10m =45(45-5m ) 解得:m =296; ②当6.59m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=45°-5m∵45AOC EOB ∠=∠ ∴10m -65=45(45-5m ) 解得:m =10114; ③当924.5m <<,如下图所示OC 旋转的角度均为10m , OE 旋转的角度均为5m∴此时∠AOC=10m -65°,∠BOE=5m -45°∵45AOC EOB ∠=∠ ∴10m -65=45(5m -45) 解得:m =296,不符合前提条件,故舍去; 综上所述:m=296或10114. 【点睛】此题考查的是角的和与差和一元一次方程的应用,掌握各角之间的关系、用一元一次方程解动角问题和分类讨论的数学思想是解决此题的关键.8.(1)①3;②12a ;(2)③40︒;④40;(3)12n 【解析】【分析】(1)①先求出BC ,再根据中点求出AM 、BN ,即可求出MN 的长;②利用①的方法求MN 即可;(2)③先求出∠BOC ,再利用角平分线的性质求出∠AOM ,∠BON ,即可求出∠MON ; ④利用③的方法求出∠MON 的度数;(3)先求出∠BOC ,利用角平分线的性质分别求出∠AOM ,∠BON ,再根据角度的关系求出答案即可.【详解】(1)①∵6AB =,2AC =,∴BC=AB-AC=4,∵M 是AC 的中点,N 是BC 的中点. ∴112AM AC ==, 122BN BC ==, ∴MN=AB-AM-BN=6-1-2=3; ②∵AB a ,AC b =,∴BC=AB-AC=a-b ,∵M 是AC 的中点,N 是BC 的中点. ∴12AM b =,1()2BN a b =-, ∴MN=AB-AM-BN=11()22a b a b ---=12a , 故答案为:12a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒,∴∠BOC=∠AOB-∠AOC=50︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=15︒,∠BON=25︒,∴∠MON=∠AOB-∠AOM-∠BON=40︒;④∵80AOB ∠=︒,AOC m ∠=︒,∴∠BOC=(80-m)︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=12m ,∠BON=(40-12m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒, 故答案为:40;(3)∵AOB n ∠=︒,AOC m ∠=︒,∴∠BOC=∠AOC-∠AOB=(m-n)︒,∵AOC ∠和BOC ∠的角平分线分别是OM ,ON ,∴∠AOM=12m ,∠CON=1()2m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111()222m m m n n ---=, 故答案为:12n . 【点睛】此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用.9.(1)50;(2)2BOD α∠=;(3)2α;(4)3602α︒-【解析】【分析】(1)根据“∠COD=90°,∠COE=25°”求出∠DOE 的度数,再结合角平分线求出∠AOD 的度数,即可得出答案;(2)重复(1)中步骤,将∠COE 的度数代替成α计算即可得出答案;(3)根据图得出∠DOE=∠COD-∠COE=90°-α,结合角平分线的性质以及平角的性质计算即可得出答案;(4)根据图得出∠DOE=∠COE-∠COD=α-90°,结合角平分线的性质以及平角的性质计算即可得出答案.【详解】解:(1)∵∠COD=90°,∠COE=25°∴∠DOE=∠COD-∠COE=65°又OE 平分∠AOD∴∠AOD=2∠DOE=130°∴∠BOD=180°-∠AOD=50°(2)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α又OE平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α(3)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α又OE平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α(4)∵∠COD=90°,∠COE=α∴∠DOE=∠COE-∠COD=α-90°又OE平分∠AOD∴∠AOD=2∠DOE=2?α-180°∴∠BOD=180°-∠AOD=360°-2α【点睛】本题考查的是求角度,难度适中,涉及到了角平分线以及平角的性质需要熟练掌握.10.(1)MN=40;(2)EF=35;(3)509=t或t=12.【解析】【分析】(1)由MN=BM+BN=1122AB BD+即可求出答案;(2)根据EF=AD﹣AE﹣DF,可求出答案;(3)可得PE=AE﹣AB﹣BP=52t+,DF=752t-,则QF=55722t-或75522t-,由PE=QF可得方程,解方程即可得出答案.【详解】解:(1)∵M为AB的中点,N为BD的中点,∴12BM AB=,12BN BD=,∴MN=BM+BN=1122AB BD+=11804022AD=⨯=;(2)∵E为AC的中点,F为BD的中点,∴12AE AC=,12DF BD=,()()1111352222EF AD AE DF AD AC BD AD AD BC AD BC =--=-+=-+=-=∴(3)运动t秒后,AQ=AC+CQ=15+4t,∵E为AQ的中点,∴115222AE AQ t ==+, ∴1552522PE AE AB BP t t t =--=+--=+, ∵DP =DB ﹣BP =75﹣t ,F 为DP 的中点, ∴175222t DF DP ==-, 又DQ =DC ﹣CQ =65﹣4t , ∴755576542222t QF DQ DF t t =-=--+=-, 或75522QF DF DQ t =-=-, 由PE =QF 得:52t +=55722t -或52t +=55722t - 解得:509=t 或t =12. 【点睛】本题考查了一元一次方程的应用以及线段的中点,找准等量关系,正确列出一元一次方程是解题的关键.11.(1) ①6条;②10;(2)1122MN AD BC =-,证明见解析;(3) 1t =. 【解析】【分析】(1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12BN BD =,利用MN MC BN BC =+-代入化简即可;(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得到2EC t =,FD t =,62t EQ +=,代入AQ+AE+AF=32AD ,化简则可求出t . 【详解】解:(1) ①线段有:AB ,AC ,AD ,BC ,BD ,CD ,共6条;②∵BD =6,BC =1,∴CD=BD-BC=6-1=5,当PA +PD 的值最小时,P 为AD 的中点,∴5510PA PD AD AC CD +==+=+=; (2)1122MN AD BC =-.如图2示:∵M ,N 分别为AC ,BD 的中点,∴12MC AC =,12BN BD = ∴MN MC BN BC =+-1122AC BD BC =+- ()12AC BD BC =+- ()12AB BC BD BC =++- 1122AD BC =-; (3)如图示:∵C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,∴3AC =,6CD =,根据E ,F 两点同时从C ,D 出发,速度是2cm/s ,1cm/s ,Q 为EF 的中点,运动时间为t , 则有:2EC t =,FD t =,6222EF AD AE FD t EQ --+=== 当AQ+AE+AF=32AD 时, 则有:32AE EQ AE AD FD AD +++-=即是:()()6932329922t t t t +-++-+-=⨯ 解之得:1t =.【点睛】 本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.12.(1)点P 在线段AB 上的13处;(2)13;(3)②MN AB的值不变. 【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
有理数(压轴题专练)(解析版)-2023-2024学年七年级数学上册单元速记巧练(人教版)
![有理数(压轴题专练)(解析版)-2023-2024学年七年级数学上册单元速记巧练(人教版)](https://img.taocdn.com/s3/m/7bf6c72d15791711cc7931b765ce05087732754e.png)
有理数(压轴题专练)【题型一利用数轴化简绝对值】【答案】2c(1)在如图所示的数轴上将a,b,c三个数表示出来;(2)解:根据数轴位置关系,可得:0a >、0b c +<、【题型二几何意义化简绝对值】②当>4x 时,93443x x x x =-+++-+=,【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的(4)由以上的探索猜想,对于任意有理数x,x+【题型三数轴上求时间问题】让其相等即可求出在相遇之前与相遇之后两种情况,利用两点间的距离公式结合x=时,点P到点A的距离PA=______;此时点(1)当6点运动,【题型四数轴上定值问题】1.如图,从数轴上的原点开始,先向左移动1cm 到达A 点,再向左移动4cm 到达B 点,然后向右移动10cm 到达C 点.(1)用1单位长度表示1cm ,请你在题中所给的数轴上表示出A 、B 、C 三点的位置;(2)把这条数轴在数m 处对折,使表示11-和2017两数的点恰好互相重合,则与B 点重合的点所表示的数是______________,=m ___________.(3)把点C 到点A 的距离记为CA ,点B 到点A 的距离记为BA ,①-=CA BA ___________cm ;②若点B 以每秒3cm 的速度向左移动,同时A 、C 以每秒1cm 、5cm 的速度向右移动,设移动时间为(>0)t t 秒,试探究-CA AB 的值是否会随着t 的变化而改变?请说明理由.【答案】(1)见解析(2)2011,1003(3)①2,②不会改变,见解析【分析】(1)根据题意画图即可;(2)利用对称的性质列方程解答即可;(3)①由CA =6,BA =4即得答案;②移动后,B 表示的数是-5-3t ,A 表示的数是-1+t ,C 表示的数是5+5t ,可得AB =4t +4,CA =4t +6,即得CA -AB =2.【详解】(1)解:如图所示:(2)解: 数轴在数m 处对折,表示11-和2017两数的点恰好互相重合,∴2017(11)m m -=--,∴1003m =∴与B 点重合的点所表示的数是1003[1003(5)]2011+--=故答案为:2011,1003;(3)解:①6CA =,4BA =,∴2CA BA -=,故答案为:2;②CA BA -的值是不会改变,理由如下:移动后,B 表示的数是53t --,A 表示的数是1t -+,C 表示的数是55t +,∴1(53)44AB t t t =-+---=+,(55)(1)46CA t t t =+--+=+,∴46(44)2CA BA t t -=+-+=∴CA BA -的值是不会改变.【点睛】本题考查数轴上点表示的数,解题的关键是掌握数轴上两点间的距离公式.2.阅读材料:如图(1),在数轴上A 点表示的数为a ,B 点表示的数为b ,则点A 到点B 的距离记为AB .线段AB 的长可以用右边的数减去左边的数表示,即AB =b -a .解决问题:如图(2),数轴上点A 表示的数是-4,点B 表示的数是2,点C 表示的数是6.(1)若数轴上有一点D ,且AD =3,求点D 表示的数;(2)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .求点A 表示的数(用含t 的代数式表示),BC 等于多少(用含t 的代数式表示).(3)请问:3BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)-7或-1,(2)-4-t t +4(3)不变,理由见解析.【分析】(1)设D 表示的数为a ,由绝对值的意义容易得出结果;(2)分别表示出t 秒后A 、B 、C 分别对应的数,再求AC 即可;(3)表示出BC 和AB ,再相减即可得出结论.【详解】(1)设D 表示的数为a ,∵AD =3,∴|-4-a |=3,解得:a =-7或-1;(2)将点A 向左移动t 个单位长度,则移动后的点表示的数为-4-t ;将点B 和点C 分别向右运动2t 和3t 个单位长度,则移动后的点表示的数分别为2+2t ,6+3t ;则BC =(6+3t )-(2+2t )=t +4;(3)AB =(2+2t )-(-4-t )=3t +6,3BC -AB =3(t +4)-(3t +6)=6,故3BC -AB 的值不随时间t 的变化而改变.【点睛】此题考查了数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.【题型五数轴上找点的位置问题】结论:数轴上任意两点表示的数为分别(4)在(3)条件下,在图根据距离计算方法列出等式计算即可.【答案】(1)1-(2)0.5(3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)点F 可能在A 、B 之间,也可能在点B 的左侧.【详解】(1)解:点B 向右移动5个单位长度后,点B 表示的数为1;三个点所表示的数中最小的数是点A ,为1-.(2)解:点D 到A ,C 两点的距离相等;故点D 为AC 的中点.D 表示的数为:0.5.(3)解:当点E 在A 、B 之间时,2=EA EB ,从图上可以看出点E 为3-,∴点E 表示的数为3-;当点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,∴点E 表示的数是7-.综上:点E 表示的数为3-或7-.【点睛】本题主要考查的是数轴的认识,解题的关键是找出各点在数轴上的位置.【题型六数轴上新定义型问题】1.在数轴上,点A 表示的数为1,点B 表示的数为3,对于数轴上的图形M ,给出如下定义:P 为图形M 上任意一点,Q 为线段AB 上任意一点,如果线段PQ 的长度有最小值,那么称这个最小值为图形M 关于线段AB 的极小距离,记作1(d M ,线段)AB ;如果线段PQ 的长度有最大值,那么称这个最大值为图形M 关于线段AB 的极大距离,记作2(d M ,线段)AB .例如:点K 表示的数为4,则1(d 点K ,线段2)1(AB d =,点K ,线段)3AB =.已知点O 为数轴原点,点C D ,为数轴上的动点.(1)1d (点O ,线段AB )=_________,2d (点O ,线段AB )_________;(2)若点C 表示的数m ,点D 表示数12m d +,(线段CD ,线段)2AB =,求m 的值;从表示数【点睛】本题主要考查了数轴上的点表示数,数轴上两点之间的距离,熟练掌握计算数轴上两点间的距离的方法,正确理解题意,进行分类讨论是解题的关键.。
七年级数学上册数学压轴题测试卷(解析版)
![七年级数学上册数学压轴题测试卷(解析版)](https://img.taocdn.com/s3/m/3d79478eeefdc8d377ee3212.png)
七年级数学上册数学压轴题测试卷(解析版)一、压轴题1.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.2.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=12∠AOQ?若存在,求出t的值;若不存在,请说明理由.3.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D 是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?4.已知线段AD=80,点B、点C都是线段AD上的点.(1)如图1,若点M为AB的中点,点N为BD的中点,求线段MN的长;(2)如图2,若BC=10,点E是线段AC的中点,点F是线段BD的中点,求EF的长;(3)如图3,若AB=5,BC=10,点P、Q分别从B、C出发向点D运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t秒,点E为AQ的中点,点F为PD的中点,若PE=QF,求t的值.5.如图1,点A,B,C,D为直线l上从左到右顺次的4个点.(1) ①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.6.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n个点,线段共有条.(3)拓展探究:具有公共端点的两条射线OA、OB形成1个角∠AOB(∠AOB<180°);在∠AOB内部再加一条射线OC,此时具有公共端点的三条射线OA、OB、OC共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?7.如图1,在数轴上A 、B 两点对应的数分别是6,-6,∠DCE=90°(C 与O 重合,D 点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α. ①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.8.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 9.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.10.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?11.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.12.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)8;(2)4或10;(3)t的值为167和329【解析】【分析】(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C表示的数为x,由题意得|x﹣(﹣2)|=3|x﹣6|∴|x+2|=3|x﹣6|∴x+2=3x﹣18或x+2=18﹣3x∴x=10或x=4答:点C表示的数为4或10.(3)∵点C位于A,B两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t ∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.2.(1)∠POQ =104°;(2)当∠POQ=40°时,t的值为10或20;(3)存在,t=12或180 11或1807,使得∠POQ=12∠AOQ.【解析】【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到∠AOP=2t=4°,∠BOQ=6t=12°,利用∠POQ =∠AOB-∠AOP-∠BOQ求出结果即可;(2)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t≤15时,当15<t≤20时,当20<t≤30时,分别列出等量关系式求解即可.【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,∠AOP=2t=4°,∠BOQ=6t=12°,∴∠POQ =∠AOB-∠AOP-∠BOQ=120°-4°-12°=104°. (2)当0≤t≤15时,2t +40+6t=120, t=10;当15<t≤20时,2t +6t=120+40, t=20;当20<t≤30时,2t=6t-120+40, t=20(舍去);答:当∠POQ=40°时,t的值为10或20.(3)当0≤t≤15时,120-8t=12(120-6t),120-8t=60-3t,t=12;当15<t≤20时,2t–(120-6t)=12(120 -6t),t=18011.当20<t≤30时,2t–(6t -120)=12(6t -120),t=1807.答:存在t=12或18011或1807,使得∠POQ=12∠AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.3.(1)2;(2)1cm;(3)910秒或116秒【解析】【分析】(1)将x=﹣3代入原方程即可求解;(2)根据题意作出示意图,点C为线段AB上靠近A点的三等分点,根据线段的和与差关系即可求解;(3)求出D和B表示的数,然后设经过x秒后有PD=2QD,用x表示P和Q表示的数,然后分两种情况①当点D在PQ之间时,②当点Q在PD之间时讨论即可求解.【详解】(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;故k=2;(2)当C在线段AB上时,如图,当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,∵D为AC的中点,∴CD=12AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6, ∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时, ∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910②当点Q 在PD 之间时, ∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 【点睛】本题考查了方程的解,线段的和与差,数轴上的动点问题,一元一次方程与几何问题,分情况讨论是本题的关键.4.(1)MN =40;(2)EF=35;(3)509=t 或t =12. 【解析】 【分析】(1)由MN =BM+BN =1122AB BD +即可求出答案; (2)根据EF =AD ﹣AE ﹣DF ,可求出答案;(3)可得PE =AE ﹣AB ﹣BP =52t +,DF =752t -,则QF =55722t -或75522t -,由PE =QF 可得方程,解方程即可得出答案. 【详解】解:(1)∵M 为AB 的中点,N 为BD 的中点,∴12BM AB =,12BN BD =,∴MN =BM+BN =1122AB BD +=11804022AD =⨯=; (2)∵E 为AC 的中点,F 为BD 的中点,∴12AE AC =,12DF BD =,()()1111352222EF AD AE DF AD AC BD AD AD BC AD BC =--=-+=-+=-=∴(3)运动t 秒后,AQ =AC+CQ =15+4t ,∵E 为AQ 的中点, ∴115222AE AQ t ==+, ∴1552522PE AE AB BP t t t =--=+--=+, ∵DP =DB ﹣BP =75﹣t ,F 为DP 的中点,∴175222tDF DP ==-, 又DQ =DC ﹣CQ =65﹣4t ,∴755576542222t QF DQ DF t t =-=--+=-, 或75522QF DF DQ t =-=-, 由PE =QF 得:52t +=55722t -或52t +=55722t - 解得:509=t 或t =12. 【点睛】本题考查了一元一次方程的应用以及线段的中点,找准等量关系,正确列出一元一次方程是解题的关键.5.(1) ①6条;②10;(2)1122MN AD BC =-,证明见解析;(3) 1t =. 【解析】 【分析】(1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12BN BD =,利用MN MC BN BC =+-代入化简即可;(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得到2EC t =,FD t =,62t EQ +=,代入AQ+AE+AF=32AD ,化简则可求出t . 【详解】解:(1) ①线段有:AB ,AC ,AD ,BC ,BD ,CD ,共6条; ②∵BD =6,BC =1, ∴CD=BD-BC=6-1=5,当PA +PD 的值最小时,P 为AD 的中点, ∴5510PA PD AD AC CD +==+=+=;(2)1122MN AD BC =-. 如图2示:∵M ,N 分别为AC ,BD 的中点,∴12MC AC =,12BN BD = ∴MN MC BN BC =+-1122AC BD BC =+- ()12AC BD BC =+- ()12AB BC BD BC =++- 1122AD BC =-; (3)如图示:∵C 是AD 的一个三等分点,DC >AC ,且AD=9cm , ∴3AC =,6CD =,根据E ,F 两点同时从C ,D 出发,速度是2cm/s ,1cm/s ,Q 为EF 的中点,运动时间为t , 则有:2EC t =,FD t =,6222EF AD AE FD t EQ --+=== 当AQ+AE+AF=32AD 时, 则有:32AE EQ AE AD FD AD +++-= 即是:()()6932329922t t t t +-++-+-=⨯ 解之得:1t =. 【点睛】本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程. 6.(1)45;(2)(1)2n n -;(3)(1)2n n -;(4)共需拍照991张,共需冲印2025张纸质照片【解析】【分析】(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.【详解】解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).故答案为:45;(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条. 故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成(1)2n n -个角; 故答案为:(1)2n n -; (4)解:4545-119912+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片【点睛】此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.7.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t ,3t 2= 【解析】【分析】(1)根据角平分线的定义即可得出答案;(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF ,再减去旋转角度即可得到∠DCF ;②先由补角的定义表示出∠BCE ,再根据旋转和角平分线的定义表示出∠DCF ,即可得出两者的数量关系;(3)根据α=∠FCA-∠DCA ,β=∠AC 1D 1+∠AC 1F 1,可得到表达式,再根据|α-β|=45°建立方程求解.【详解】(1)∵∠ACE=90°,CF 平分∠ACE∴∠AOF=12∠ACE=45° 故答案为:45°; (2)①当t=1时,旋转角度为30°∴∠ACE=90°+30°=120°∵CF 平分∠ACE∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°故答案为:30°;②∠BCE=2α,证明如下:旋转30t 度后,∠ACE=(90+30t)度∴∠BCE=180-(90+30t)=(90-30t)度∵CF 平分∠ACE∴∠ACF=12∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度 ∴2∠DCF=2(45-15t)= 90-30t=∠BCE即∠BCE=2α(3)α=∠FCA-∠DCA=12(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+12(90-30t)=45+15t ||45βα-=︒|30t|=45° ∴3t 2=【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.8.(1)1D ;2D ,3D (2)点P 表示的数为24或212. 【解析】【分析】(1)分别计算D 1,D 2,D 3三点与M,N 的距离,再根据新定义的概念得到答案; (2)设点P 表示的数为x ,分以下情况列方程求解:①2NP NM =;②2NP NM =.【详解】解:(1)D 1M=3,D 1N=6,2D 1M=D 1N ,故D 1符合题意;D 2M=6.5,D 2N=2.5,故D 2不符合题意;D 3M=14,D 3N=5,故D 3不符合题意;因此点D 1是点,M N 的“倍联点”.又2D 2N= D 3N ,∴点N 是D 2,D 3的“倍联点”.故答案为:D 1;D 2,D 3.(2)设点P 表示的数为x ,第一种情况:当2NP NM =时,则62[6(3)]x -=⨯--,解得24x =.第二种情况:当2NP NM =时,则2(6)6(3)x -=--, 解得:212x =. 综上所述,点P 表示的数为24或212. 【点睛】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义的概念是解题的关键.9.(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析; (2)见解析.【解析】【分析】(1)由关于x 的方程()46n x n -=-无解.可得4n -=0,从而可求得n 的值; (2)根据线段中点的定义可知PN=12AP ,PM=12PB ,从而得到MN=12(PA+PB )=12AB ,于是可求;(3)设AB=a ,BP=b .先表示PB+PA 的长,然后再表示PC 的长,最后代入计算即可.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM= 12PB . 同理:PN= 12AP .. ∴MN=PN+PM=12(PB+AP )= 12AB= 12×4=2. ∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+ 2212PA PB a b PC a b ++∴==+, 所以PA PB PC+的值不变. 【点睛】 本题主要考查的是中点的有关计算,掌握线段中点的定义是解题的关键.10.(1)①10°,②18°;(2)圆圆的说法正确,理由见解析.【解析】【分析】(1)①根据∠AOB 与∠COD 互余求出∠COD ,再利用角度的和差关系求出∠AOC+∠BOD=30°,最后根据∠AOC=2∠BOD 即可求出∠BOD ;②设∠BOD=x ,根据角平分线表示出∠COD 和∠BOC ,根据∠AOC=2∠BOD 表示出∠AOC ,最后根据∠AOB 与∠COD 互余建立方程求解即可;(2)分两种情况讨论:OC 靠近OA 时与OC 靠近OB 时,画出图形分类计算判断即可.【详解】解:(1)①∵∠AOB 与∠COD 互余,且∠AOB=60°,∴∠COD=90°-∠AOB=30°,∴∠AOC+∠BOD=∠AOB -∠COD=60°-30°=30°,∵∠AOC=2∠BOD ,∴2∠BOD+∠BOD=30°,∴∠BOD=10°;②设∠BOD=x ,∵OD 平分∠BOC ,∴∠BOD=∠COD=x ,∠BOC=2∠BOD=2x ,∵∠AOC=2∠BOD ,∴∠AOC=2x ,∴∠AOB=∠AOC+∠COD +∠BOD=4x ,∵∠AOB 与∠COD 互余,∴∠AOB+∠COD=90°,即4x+x =90°,∴x =18°,即∠BOD=18°;(2)圆圆的说法正确,理由如下:当OC靠近OB时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠BOC+∠BOD,∴∠AOD+∠BOD+∠BOC+∠BOD=180°,∵∠AOC=∠AOD+∠BOD+∠BOC,∴∠AOC+∠BOD=180°,∵∠AOC=2∠BOD,∴2∠BOD+∠BOD=180°,∴∠BOD=60°;当OC靠近OA时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠AOC+∠AOD,∴∠AOD+∠BOD+∠AOC+∠AOD=180°,∵∠AOC=2∠BOD,∴∠AOD+∠BOD+2∠BOD +∠AOD=180°,即3∠BOD+2∠AOD=180°,∵∠AOD不确定,∴∠BOD也不确定,综上所述,当OC靠近OB时,∠BOD的度数为60°,当OC靠近OA时,∠BOD的度数不确定,所以圆圆的说法正确.【点睛】本题考查角的计算,正确找出角之间的关系,分情况画出图形解答是解题的关键. 11.(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.12.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12AB,∴CM=14AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
部编数学七年级上册专题1.8有理数(压轴题综合训练卷)(人教版)(解析版)含答案
![部编数学七年级上册专题1.8有理数(压轴题综合训练卷)(人教版)(解析版)含答案](https://img.taocdn.com/s3/m/001f22640a4c2e3f5727a5e9856a561252d32102.png)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题1.8 有理数(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得 分一.选择题(本大题共10小题,每小题3分,满分30分)1.(2022•黔东南州)下列说法中,正确的是( )A .2与﹣2互为倒数B .2与12互为相反数C .0的相反数是0D .2的绝对值是﹣2【思路点拨】根据倒数的定义判断A 选项;根据相反数的定义判断B 选项;根据0的相反数是0判断C 选项;根据正数的绝对值等于它本身判断D 选项.【解题过程】解:A 选项,2与﹣2互为相反数,故该选项不符合题意;B 选项,2与12互为倒数,故该选项不符合题意;C 选项,0的相反数是0,故该选项符合题意;D 选项,2的绝对值是2,故该选项不符合题意;故选:C .2.(2021秋•滕州市月考)下列说法中正确的有( )个.①0是整数,也是正数:②﹣123是负分数;③3.2是正小数,不是正分数;④自然数一定是正数;⑤负分数一定是负有理数;⑥非负数就是正数和零.A .0B .1C .2D .3【思路点拨】分别根据有理数的定义与分类以及正数和负数的定义逐一判断即可.【解题过程】解:①0是整数,但0既不是正数,也不是负数,故原说法错误:②﹣123是负分数,说法正确;③3.2是正小数,也是正分数,故原说法错误;④自然数一定是正数,说法错误,0是自然数,但0既不是正数,也不是负数;⑤负分数一定是负有理数,说法正确;⑥非负数就是正数和零,说法正确.所以说法中正确的有3个.故选:D .3.(2022春•东台市月考)某种细胞开始分裂时有两个,1小时后分裂成4个并死去一个,2小时后分裂成6个并死去一个,3小时后分裂成10个并死去一个,按此规律,8小时后细胞存活的个数是( )A .253B .255C .257D .259【思路点拨】根据题意,n 个小时后细胞存活的个数是2n +1,求出n =8时的值即可.【解题过程】解:根据题意,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去一个,剩9个,9=23+1;……n 个小时后细胞存活的个数是2n +1,当n =8时,存活个数是28+1=257.故选:C .4.(2021秋•新华区校级期中)若a ,b 互为相反数,且ab ≠0,c 、d 互为倒数,|m |=2,则(a +b )2021+(ba)3﹣3cd +2m 的值( )A .0B .0或﹣8C .﹣2成6D .2或﹣6【思路点拨】根据相反数、倒数、绝对值得出a +b =0,ba=−1,cd =1,m =±2,代入求出即可.【解题过程】解:∵a 、b 互为相反数,且ab ≠0,c 、d 互为倒数,|m |=2,∴a+b=0,ba=−1,cd=1,m=±2,当m=2时,(a+b)2021+(ba)3﹣3cd+2m=02021+(﹣1)3﹣3×1+2×2=0﹣1﹣3+4=0,当m=﹣2时,(a+b)2021+(ba)3﹣3cd+2m=02021+(﹣1)3﹣3×1+2×(﹣2)=0﹣1﹣3﹣4=﹣8.故(a+b)2021+(ba)3﹣3cd+2m的值是0或﹣8.故选:B.5.(2020秋•江阴市校级月考)电子跳蚤落在数轴上的某点K0,第一步从K0向左跳1个单位到K1,第二步由K1向右跳2个单位到K2,第三步由K2向左跳3个单位到K3,第四步由K3跳4个单位到K4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点K100所表示的数恰是30,则电子跳蚤的初始位置K0点所表示的数为( )A.﹣26B.﹣20C.﹣30D.30【思路点拨】设电子跳蚤落在数轴上的某点K0=a,规定向左为负,向右为正,根据题意列出方程,再进一步根据有理数的加法法则进行计算.【解题过程】解:设电子跳蚤落在数轴上的某点K0=a,规定向左为负,向右为正.根据题意,得a﹣1+2﹣3+4﹣…+100=30,a+(2﹣1)+…+(100﹣99)=30,a+50=30,a=﹣20.故选:B.6.(2022•钟山县模拟)计算:1+12+122+123+124+⋯⋯+1299+12100结果是( )A.1−12100B.1−12101C.2−12100D.2−12101【思路点拨】根据2×(12+122+123+124+⋯⋯+1299+12100)=1+12+122+123+124+⋯⋯+1299,可得12+122+123+124+⋯⋯+1299+12100=1+12+122+123+124+⋯⋯+1299−(12+122+123+124+⋯⋯+1299+12100)=1−12100计算即可求解.【解题过程】解:1+12+122+123+124+⋯⋯+1299+12100=1+1−1 2100=2−1 2100.故选:C.7.(2022春•岳麓区校级月考)在一次数学活动课上,某数学老师在4张同样的纸片上各写了一个正整数,从中随机取2张,并将它们上面的数相加,重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到,根据以上信息,下列判断正确的是( )A.四个正整数中最小的是1B.四个正整数中最大的是8C.四个正整数中有两个是2D.四个正整数中一定有3【思路点拨】分别列出两数相加为5,6,7,8的所有可能性求解.【解题过程】解:相加得5的两个整数可能为:1,4或2,3.相加得6的两个整数可能为:1,5或2,4或3,3.相加得7的两个整数可能为:1,6或2,5或3,4.相加得8的两个整数可能为:1,7或2,6或3,5或4,4.∵每次所得两个整数和最小是5,∴最小两个数字为2,3,∵每次所得两个整数和最大是8,∴最大数字为4或5,当最大数字为4的时,四个整数分别为2,3,4,4.当最大数字为5时,四个整数分别为2,3,3,5.∴四个正整数中一定有3.故选:D.8.(2022•平邑县一模)小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为( )km.日期第1天第2天第3天第4天第5天低强度86654高强度121315128休息00000A.35B.36C.37D.38【思路点拨】根据“高强度”要求前一天必须“休息”,则如果“高强度”的距离比前一天+当天的“低强度”距离短的话,则没有必要选择“高强度”,因此只有第一天和第三天适合选择“高强度”计算出此时的距离即可.【解题过程】解:∵“高强度”要求前一天必须“休息”,∴当“高强度”的徒步距离>前一天“低强度”距离+当天“低强度”距离时选择“高强度”能使徒步距离最远,∵15>6+6,12>6+5,∴适合选择“高强度”的是第三天和第四天,又∵第一天可选择“高强度”,∴方案①第一天选择“高强度”,第二天“休息”,第三天选择“高强度”,第四天和第五天选择“低强度”,此时徒步距离为:12+0+15+5+4=36(km),方案②第一天选择“高强度”,第二天选择“低强度”,第三天选择“休息”,第四天选择“高强度”,第五天选择“低强度”,此时徒步距离为:12+6+0+12+4=34(km),综上,徒步的最远距离为36km.故选:B.9.(2020秋•江夏区校级月考)观察下列等式:12=1,22=4,32=9,42=16,52=25,…,若12+22+32+42+52+…+n2的个位数字是1(0<n≤2020,且n为整数),则n的最大值是( )A.2001B.2006C.2011D.2019【思路点拨】通过计算发现每10个数,末位数字循环一次,再结合选项进行判断即可求解.【解题过程】解:∵12=1,22=4,32=9,42=16,52=25,62=36,72=49,82=64,92=81,102=100,112=121,122=144,132=169,…,∴每10个数,末位数字循环一次,∴1+4+9+6+5+6+9+1+0=45,∵2001÷10=200……1,∴200×45+1=9001;∵2006÷10=200……6,∴200×45+1+4+9+6+5+6=9031;∵2011÷10=201……1,∴201×45+1=9046;∵2019÷10=201……9,∴202×45=9090;∵2006>2001,∴n的最大值为2006,故选:B.10.(2021秋•江岸区校级月考)下列说法中,正确的个数是( )①若|1a |=1a,则a≥0;②若|a|>|b|,则有(a+b)(a﹣b)是正数;③A、B、C三点在数轴上对应的数分别是﹣2、6、x,若相邻两点的距离相等,则x=2;④若代数式2x+|9﹣3x|+|1﹣x|+2011的值与x无关,则该代数式值为2021;⑤a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|的值为±1.A.1个B.2个C.3个D.4个【思路点拨】根据各个小题中的说法,可以判断是否正确,尤其是对于错误的结论,我们只要说明理由或者举出反例即可.【解题过程】解:若|1a|=1a,则a>0,故①错误,不合题意;若|a|>|b|,则a>b>0或a>0>b>﹣a或﹣a>b>0>a或0>a>b,当a>b>0时,则有(a+b)(a﹣b)>0是正数,当a>0>b>﹣a时,则有(a+b)(a﹣b)>0是正数,当﹣a>b>0>a时,则有(a+b)(a﹣b)>0是正数,当0>a>b时,则有(a+b)(a﹣b)>0是正数,由上可得,(a+b)(a﹣b)>0是正数,故②正确,符合题意;A、B、C三点在数轴上对应的数分别是﹣2、6、x,若相邻两点的距离相等,则x=2或﹣10或14,故③错误,不合题意;若代数式2x+|9﹣3x|+|1﹣x|+2011的值与x无关,则2x+|9﹣3x|+|1﹣x|+2011=2x+9﹣3x+x﹣1+2011=2019,故④错误,不合题意;∵a+b+c=0,abc<0,∴a、b、c中一定是一负两正,b+c=﹣a,a+c=﹣b,a+b=﹣c,不妨设a>0,b<0,c<0,∴b c|a|+a c|b|+a b|c|=−aa+−b−b+−c−c=﹣1+1+1=1,故⑤错误,不合题意;故选:A.评卷人得分二.填空题(本大题共5小题,每小题3分,满分15分)11.(2021秋•东城区期末)现把2021个连续整数1,2,3…2021的每个数的前面任意填上“+”号或者“﹣”号,然后将它们相加,则所得的结果绝对值的最小值为 1 .【思路点拨】根据有理数和绝对值的意义,得出绝对值和最小时数的符号规律,进而求出答案.【解题过程】解:根据绝对值的意义和题意可得,∵2021÷4=505……1,∴1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+13……+2018﹣2019﹣2020+2021=1+(2﹣3﹣4+5)+(6﹣7﹣8+9)+(10﹣11﹣12+13)+……+(2018﹣2019﹣2020+2021)=1+0+0+……+0=1,故答案为:1.12.(2021秋•公安县期末)小聪在纸上画了一条数轴后,折叠纸面,使数轴上表示﹣2的点与表示5的点重合,若数轴上A,B两点之间的距离为10,且A,B两点经上述折叠后重合,则B点表示的数为 6.5或﹣3.5 .【思路点拨】折叠后数轴上表示﹣2的点与表示5的点重合,点﹣2和点5的中点是1.5,数轴上A,B两点经上述折叠后重合,且A,B两点之间的距离为10,则A点与B点到1.5的距离都是5,进而求出B点表示的数即可.【解题过程】解:折叠后数轴上表示﹣2的点与表示5的点重合,折叠点为﹣2和5的中点:1.5.∵数轴上A,B两点经上述折叠后重合,且A,B两点之间的距离为10,∴A点与B点到1.5的距离都是5,当B点在中点右侧时,对应的数为1.5+5=6.5,当B点在中点左侧时,对应的数是1.5﹣5=﹣3.5.故答案为:6.5或﹣3.5.13.(2021秋•大田县期中)三个整数a,b,c满足a<b<c,且a+b+c=0.若|a|<10,则|a|+|b|+|c|的最大值为 34 .【思路点拨】根据a+b+c=0,a<b<c,可得a<0,c>0,a+b<0,则|a|>|b|,再由|a|<10,a,b,c都是整数,得到|a|≤9,则|b|≤8,根据|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,即可得到|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,由此求解即可.【解题过程】解:∵a+b+c=0,a<b<c,∴a<0,c>0,a+b<0,∴|a|>|b|,∵|a|<10,a,b,c都是整数,∴|a|≤9,∴|b|≤8,∵|a+b|=﹣(b+a)=﹣b﹣a,|b|≥﹣b,|a|≥a,∴|c|=|﹣a﹣b|=|a+b|≤|a|+|b|≤17,∴|a|+|b|+|c|的值最大为9+8+17=34,故答案为:34.14.(2021春•杨浦区校级期末)已知a,b,c为整数,且|a﹣b|2021+|c﹣a|2020=1,则|a﹣b|+|b﹣c|+|c﹣a|= 0或2 .【思路点拨】因为a、b、c都为整数,而且|a﹣b|2021+|c﹣a|2020=1,所以|a﹣b|与|c﹣a|只能是0或者1,于是进行分类讨论即可得出.【解题过程】解:∵a、b、c为整数,且|a﹣b|2021+|c﹣a|2020=1,∴有|a﹣b|=1,|c﹣a|=0或|a﹣b|=0,|c﹣a|=1①若|a﹣b|=1,|c﹣a|=0,则a﹣b=±1,a=c,∴|b﹣c|=|c﹣b|=|a﹣b|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=1+1+0=2,②|a﹣b|=0,|c﹣a|=1,则a=b,c﹣a=±1,∴|b﹣c|=|c﹣b|=|c﹣a|=1,∴|a﹣b|+|b﹣c|﹣|c﹣a|=0+1﹣1=0,故答案为:0或2.15.(2020秋•鄞州区期末)已知整数a,b,c,d的绝对值均小于5,且满足1000a+100b2+10c3+d4=2021,则abcd的值为 ±4 .【思路点拨】先根据条件确认个位上的1一定为d4产生,得d=±1或±3,①当d=±1时,d4=1,②当d=±3时,d4=81,分别代入计算可得答案.【解题过程】解:∵1000a+100b2+10c3+d4=2021,整数a,b,c,d的绝对值均小于5,∴个位上的1一定为d4产生,(±3)4=81,(±1)4=1,∴d=±1或±3,①当d=±1时,d4=1,∴1000a+100b2+10c3=2020,∴100a+10b2+c3=202,∴个位上的2是由c3产生的,∴c3=2或﹣8(﹣4~4中没有立方的个位数是2的),∴c3=﹣8,∴c=﹣2,∴100a+10b2﹣8=202,100a+10b2=210,10a+b2=21,∴个位上的1是由b2产生的,(±1)2=1,∴当b=±1时,10a=20,a=2,∴abcd=2×1×(−2)×1=−42×(−1)×(−2)×1=42×1×(−2)×(−1)=42×(−1)×(−2)×(−1)=−4,∴abcd=±4;②当d=±3时,d4=81,∴1000a+100b2+10c3=2021﹣81=1940,∴100a+10b2+c3=194,同理43=64,∴c=4,∴100a+10b2+64=194,100a+10b2=130,10a+b2=13,不存在整数满足条件,故d≠±3;综上,abcd =±4.故答案为:±4. 评卷人得 分三.解答题(本大题共8小题,满分55分)16.(2021秋•随县期末)计算:①﹣2×3﹣|﹣4|;②﹣32+(−12)×(﹣8)+(﹣6)2;③(134−78−712)×(﹣117);④8÷(﹣6)﹣[﹣3+116×(−27)].【思路点拨】①先算乘法和去绝对值,然后计算减法即可;②先算乘方,然后算乘法、最后算加法即可;③根据乘法分配律计算即可;④先算括号内的式子,然后算括号外的除法、最后算减法.【解题过程】解:①﹣2×3﹣|﹣4|=﹣6﹣4=﹣10;②﹣32+(−12)×(﹣8)+(﹣6)2=﹣9+4+36=31;③(134−78−712)×(﹣117)=74×(−87)−78×(−87)−712×(−87)=﹣2+1+23=−13;④8÷(﹣6)﹣[﹣3+116×(−27)]=8÷(﹣6)﹣(﹣3−76×27).=8÷(﹣6)﹣(﹣3−13)=8÷(﹣6)+103=−43+103 =2.17.(2022春•南岸区校级月考)我国约有9600000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)【思路点拨】(1)根据乘法的意义列出算式(9.6×106)×(1.5×105)计算,再用科学记数法表示即可;(2)用(1)的结果乘以8×103,求出结果后再用科学记数法表示即可.【解题过程】解:(1)(9.6×106)×(1.5×105)=(9.6×1.5)×(106×105)=1.44×1012(吨).答:一年内我国土地从太阳得到的能量相当于燃烧1.44×1012吨煤.(2)(1.44×1012)×(8×103)=(1.44×8)×(1012×103)=1.152×1016(度).答:(1)中的煤大约发出1.152×1016度电.18.(2021秋•邹城市期中)已知下列各有理数:a ,b ,c 的大小关系为a <﹣1<b <0<1<c .(1)画出数轴,在数轴上标出这些数表示的点;(2)在横线上填上合适的符号(>或<或=):①a +c < b +c ;②a ﹣c < a ﹣b ;③ab > ac ;④a b > a c ;(3)化简:|a +b |﹣|b ﹣c |﹣|1﹣c |.【思路点拨】(1)准确把握a ,b ,c ,三点在数轴上的位置即可;(2)利用特殊值法,例如a =﹣2,b =−12,c =2,计算出各式的值,再进行比较;(3)利用绝对值的意义,先化简各式,再进行计算.【解题过程】解:(1)在数轴上表示各数如图所示:(2)当a =﹣2,b =−12,c =2时,①∵a +c =0,b +c =32,∴a +c <b +c ,②∵a ﹣c =﹣4,a ﹣b =−32∴a ﹣c <a ﹣b ,③∵ab =1,ac =﹣4,∴ab >ac ,④∵a b =4,a c =−1,∴a b >a c ,(3)|a +b |﹣|b ﹣c |﹣|1﹣c |=﹣(a +b )﹣(c ﹣b )﹣(c ﹣1)=﹣a ﹣b ﹣c +b ﹣c +1=﹣a ﹣2c +1.19.(2022•义安区模拟)观察以下算式:①1×11×5=18×(1+31×5);②2×35×9=18×(1+35×9);③3×59×13=18×(1+39×13).(1)请写出第④个算式: 4×713×17=18×(1+313×17) .(2)请用n (n 是正整数)表示出第n 个算式,并计算1×11×5+2×35×9+3×59×13+⋯+9×1733×37+10×1937×41.【思路点拨】(1)观察已知等式即可写出第④个式子;(2)结合(1)即可用n (n 是正整数)表示出第n 个算式,再根据发现的规律解决问题即可.【解题过程】解:(1)∵①1×11×5=18×(1+31×5);②2×35×9=18×(1+35×9);③3×59×13=18×(1+39×13).∴第④个算式:4×713×17=18×(1+313×17).故答案为:4×713×17=18×(1+313×17);(2)第n 个算式:n(2n−1)(4n−3)(4n 1)=18×(1+3(4n−3)(4n 1));1×11×5+2×35×9+3×59×13+⋯+9×1733×37+10×1937×41=18×(1+31×5)+18×(1+35×9)+•••+18×(1+333×37)+18×(1+337×41)=18×(10+31×5+35×9+•••+333×37+337×41)=18×10+18×34×(1−15+15−19+•••+133−137+137−141)=54+18×34×4041 =5541.20.(2021秋•汝阳县期末)某批发商于上周日买进某产品10000kg ,每千克2.4元,进入批发市场后共占5个摊位,每个摊位最多能容纳2000kg 该品种的产品,每个摊位的市场管理价为每天20元.如表为本周内该产品每天的批发价格比前一天的涨跌情况.(涨记为正,跌记为负,上周日当天的售价刚好为每千克2.4元) 星期一二三四五与前一天相比价格的涨跌+0.3﹣0.1+0.25+0.2﹣0.5情况/元当天的交易量/kg25002000300015001000(1)星期四该产品价格为每千克多少元?(2)本周内该产品的最高价格为每千克多少元?最低价格为每千克多少元?(3)该批发商在销售过程中采用逐步减少摊位个数(每天减少一个)的方法来降低成本,增加收益,请你帮他算一算,这样他在本周的买卖中共赚了多少钱?【思路点拨】(1)根据价格的涨跌情况即可作出判断;(2)计算出每天的价格即可作出判断;(3)根据售价﹣进价﹣摊位费用=收益,即可进行计算.【解题过程】解:(1)2.4+0.3﹣0.1+0.25+0.2=3.05(元);答:星期四该产品价格为每千克3.05元;(2)星期一的价格是:2.4+0.3=2.7(元);星期二的价格是:2.7﹣0.1=2.6(元);星期三的价格是:2.6+0.25=2.85(元);星期四是:2.85+0.2=3.05(元);星期五是:3.05﹣0.5=2.55(元);因而本周内该农产品的最高价格为每斤3.05元,最低价格为每斤2.55元;(3)(2500×2.7﹣5×20)+(2000×2.6﹣4×20)+(3000×2.85﹣3×20)+(1500×3.05﹣2×20)+(1000×2.55﹣20)﹣10000×2.4=6650+5120+8490+4535+2530﹣24000=27325﹣24000=3325(元).答:他在本周的买卖中共赚了3325元钱.21.(2021秋•嘉鱼县期末)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4|=|4﹣0|,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|7﹣3|,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A表示的数记为a,点B表示的数记为b,则A,B两点间的距离就可记作|a﹣b|.回答下列问题:(1)几何意义是数轴上表示数2的点与数﹣3的点之间的距离的式子是 |2﹣(﹣3)| ;式子|a+5|的几何意义是 数轴上表示数a的点与数﹣5的点之间的距离 ;(2)根据绝对值的几何意义,当|m﹣2|=3时,m= ﹣1或5 ;(3)探究:|m+1|+|m﹣9|的最小值为 10 ,此时m满足的条件是 ﹣1≤m≤9 ;(4)|m+1|+|m﹣9|+|m﹣16|的最小值为 17 ,此时m满足的条件是 m=9 .【思路点拨】(1)根据两点间的距离公式即可求解;(2)根据||a﹣b|的几何意义求解可得;(3)根据m<﹣1,﹣1≤m≤9,m>9三种情况确定最小值和此时m的取值;(4)|m+1|+|m﹣9|+|m﹣16|=(|m+1|+|m﹣16|)+|m﹣9|,根据问题(3)可知,要使|m+1|+|m﹣16|的值最小,m的值只要取﹣1到16之间(包括﹣1、16)的任意一个数,要使|m﹣9|的值最小,m应取9,显然当m=9时能同时满足要求,从而得结论.【解题过程】解:(1)数轴上表示数2的点与数﹣3的点之间的距离的式子是|2﹣(﹣3)|;式子|a+5|的几何意义是数轴上表示数a的点与数﹣5的点之间的距离;故答案为:|2﹣(﹣3)|,数轴上表示数a的点与数﹣5的点之间的距离;(2)等式|m﹣2|=3的几何意义是表示m到数2的距离为3的点,则m的值为﹣1或5;故答案为:﹣1或5;(3)式子|m+1|+|m﹣9|表示数m到﹣1和9的距离之和,当m<﹣1时,原式=﹣m﹣1﹣m+9=﹣2m+8>10,当﹣1≤m≤9时,原式=m+1+9﹣m=10,当m>9时,原式=m+1+m﹣9=2m﹣8>10,故式子|m+1|+|m﹣9|的最小值为10,此时m满足的条件是﹣1≤m≤9;(4)由分析可知,|m+1|+|m﹣9|+|m﹣16|的最小值为17,此时m满足的条件是m=9.22.(2021秋•江北区校级期中)已知数轴上两点A,B对应的数分别为﹣8和4,点P为数轴上一动点,若规定:点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A→B的“广益点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A→B的“广益点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“广益点”,请直接写出所有符合条件的点P表示的数.【思路点拨】(1)根据点P到点A的距离等于点P到点B的距离即可得到结论;(2)根据题意可得PA=t+8,PB=|4﹣t|,再根据“广益点”的定义即可求解;(3)分五种情况进行讨论:当点A是关于P→B的“广益点”时;当点A是关于B→P的“广益点”时;当点P 是关于A→B的“广益点”时;当点P是关于B→A的“广益点”时;当点B是关于P→A的“广益点”时,分别代入计算即可.【解题过程】解:(1)∵数轴上两点A,B对应的数分别为﹣8和4,∴AB=4﹣(﹣8)=12,∵点P到点A的距离等于点P到点B的距离,∴点P是AB的中点,∴BP=AP=12AB=6,∴点P表示的数为﹣2;(2)设点P运动时间为t秒,根据题意可知,PA=t+8,PB=|4﹣t|,∴t+8=3|4﹣t|,解得:t=1或10,∴点P运动的时间为1秒或10秒;(3)设点P表示的数为n,根据题意可得,PA=n+8或﹣n﹣8,PB=4﹣n,AB=12,分五种情况进行讨论:①当点A是关于P→B的“广益点”时,得PA=3AB,即﹣n﹣8=36,解得n=﹣44;②当点A是关于B→P的“广益点”时,得AB=3AP,即3(﹣n﹣8)=12,解得n=﹣12;或3(n+8)=12,解得n=﹣4;③当点P是关于A→B的“广益点”时,得PA=3PB,即﹣n﹣8=3(4﹣n),解得n=10;(不符合题意,舍去)或n+8=3(4﹣n),解得n=1(不符合题意,舍去);④当点P是关于B→A的“广益点”时,得PB=3AB,即4﹣n=3(n+8),解得n=﹣5;或4﹣n=3(﹣n﹣8),解得n=﹣14;⑤当点B是关于P→A的“广益点”时,得BP=3AB,即4﹣n=36,解得n=﹣32,综上所述,所有符合条件的点P表示的数是:﹣4,﹣5,﹣12,﹣14,﹣32,﹣44.23.(2022春•房山区期中)现将偶数个互不相等的有理数分成个数相同的两排,需满足第一排中的数越来越大,第二排中的数越来越小.例如,轩轩将“1,2,3,4”进行如下分组: 第一列 第二列 第一排 1 2 第二排4 3然后把每列两个数的差的绝对值进行相加,定义为该分组方式的“M值”.例如,以上分组方式的“M值”为M=|1﹣4|+|2﹣3|=4.(1)另写出“1,2,3,4”的一种分组方式,并计算相应的“M值”;(2)将4个自然数“a,6,7,8”按照题目要求分为两排,使其“M值”为6,则a的值为 3或11 .(3)已知有理数c,d满足c+d=2,且c<d.将6个有理数“c,d,﹣5,﹣2,2,4”按照题目要求分为两排,使其“M值”为18,求d的值.【思路点拨】(1)按要求分组,利用分组方式的“M值”的意义计算即可;(2)利用分类讨论的方法,分0<a<6和a>8两种情况解答,按要求分组,利用分组方式的“M值”的意义计算即可;(3)利用分类讨论的方法,分c<﹣5,﹣5<c<﹣2,﹣2<c<1,1<d<2四种情况解答,按要求分组,利用分组方式的“M值”的意义计算即可.【解题过程】解:(1)将“1,2,3,4”进行如下分组:∴以上分组方式的“M值”为:M=|1﹣4|+|3﹣2|=4;(2)①当0<a<6时,将4个自然数“a,6,7,8”按照题目要求进行如下分组:∵以上分组方式的“M值”为6,∴|a﹣8|+|7﹣6|=6.∴a=3;②当a<8时,将4个自然数“a,6,7,8”按照题目要求进行如下分组:∵以上分组方式的“M值”为6,∴|a﹣6|+|7﹣8|=6.∴a=11;综上,a=3或11.故答案为:3或11;(3)∵c+d=2,且c<d,∴c=2﹣d,c<1,d>1.①当c<﹣5时,则d>7,将6个有理数“c,d,﹣5,﹣2,2,4”按照题目要求进行如下分组:∵以上分组方式的“M值”为18,∴|2﹣d﹣d|+|﹣5﹣4|+|﹣2﹣2|=18.解得:d=72(不合题意,舍去).②当﹣5<c<﹣2时,则4<d<7,将6个有理数“c,d,﹣5,﹣2,2,4”按照题目要求进行如下分组:∵以上分组方式的“M值”为18,∴|﹣5﹣d|+|2﹣d﹣4|+|﹣2﹣2|=18.∴d=72(不合题意,舍去).③当﹣2<c<1时,则1<d<4,将6个有理数“c,d,﹣5,﹣2,2,4”按照题目要求进行如下分组:∵以上分组方式的“M值”为18,∴|﹣5﹣4|+|﹣2﹣d|+|2﹣d﹣2|=18.∴d=72(符合题意).④当1<d<2时,∵以上分组方式的“M值”为18,∴|﹣5﹣4|+|﹣2﹣2|+|2﹣d﹣d|=18.∴d=72(不合题意,舍去).综上分析可得:d=7 2.。
七年级数学上册 压轴解答题专题练习(解析版)
![七年级数学上册 压轴解答题专题练习(解析版)](https://img.taocdn.com/s3/m/5de8dd19168884868662d657.png)
七年级数学上册 压轴解答题专题练习(解析版)一、压轴题1.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 2.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =3.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.4.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.5.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).6.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?7.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.8.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 9.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.10.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 11.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?12.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级上册上册数学压轴题(Word版 含解析)
![七年级上册上册数学压轴题(Word版 含解析)](https://img.taocdn.com/s3/m/0ecd6d675022aaea988f0f3d.png)
七年级上册上册数学压轴题(Word 版 含解析)一、压轴题1.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”.(1)直接写出结果:312⎛⎫= ⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.3.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 4.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.5.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.6.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 7.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?8.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).9.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 10.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.11.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.12.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】 (1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯-21()3=-;611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=;故答案为:21()3-,45; (4)由(3)得到规律:21()n n a a-=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a-,故答案为:21()n a-;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭11186=-- 29=-.【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序. 2.(1)3.(2)存在.x 的值为3.(3)不变,为2. 【解析】 【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解. 【详解】解:(1)∵点A、B是数轴上的两个点,它们分别表示的数是2-和1∴A,B两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P点在A、B之间,x+2+1-x=7,此方程不成立;②若P点在B点右侧,x+2+x-1=7,解得x=3.答:存在.x的值为3.-的值不随运动时间t(秒)的变化而改变,为定值,是2.理由如下:(3)BC AB运动t秒后,A点表示的数为-2-t,B点表示的数为1+2t,C点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.BC=6+5t-(1+2t)=5+3t.所以BC-AB=5+3t-3-3t=2.【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.3.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【解析】【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设购物总额是x元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x元,由题意知x>500,列方程:0.88x=500×0.9+0.8(x-500)∴x=625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.4.(1)4;(2)PQ是一个常数,即是常数23m;(3)2AP+CQ﹣2PQ<1,见解析.【解析】【分析】(1)根据已知AB=6,CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)由题意根据已知条件AB=m(m为常数),CQ=2AQ,CP=2BP进行分析即可;(3)根据题意,画出图形,求得2AP+CQ﹣2PQ=0,即可得出2AP+CQ﹣2PQ与1的大小关系.【详解】解:(1)∵CQ=2AQ,CP=2BP,∴CQ=23AC,CP=23BC,∵点C恰好在线段AB中点,∴AC=BC=12AB,∵AB=6,∴PQ=CQ+CP=23AC+23BC=23×12AB+23×12AB=23×AB=23×6=4;故答案为:4;(2)①点C在线段AB上:∵CQ=2AQ,CP=2BP,∴CQ=23AC,CP=23BC,∵AB=m(m为常数),∴PQ=CQ+CP=23AC+23BC=23×(AC+BC)=23AB=23m;②点C在线段BA的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=23AC,CP=23BC,∵AB=m(m为常数),∴PQ =CP ﹣CQ =23BC ﹣23AC =23×(BC ﹣AC )=23AB =23m ; ③点C 在线段AB 的延长线上:∵CQ =2AQ ,CP =2BP ,∴CQ =23AC ,CP =23BC , ∵AB =m (m 为常数),∴PQ =CQ ﹣CP =23AC ﹣23BC =23×(AC ﹣BC )=23AB =23m ; 故PQ 是一个常数,即是常数23m ; (3)如图:∵CQ =2AQ , ∴2AP+CQ ﹣2PQ =2AP+CQ ﹣2(AP+AQ ) =2AP+CQ ﹣2AP ﹣2AQ =CQ ﹣2AQ =2AQ ﹣2AQ =0,∴2AP+CQ ﹣2PQ <1. 【点睛】本题主要考查线段上两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.5.(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析; (2)见解析. 【解析】 【分析】(1)由关于x 的方程()46n x n -=-无解.可得4n -=0,从而可求得n 的值; (2)根据线段中点的定义可知PN=12AP ,PM=12PB ,从而得到MN=12(PA+PB )=12AB ,于是可求;(3)设AB=a ,BP=b .先表示PB+PA 的长,然后再表示PC 的长,最后代入计算即可. 【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM= 12PB . 同理:PN= 12AP .. ∴MN=PN+PM=12(PB+AP )= 12AB= 12×4=2. ∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+ 2212PA PB a b PC a b ++∴==+, 所以PA PB PC+的值不变. 【点睛】 本题主要考查的是中点的有关计算,掌握线段中点的定义是解题的关键.6.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.7.(1)①10°,②18°;(2)圆圆的说法正确,理由见解析.【解析】【分析】(1)①根据∠AOB 与∠COD 互余求出∠COD ,再利用角度的和差关系求出∠AOC+∠BOD=30°,最后根据∠AOC=2∠BOD 即可求出∠BOD ;②设∠BOD=x ,根据角平分线表示出∠COD 和∠BOC ,根据∠AOC=2∠BOD 表示出∠AOC ,最后根据∠AOB 与∠COD 互余建立方程求解即可;(2)分两种情况讨论:OC 靠近OA 时与OC 靠近OB 时,画出图形分类计算判断即可.【详解】解:(1)①∵∠AOB 与∠COD 互余,且∠AOB=60°,∴∠COD=90°-∠AOB=30°,∴∠AOC+∠BOD=∠AOB -∠COD=60°-30°=30°,∵∠AOC=2∠BOD ,∴2∠BOD+∠BOD=30°,∴∠BOD=10°;②设∠BOD=x ,∵OD 平分∠BOC ,∴∠BOD=∠COD=x ,∠BOC=2∠BOD=2x ,∵∠AOC=2∠BOD ,∴∠AOC=2x,∴∠AOB=∠AOC+∠COD +∠BOD=4x,∵∠AOB与∠COD互余,∴∠AOB+∠COD=90°,即4x+x=90°,∴x=18°,即∠BOD=18°;(2)圆圆的说法正确,理由如下:当OC靠近OB时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠BOC+∠BOD,∴∠AOD+∠BOD+∠BOC+∠BOD=180°,∵∠AOC=∠AOD+∠BOD+∠BOC,∴∠AOC+∠BOD=180°,∵∠AOC=2∠BOD,∴2∠BOD+∠BOD=180°,∴∠BOD=60°;当OC靠近OA时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠AOC+∠AOD,∴∠AOD+∠BOD+∠AOC+∠AOD=180°,∵∠AOC=2∠BOD,∴∠AOD+∠BOD+2∠BOD +∠AOD=180°,即3∠BOD+2∠AOD=180°,∵∠AOD不确定,∴∠BOD也不确定,综上所述,当OC 靠近OB 时,∠BOD 的度数为60°,当OC 靠近OA 时,∠BOD 的度数不确定,所以圆圆的说法正确.【点睛】本题考查角的计算,正确找出角之间的关系,分情况画出图形解答是解题的关键.8.问题(1)点C 表示的数是8或-4;问题(2)x y +的值为1,-1,5,-5;问题(3)150BOD ∠= , 30BOD ∠=;见解析.【解析】【分析】问题(1)分两种情况进行讨论,当C 在B 的左侧以及当C 在B 的右侧,并依据BC=2AB 进行分析计算.问题(2)利用2x =,3y =得到2,3x y =±=±,再进行分类讨论代入x ,y 求值. 问题(3)根据题意画出图形,利用角的和差关系进行计算,直接写出答案.【详解】解:问题(1) 点C 是数轴上一点,且BC=2AB ,结合数轴可知当C 在B 的左侧以及当C 在B 的右侧分别为-4或8.问题(2)∵2x =,3y =∴2, 3.x y =±=±情况① 当x=2,y=3时,x y +=5,情况② 当x=2,y=-3时,x y +=-1,情况③ 当x=-2,y=3时,x y +=1,情况④ 当x=-2,y=-3时,x y +=-5,所以,x y +的值为1,-1,5,-5.问题⑶【点睛】本题考查有理数与数轴,垂线的定义以及角的运算,根据题意画出图像进行分析.9.(1)∠MON 的度数为80°;(2)∠MON 的度数为70°或90°;(3)t 的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t 的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD =160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=12∠AOB,∠BON=12∠BOD,即∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC =12(∠AOC+∠BOD)+∠BOC =12(∠AOD ﹣∠BOC)+∠BOC =12×140°+20° =90°;答:∠MON 的度数为70°或90°.(3)∵射线OB 从OA 逆时针以2°每秒的速度旋转t 秒,∠COB =20°,∴根据(2)中的第一种情况,得∠AOC =∠AOB+∠COB =2t°+10°+20°=2t°+30°.∵射线OM 平分∠AOC ,∴∠AOM =12∠AOC =t°+15°. ∵∠BOD =∠AOD ﹣∠BOA ,∠AOD =160°,∴∠BOD =150°﹣2t°.∵射线ON 平分∠BOD ,∴∠DON =12∠BOD =75°﹣t°. 又∵∠AOM :∠DON =2:3,∴(t+15):(75﹣t)=2:3,解得t =21. 根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t 的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.10.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒ (2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.11.(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.12.(1)10.5°或14°或28°或31.5°;(2)74或218或212或634【解析】【分析】(1)分4种情况,根据奇分线定义即可求解;(2)分4种情况,根据奇分线定义得到方程求解即可.【详解】解:(1)如图1,∵∠MPN=42°,∵当PQ是∠MPN的3等分线时,∴∠MPQ=13∠MPN=13×42°=14°或∠MPQ=23∠MPN=23×42°=28°∵当PQ是∠MPN的4等分线时,∴∠MPQ=14∠MPN==14×42°=10.5°或∠MPQ=34∠MPN=34×42°=31.5°;∠MPQ=10.5°或14°或28°或31.5°;(2)依题意有①当3×8t=42时,解得t=74;②当2×8t=42时,解得t=218;③当8t=2×42时,解得t=212.④当8t=3×42时,解得:t=634,故当t为74或218或212或634时,射线PN是∠EPM的“奇分线”.【点睛】本题考查了旋转的性质,新定义奇分线,以及学生的阅读理解能力及知识的迁移能力.理解“奇分线”的定义是解题的关键.。
部编数学七年级上册期中考试压轴题训练(一)(解析版)含答案
![部编数学七年级上册期中考试压轴题训练(一)(解析版)含答案](https://img.taocdn.com/s3/m/7c724c74dc36a32d7375a417866fb84ae55cc372.png)
期中考试压轴题训练(一)1.如果0abcd <,0a b +=,0cd >,那么这四个数中负数有( )A .4个B .3个C .2个D .1个或3个【答案】D【详解】由abcd<0,a+b=0,cd>0,得a,b 一个正数,一个是负数,c,d 同正或同负,这四个数中的负因数有1个或三个,故选D.2.对于有理数x ,y ,若0x y <,则||||||xy y x xy y x ++的值是( ).A .3-B .1-C .1D .3A .7B .3或﹣3C .3D .7或3【答案】A【详解】解:∵|m |=5,|n |=2,∴m =±5,n =±2,又∵m 、n 异号,∴m =5、n =﹣2或m =﹣5、n =2,当m =5、n =﹣2时,|m ﹣n |=|5﹣(﹣2)|=7;当m =﹣5、n =2时,|m ﹣n |=|﹣5﹣2|=7;综上|m ﹣n |的值为7,故选:A .4.已知132n x y +与4313x y 是同类项,则n 的值是( )A .2B .3C .4D .5【答案】B周长为n (图中阴影部分所示),则这两个正方形的周长和可用代数式表示为( )A .m n+B .m n -C .2m n -D .2m n+10010AB BC CD DE ===,,则数9910所对应的点在线段( )上.A .ABB .BC C .CD D .DE12+2+2++2+L 2342009222+2+2+2S =++L,因此2009221S S -=-,所以23200820091+2+2++221=-L .请仿照以上推理计算出2342019144444++++++L 的值是( )A .201941-B .202041-C .2019413-D .2020413- 8.若代数式3x ax bx x +---的值与字母x 无关,则-a b 的值为__________.【答案】-2【详解】解:∵x2+ax-(bx2-x-3)=x2+ax-bx2+x+3=(1-b)x2+(a+1)x+3,且代数式的值与字母x无关,∴1-b=0,a+1=0,解得:a=-1,b=1,则a-b=-1-1=-2,故答案为:-2.9.已知a、b为有理数,下列说法:①若a、b互为相反数,则“ab=﹣1;②若|a﹣b|+a﹣b=0,则b>a;③若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的序号是_____.张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,判断戊同学手里拿的两张卡片上的数字是________.【答案】8和9【详解】解:由题意可知,一共十张卡片十个数,五个人每人两张卡片,∴每人手里的数字不重复.由甲:11,可知甲手中的数字可能是1和10,2和9,3和8,4和7,5和6;由乙:4,可知乙手中的数字只有1和3;由丙:16,可知丙手中的数字可能是6和10,7和9;由丁:7,可知丁手中的数字可能是1和6,2和5,3和4;由戊:17,可知戊手中的数字可能是7和10,8和9;∴丁只能是2和5,甲只能是4和7,丙只能是6和10,戊只能是8和9.故答案为:8和9.11.干支纪年法是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称,“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”十个符号叫天干;“子、丑、寅、卯、辰、巳、午、未、申、酉、戊、亥”十二个符号叫地支.把干支(天干+地支)顺序相配(甲子、乙丑、丙寅……)正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”. 如1984年为甲子年,1911年为辛亥年,请问中华人民共和国成立之年(1949年)是________年.【答案】己丑【详解】1949-3=1946天干:1946÷10=194……6天干从左往右数6为已地支:1946÷12=162……2地支从左往右数2为丑∴1949年是乙丑年12.在“-”“×”两个符号中选一个自己想要的符号,填入212212æö+´ç÷èøW 中的□,并计算.41=+5=13.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B”看成“2A+B”,算得结果为4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=18,b=15,求(2)中式子的值.(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是5-,那么点B所表示的数是_______;②在图1中标出原点O的位置;(2)图2是小敏所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小敏提供的信息,标出隐藏的原点O的位置,并写出此时点C所表示的数是____________;(3)如图3,数轴上标出若干个点,其中点A ,B ,C 所表示的数分别为a ,b ,c .若数轴上标出的若干个点中每相邻两点相距1个单位(如AB =1),且28c a -=.①试求a 的值;②若点D 也在这条数轴上,且CD =2,求出点D 所表示的数.【答案】(1)①5;②数轴见解析(2)数轴见解析,点C 表示的数是3(3)①-2;②d =2或d =6【解析】(1)解:①点A 所表示的数是-5,点A 、点B 所表示的数互为相反数,所以点B 所表示的数是5,故答案为:5;②在图1中表示原点O 的位置如图所示:(2)原点O 的位置如图所示,点C 所表示的数是3.故答案为:3;(3)解:①由题意得:AC =6,所以c -a =6,又因为c -2a =8,所以a =-2;②设D 表示的数为d ,因为c -a =6,a =-2,所以c =4,因为CD =2,所以c -d =2或d -c =2,所以d =2或d =6.15.如图,射线OM 上有三点,,A B C ,满足40OA =cm ,30AB =cm ,20BC =cm.点P 从点O 出发,沿OM 方向以2cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点,P Q 停止运动.(1)若点Q 运动速度为3cm/秒,经过多长时间,P Q 两点相遇?(2)当2PB PA =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度;(3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点,E F ,求OB AP EF-的值.。
最新七年级数学上册上册数学压轴题专题练习(解析版)
![最新七年级数学上册上册数学压轴题专题练习(解析版)](https://img.taocdn.com/s3/m/1f1f567352d380eb62946dd3.png)
最新七年级数学上册上册数学压轴题专题练习(解析版)一、压轴题1.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图1是显示部分代数式的“等和格”,可得a=_______(含b 的代数式表示); (2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________; (3)图3是显示部分代数式的“等和格”,求b 的值。
(写出具体求解过程)2.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.3.如图,已知∠AOB =120°,射线OP 从OA 位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ 以每秒6°的速度,从OB 位置出发逆时针向射线OA 旋转,到达射线OA 后又以同样的速度顺时针返回,当射线OQ 返回并与射线OP 重合时,两条射线同时停止运动. 设旋转时间为t 秒.(1)当t =2时,求∠POQ 的度数; (2)当∠POQ =40°时,求t 的值;(3)在旋转过程中,是否存在t 的值,使得∠POQ =12∠AOQ ?若存在,求出t 的值;若不存在,请说明理由.4.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5 t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示) 5.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 6.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC 边始终在∠AOB 内部),若OP 平分∠COB ,请画出图形,直接写出∠EOP 的度数(无须证明).7.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.8.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示); (4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.9.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.10.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.11.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级数学上册 压轴解答题测试卷(含答案解析)
![七年级数学上册 压轴解答题测试卷(含答案解析)](https://img.taocdn.com/s3/m/596e135a87c24028905fc349.png)
七年级数学上册 压轴解答题测试卷(含答案解析)一、压轴题1.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 2.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =3.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).4.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.5.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.6.如图1,点O为直线AB上一点,过点O作射线OC,OD,使射线OC平分∠AOD.(1)当∠BOD=50°时,∠COD=°;(2)将一直角三角板的直角顶点放在点O处,当三角板MON的一边OM与射线OC重合时,如图2.①在(1)的条件下,∠AON=°;②若∠BOD=70°,求∠AON的度数;③若∠BOD=α,请直接写出∠AON的度数(用含α的式子表示).7.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=_______;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.8.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .9.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).10.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数11.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠B0C在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=23∠DON.求t的值.12.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①7+21;②10.82-;③22.83.23+-;(2)9;(3)10012004.【解析】【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可;(3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可.【详解】解:(1)①|7+21|=21+7;故答案为:21+7;②110.80.822 -+=-;故答案为:1 0.82-;③23.2 2.83--=22.83.23+-故答案为:22.83.23+-;(2)原式=1111 9242 33202033 -++-=9(3)原式 =11111111... 23344520032004 -+-+-++-=11 22004 -=1001 2004【点睛】此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相加,使运算简便.做题时,要注意多观察各项之间的关系.2.(1)3;(2)12或74-;(3)13秒或79秒【解析】【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+, 解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.3.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8. 【解析】 【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论. 【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3. 故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ), ∵CD=2,∴|0﹣m|=2,解得:m=±2, ∴点D 的坐标为(1,2)或(1,﹣2). 【拓展】 :(1)d (E ,F )=|2﹣(﹣1)|+|0﹣(﹣2)|=5. 故答案为:5.(2)∵E (2,0),H (1,t ),d (E ,H )=3, ∴|2﹣1|+|0﹣t |=3, 解得:t =±2.(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0), ∵三角形OPQ 的面积为3, ∴12|x |×3=3,解得:x =±2. 当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4; 当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8 综上所述,d (P ,Q )的值为4或8. 【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.4.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析 【解析】 【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数; (2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOCCOE∠-∠∠的值.【详解】解:(1)如图,∵COE ∠是AOC ∠的差余角 ∴AOC ∠-COE ∠=90°, 即AOC ∠=COE ∠+90°, 又∵OE 是BOC ∠的角平分线, ∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°,解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角, ∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠, ∴AOC ∠-∠BOE =90°, ∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°, ∴BOC ∠+∠BOE =90°; (3)当OE 在OC 左侧时, ∵COE ∠是AOC ∠的差余角, ∴AOC ∠-COE ∠=90°, ∴∠AOE =∠BOE=90°, 则AOC BOCCOE∠-∠∠=90COE BOCCOE ∠+︒-∠∠=COE COE COE ∠+∠∠=2;当OE 在OC 右侧时, 过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角, ∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠, ∴AOC BOCCOE∠-∠∠=90COE BOCCOE∠+︒-∠∠=9090COE COF COE∠+︒-︒+∠∠=COE COFCOE ∠+∠∠=COE COE COE ∠+∠∠=2.综上:AOC BOCCOE∠-∠∠为定值2.【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键. 5.(1) ①6条;②10;(2)1122MN AD BC =-,证明见解析;(3) 1t =. 【解析】 【分析】(1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12BN BD =,利用MN MC BN BC =+-代入化简即可;(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得到2EC t =,FD t =,62t EQ +=,代入AQ+AE+AF=32AD ,化简则可求出t . 【详解】解:(1) ①线段有:AB ,AC ,AD ,BC ,BD ,CD ,共6条; ②∵BD =6,BC =1, ∴CD=BD-BC=6-1=5,当PA +PD 的值最小时,P 为AD 的中点, ∴5510PA PD AD AC CD +==+=+=; (2)1122MN AD BC =-. 如图2示:∵M ,N 分别为AC ,BD 的中点,∴12MC AC =,12BN BD = ∴MN MC BN BC =+- 1122AC BD BC =+- ()12AC BD BC =+- ()12AB BC BD BC =++- 1122AD BC =-; (3)如图示:∵C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,∴3AC =,6CD =,根据E ,F 两点同时从C ,D 出发,速度是2cm/s ,1cm/s ,Q 为EF 的中点,运动时间为t , 则有:2EC t =,FD t =,6222EF AD AE FD t EQ --+=== 当AQ+AE+AF=32AD 时, 则有:32AE EQ AE AD FD AD +++-=即是:()()6932329922t t t t +-++-+-=⨯ 解之得:1t =.【点睛】 本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.6.(1)65°;(2)①25°;②35°;③1AON a 2∠=【解析】【分析】(1)由题意可得∠COD=1AOD2∠,∠AOD=∠AOB-∠BOD.(2)①由(1)可得∠AOC=∠COD=65°,∠AON=90°﹣∠AOC=25°②同①可得,∠AOC=∠COD=55°,∠AON=90°﹣∠AOC=35°③根据(2)可直接得出结论.【详解】解:(1)∠AOD=180°﹣∠BOD=130°,∵OC平分∠AOD,∴∠COD=12AOD∠=65°.故答案为:65°;(2)①由(1)可得∠AOC=∠COD=65°,∴∠AON=90°﹣∠AOC=25°,故答案为:25°;②∵∠BOD=70°,∴∠AOD=180°﹣∠BOD=110°,∵OC平分∠AOD,∴∠AOC=1552AOD∠=︒,∵∠MON=90°,∴∠AON=90°﹣∠AOC=35°;③1 AON2∠α=.【点睛】本题考查的知识点是角的和差问题,根据所给图形找出各角之间的数量关系是解题的关键. 7.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t,3t2=【解析】【分析】(1)根据角平分线的定义即可得出答案;(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF,再减去旋转角度即可得到∠DCF;②先由补角的定义表示出∠BCE,再根据旋转和角平分线的定义表示出∠DCF,即可得出两者的数量关系;(3)根据α=∠FCA-∠DCA,β=∠AC1D1+∠AC1F1,可得到表达式,再根据|α-β|=45°建立方程求解.【详解】(1)∵∠ACE=90°,CF平分∠ACE∴∠AOF=12∠ACE=45° 故答案为:45°; (2)①当t=1时,旋转角度为30°∴∠ACE=90°+30°=120°∵CF 平分∠ACE∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°故答案为:30°;②∠BCE=2α,证明如下:旋转30t 度后,∠ACE=(90+30t)度∴∠BCE=180-(90+30t)=(90-30t)度∵CF 平分∠ACE∴∠ACF=12∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度∴2∠DCF=2(45-15t)= 90-30t=∠BCE即∠BCE=2α(3)α=∠FCA-∠DCA=12(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+12(90-30t)=45+15t ||45βα-=︒|30t|=45° ∴3t 2=【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.8.(1)经过30s ,P 、Q 两点相遇(2)答案不唯一,具体见解析(3)10【解析】【分析】(1)设经过t 秒时间P 、Q 两点相遇,根据OP+CQ=OA+AB+AC 列出方程即可解决问题; (2)分两种情形求解即可;(3)用t 表示AP 、EF 的长,代入化简即可解决问题;【详解】(1)设运动时间为t ,则290t t +=,30t =;所以经过30s ,P 、Q 两点相遇 (2)当点P 在线段AB 上时,如下图,AP+PB=60,∴AP=40,OP=50,∴P 用时50s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为56/cm s ;当点P 在线段AB 的延长线上时,如下图,AP=2PB,∴AP=120,OP=140,∴P 用时140s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为514/cm s ;(3)如下图,由题可知,OC=90,AP=x-20,EF=OF-OE=OF-12OP=50-12x, ∴2OC AP EF --=90-(x-20)-2(50-12x)=10 【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,找到等量关系,注意分类讨论是解题关键.9.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 10.(1)135°;(2)∠BOD=2∠COE;(3)67.5°.【解析】【分析】(1)由∠COD=90°,则∠AOC+∠BOD=90°,由OE平分∠AOC,OF平分∠BOD,得∠COE+∠DOF=45°,即可求出∠EOF的度数;(2)由题意得出∠BOD+∠AOC=90°,∠BOD=180°-∠AOD,再由角平分线的定义进行计算,即可得出结果;(3)由角平分线定义得出∠AOC=∠COE,∠COF=∠DOF=45°,再由∠BOD+∠AOC=90°,设∠EOF=x,则∠EOC=3x,∠COF=4x,根据题意得出方程,解方程即可.【详解】解:(1)如图:∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE平分∠AOC,OF平分∠BOD,∴∠COE+∠DOF=11()904522AOC BOD∠+∠=⨯︒=︒,∴∠EOF=∠COE+∠COD+∠DOF=45°+90°=135°;故答案为:135°;(2)∠BOD=2∠COE;理由如下:如图,∵∠COD=90°.∴∠BOD+∠AOC=90°,∵OE平分∠AOD,∴∠AOE=∠DOE=12∠AOD,又∵∠BOD=180°-∠AOD,∴∠COE=∠AOE-∠AOC=12∠AOD-(90°-∠BOD)=12(180°-∠BOD)-90°+∠BOD=12∠BOD,∴∠BOD=2∠COE;(3)如图,∵OC为∠AOE的角平分线,OF平分∠COD,∴∠AOC=∠COE,∠COF=∠DOF=45°,∵∠EOC=3∠EOF,设∠EOF=x,则∠EOC=3x,∴∠COF=4x,∴∠AOE=2∠COE=6x,∠DOF=4x,∵∠COD=90°,∴4x+4x=90°,解得:x=11.25°,∴∠AOE=6×11.25°=67.5°.【点睛】本题考查了角平分线定义、角的互余关系、邻补角定义以及角的计算;熟练掌握角平分线定义,得出角之间的关系是解决问题的关键.11.(1)∠MON的度数为80°;(2)∠MON的度数为70°或90°;(3)t的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=12∠AOB,∠BON=12∠BOD,即∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC=12(∠AOC+∠BOD)+∠BOC=12(∠AOD﹣∠BOC)+∠BOC=12×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=12∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=12∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.12.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.。
七年级数学上册数学压轴题(Word版 含解析)
![七年级数学上册数学压轴题(Word版 含解析)](https://img.taocdn.com/s3/m/5f632318168884868762d6de.png)
七年级数学上册数学压轴题(Word 版 含解析)一、压轴题1.请观察下列算式,找出规律并填空. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值. 2.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c ()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”); ()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.3.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .4.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.5.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.6.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.7.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.8.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.9.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?10.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.11.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°:(1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?12.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、压轴题1.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;(1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111...12233420192020++++⨯⨯⨯⨯ =111111...22320192020-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++=111124466820182020++++⨯⨯⨯⨯ =1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭=111222020⎛⎫- ⎪⎝⎭=10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可,(2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可,(4)根据(3)的结果计算即可.【详解】(1)观察数轴可知,4a =-,1b =,6c =.故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =,则若将数轴在点B 处折叠,点A 与点C 能重合.故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+, 53BC b c t =-=+.故答案为:5t +;53t +.(4)5AB t =+,∴3153AB t =+.又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC -的值不会随时间t 的变化而变化,值为10.【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.3.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可. 【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=;数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -;(2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-,∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<,∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=, 即代数式15c c 的最小值是6.故答案为:6.【点睛】本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.4.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论;【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3;∴AB=9;∵P 到A 和点B 的距离相等,∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t -分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.5.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a 、b 的值,可得点A 表示的数,点B 表示的数,再根据两点间的距离公式可求线段AB 的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A 、B 两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a﹣6|+(b+12)2=0,∴a﹣6=0,b+12=0,∴a=6,b=﹣12,∴AB=6﹣(﹣12)=18;(2)设点A、B同时出发,运动时间为t秒,点A、B能够重合时,可分两种情况:①若相向而行,则2t+t=18,解得t=6;②若同时向右而行,则2t﹣t=18,解得t=18.综上所述,经过6或18秒后,点A、B重合;(3)在(2)的条件下,即点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动,设点A、B同时出发,运动时间为t秒,点A、B两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t)-(-12-2t)=20,解得:t=2;②若两点均向右,则(-12+2t)-(6+t)=20,解得:t=38;综上,经过2或38秒时,A、B相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用.6.(1)125°;(2)ON平分∠AOC,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论;(3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.【详解】解: (1) ∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC.∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB=90°-(50°-∠NOC)=∠NOC+40°.【点睛】本题主要考查了角的运算、余角以及角平分线的定义,解题的关键是灵活运用题中等量关系进行角度的运算.7.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3), ∴MN=MP-NP=6. 综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP 、NP 的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示).8.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析【解析】【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数;(2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOC COE∠-∠∠的值. 【详解】 解:(1)如图,∵COE ∠是AOC ∠的差余角∴AOC ∠-COE ∠=90°,即AOC ∠=COE ∠+90°,又∵OE 是BOC ∠的角平分线,∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°,解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角,∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠,∴AOC ∠-∠BOE =90°,∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°,∴BOC ∠+∠BOE =90°;(3)当OE 在OC 左侧时,∵COE ∠是AOC ∠的差余角,∴AOC ∠-COE ∠=90°,∴∠AOE =∠BOE=90°, 则AOC BOC COE∠-∠∠=90COE BOC COE ∠+︒-∠∠ =COE COE COE∠+∠∠ =2;当OE 在OC 右侧时,过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角,∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠,∴AOC BOC COE ∠-∠∠ =90COE BOC COE∠+︒-∠∠ =9090COE COF COE∠+︒-︒+∠∠ =COE COF COE∠+∠∠ =COE COE COE∠+∠∠ =2.综上:AOC BOC COE∠-∠∠为定值2. 【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键.9.(1)45;(2)(1)2n n -;(3)(1)2n n -;(4)共需拍照991张,共需冲印2025张纸质照片【解析】【分析】(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.【详解】解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).故答案为:45;(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条. 故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成(1)2n n -个角; 故答案为:(1)2n n -; (4)解:4545-119912+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片【点睛】此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.10.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒ 72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.11.(1)10.5°或14°或28°或31.5°;(2)74或218或212或634【解析】【分析】(1)分4种情况,根据奇分线定义即可求解;(2)分4种情况,根据奇分线定义得到方程求解即可.【详解】解:(1)如图1,∵∠MPN=42°,∵当PQ是∠MPN的3等分线时,∴∠MPQ=13∠MPN=13×42°=14°或∠MPQ=23∠MPN=23×42°=28° ∵当PQ 是∠MPN 的4等分线时,∴∠MPQ=14∠MPN==14×42°=10.5° 或∠MPQ=34∠MPN=34×42°=31.5°; ∠MPQ=10.5°或14°或28°或31.5°;(2)依题意有①当3×8t=42时,解得t=74; ②当2×8t=42时,解得t=218; ③当8t=2×42时,解得t=212. ④当8t=3×42时,解得:t=634, 故当t 为74或218或212或634时,射线PN 是∠EPM 的“奇分线”. 【点睛】本题考查了旋转的性质,新定义奇分线,以及学生的阅读理解能力及知识的迁移能力.理解“奇分线”的定义是解题的关键.12.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°,∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.。
七年级上册数学压轴题专题练习(解析版)
![七年级上册数学压轴题专题练习(解析版)](https://img.taocdn.com/s3/m/61a7f67c5fbfc77da369b101.png)
七年级上册数学压轴题专题练习(解析版)一、压轴题1.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.2.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 3.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 4.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值(3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)5.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?6.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =7.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).8.综合与实践 问题情境在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.图1 图2 图3 (1)问题探究①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则MON ∠=__________︒.(直接写出结果)9.如图,点A ,B ,C 在数轴上表示的数分别是-3,3和1.动点P ,Q 两同时出发,动点P 从点A 出发,以每秒6个单位的速度沿A →B →A 往返运动,回到点A 停止运动;动点Q 从点C 出发,以每秒1个单位的速度沿C →B 向终点B 匀速运动.设点P 的运动时间为t (s ).(1)当点P 到达点B 时,求点Q 所表示的数是多少; (2)当t =0.5时,求线段PQ 的长;(3)当点P 从点A 向点B 运动时,线段PQ 的长为________(用含t 的式子表示);(4)在整个运动过程中,当P ,Q 两点到点C 的距离相等时,直接写出t 的值.10.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).11.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.12.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=. 同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)8;(2)4或10;(3)t 的值为167和329【解析】 【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可. 【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6 ∴AB =6﹣(﹣2)=8 答:AB 的值为8.(2)设点C 表示的数为x ,由题意得 |x ﹣(﹣2)|=3|x ﹣6| ∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x ∴x =10或x =4答:点C 表示的数为4或10. (3)∵点C 位于A ,B 两点之间,∴点C表示的数为4,点A运动t秒后所表示的数为﹣2+t,①点C到达B之前,即2<t<3时,点C表示的数为4+2(t﹣2)=2t ∴AC=t+2,BC=6﹣2t∴t+2=3(2t﹣6)解得t=16 7②点C到达B之后,即t>3时,点C表示的数为6﹣2(t﹣3)=12﹣2t ∴AC=|﹣2+t﹣(12﹣2t)|=|3t﹣14|,BC=6﹣(12﹣2t)=2t﹣6∴|3t﹣14|=3(2t﹣6)解得t=329或t=43,其中43<3不符合题意舍去答:t的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.2.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x-3,5-x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x)+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2, ∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变. 【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 3.(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析【解析】 【分析】(1)根据“相伴数对”的定义,将()1,b 代入2323a b a b++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫- ⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49mn 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭将:491,94a nb n =-+=- 代入2323a b a b++=+左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键. 4.(1)1.5k ;(2)317,1,3,55h h h h ;(3)5,20-5t 【解析】 【分析】(1)根据速度,求出t=0.5时的路程,即可得到P 、C 间的距离;(2)分由A 去B ,B 返回A 两种情况,各自又分在点C 的左右两侧,分别求值即可; (3)PA 的距离为由A 去B ,B 返回A 两种情况求值. 【详解】(1)由题知: 5/,4, 10v km h AC km AB km ===当0.5t h =时,50.5 2.5s vt kom ==⨯=,即 2.5AP km =425 1.5PC AC AP k ∴=-=-=()2当小明由A 地去B 地过程中: 在AC 之间时, 41355t -==(小时), 在BC 之间时, 4115t +==(小时), 当小明由B 地返回A 地过程中: 在BC 之间时, 1024135t ⨯--==(小时), 在AC 之间时, 102(41)1755t ⨯--==(小时),故满足条件的t 值为:317,1,3,55h h h h (3)当小明从A 运动到B 的过程中,AP=vt= 5, 当小明从B 运动到A 的过程中,AP= 20-vt= 20- 5t. 【点睛】此题考查线段的和差的实际应用,掌握题中运用的行程题的公式,正确理解题意即可正确解题.5.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合. 【解析】 【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;(2)设P 点对应的数为x ,当P 点满足PB=2PC 时,得到方程,求解即可;(3)根据第一次点P 表示-1,第二次点P 表示2,点P 表示的数依次为-3,4,-5,6…,找出规律即可得出结论. 【详解】解:(1)∵点B 距离原点10个单位长度,且位于原点左侧, ∴点B 表示的数为-10,∵将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A , ∴点A 表示的数为20, ∴数轴上表示如下:AB 之间的距离为:20-(-10)=30; (2)∵线段OB 上有点C 且6BC =, ∴点C 表示的数为-4, ∵2PB PC =, 设点P 表示的数为x , 则1024x x +=+, 解得:x=2或-6, ∴点P 表示的数为2或-6; (3)由题意可知:点P 第一次移动后表示的数为:-1, 点P 第二次移动后表示的数为:-1+3=2, 点P 第三次移动后表示的数为:-1+3-5=-3, …,∴点P 第n 次移动后表示的数为(-1)n •n , ∵点A 表示20,点B 表示-10, 当n=20时,(-1)n •n=20; 当n=10时,(-1)n •n=10≠-10,∴第20次P 与A 重合;点P 与点B 不重合. 【点睛】本题考查的是数轴,绝对值,数轴上两点之间的距离的综合应用,正确分类是解题的关键.解题时注意:数轴上各点与实数是一一对应关系. 6.(1)3;(2)12或74-;(3)13秒或79秒 【解析】 【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+, 解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.7.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8. 【解析】 【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d(E,H)=3,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q在x轴上,可设点Q的坐标为(x,0),根据三角形的面积公式结合三角形OPQ的面积为3即可求出x的值,再利用两点之间的折线距离公式即可得出结论.【详解】解:【应用】:(1)AB的长度为|﹣1﹣2|=3.故答案为:3.(2)由CD∥y轴,可设点D的坐标为(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴点D的坐标为(1,2)或(1,﹣2).【拓展】:(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案为:5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.(3)由点Q在x轴上,可设点Q的坐标为(x,0),∵三角形OPQ的面积为3,∴12|x|×3=3,解得:x=±2.当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8综上所述,d(P,Q)的值为4或8.【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.8.(1)①3;②12a;(2)③40 ;④40;(3)12n【解析】【分析】(1)①先求出BC,再根据中点求出AM、BN,即可求出MN的长;②利用①的方法求MN即可;(2)③先求出∠BOC,再利用角平分线的性质求出∠AOM,∠BON,即可求出∠MON;④利用③的方法求出∠MON的度数;(3)先求出∠BOC,利用角平分线的性质分别求出∠AOM,∠BON,再根据角度的关系求出答案即可.【详解】(1)①∵6AB =,2AC =,∴BC=AB-AC=4,∵M 是AC 的中点,N 是BC 的中点. ∴112AM AC ==, 122BN BC ==, ∴MN=AB-AM-BN=6-1-2=3; ②∵AB a ,AC b =,∴BC=AB-AC=a-b ,∵M 是AC 的中点,N 是BC 的中点. ∴12AM b =,1()2BN a b =-, ∴MN=AB-AM-BN=11()22a b a b ---=12a , 故答案为:12a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒,∴∠BOC=∠AOB-∠AOC=50︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=15︒,∠BON=25︒,∴∠MON=∠AOB-∠AOM-∠BON=40︒;④∵80AOB ∠=︒,AOC m ∠=︒,∴∠BOC=(80-m)︒,∵OM ,ON 分别平分AOC ∠和BOC ∠,∴∠AOM=12m ,∠BON=(40-12m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒, 故答案为:40;(3)∵AOB n ∠=︒,AOC m ∠=︒,∴∠BOC=∠AOC-∠AOB=(m-n)︒,∵AOC ∠和BOC ∠的角平分线分别是OM ,ON ,∴∠AOM=12m ,∠CON=1()2m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111()222m m m n n ---=, 故答案为:12n . 【点睛】此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用.9.(1)2;(2)1.5;(3)4-5t 或5t-4;(4)47或45或87或85 【解析】【分析】(1)先计算出点P 到达点B 时运动的时间,再计算出点Q 相同时间内运动的路程,进而可得答案;(2)利用路程=速度×时间,分别计算出当t =0.5时点P 、Q 运动的路程,即AP 和CQ 的长,再根据PQ =AQ -AP 计算即可;(3)分点P 、Q 重合前与重合后两种情况,画出图形,根据PQ =AQ -AP (重合前)与PQ =AP -AQ (重合后)列式化简即可;(4)分点P 从点A 向点B 运动和点P 从点B 向点A 运动时两种情况,每种情况再分点P 、Q 在点C 异侧和点C 同侧,用含t 的代数式分别表示出CP 和CQ ,即可列出方程,解方程即可求出结果.【详解】解:(1)[]3(3)61--÷=,1112⨯+=,所以点Q 所表示的数是2;(2)当t =0.5时,AP =6×0.5=3,CQ =1×0.5=0.5,所以PQ=AQ -AP=AC+CQ -AP =4+0.5-3=1.5; (3)在点P 从点A 向点B 运动时,若点P 、Q 重合,则64t t =+,解得:45t =; 当405t ≤≤时,如图1,4645PQ AQ AP t t t =-=+-=-;当415t <≤时,如图2,6454PQ AP AC CQ t t t =--=--=-.故答案为:4-5t 或5t -4;(4)当点P 从点A 向点B 运动时,若P ,Q 两点到点C 的距离相等,则有如下两种情况: ①点P 、Q 在点C 两侧,如图3,根据题意,得:46t t -=,解得:47t =;②点P 、Q 在点C 右侧,此时P 、Q 重合,由(3)题得:45t =; 当点P 从点B 向点A 运动时,若P ,Q 两点到点C 的距离相等,也有如下两种情况: ③点P 、Q 在点C 右侧,此时P 、Q 重合,根据题意,得:()266t t --=,解得:87t =; ④点P 、Q 在点C 两侧,如图4,根据题意,得:()662t t --=,解得:85t =.综上,在整个运动过程中,当P ,Q 两点到点C 的距离相等时,47t =或45或87或85. 【点睛】本题考查了数轴上两点间的距离、线段的和差关系和一元一次方程的解法等知识,正确理解题意、全面分类、灵活运用方程思想和数形结合的思想是解题的关键.10.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ 和∠COQ 度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ =3t ,∠AOC =30°+6t ,根据角平分线定义可知∠COQ =45°,利用∠AOQ 、∠AOC 、∠COQ 角之间的关系构造方程求出时间t ; (3)先证明∠AOQ 与∠POB 互余,从而用t 表示出∠POB =90°﹣3t ,根据角平分线定义再用t 表示∠BOC 度数;同时旋转后∠AOC =30°+6t ,则根据互补关系表示出∠BOC 度数,同理再把∠BOC 度数用新的式子表达出来.先后两个关于∠BOC 的式子相等,构造方程求解.【详解】(1)①∵∠AOC =30°,∴∠BOC =180°﹣30°=150°,∵OP 平分∠BOC ,∴∠COP =12∠BOC =75°, ∴∠COQ =90°﹣75°=15°,∴∠AOQ =∠AOC ﹣∠COQ =30°﹣15°=15°,t =15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 11.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.12.(1)143;(2)311;(3)25111,11155;(4)167【解析】【分析】(1)根据阅读材料的解答过程,循环部只有一位数时,用循环部的数除以9即为分数,进而求出答案.(2)循环部有两位数时,参照阅读材料的解答过程,可先乘以100,再与原数相减,即求得答案.(3)循环部有三位小数时,用循环部的3位数除以999;对于2.018,可先求0.18对应的分数,再除以10得0.018,再加上2得答案.(4)观察0.714285与2.285714,循环部的数字顺序是一样的,先求把0.714285×1000,把小数循环部变成与2.285714相同,再减712把整数部分凑相等,即求出答案.【详解】解:(1)612214 4.6=4+0.6=4+=+=9333故答案为:14 3(2)设x=0.272727…,①∴100x=27.272727…,②②-①得:99x=27解得:x=27 99∴x=3 11∴3 0.27=11(3)22525 0.225==999111∵182 0.18=0.181818=9911∴211 0.0181818==111055∴1111 2.018=2+0.018=2+=5555故答案为:25111,11155(4)5 0.714285=7∴等号两边同时乘以1000得:5000 714.285714=7∴500016 2.285714=714.28571-712=-712=77故答案为:16 7【点睛】本题考查了有理数运算、比较大小,一元一次方程的解法.解题关键是,正确理解题意的解答过程并转化运用到循环部数字不一样的情况计算.。
【常考压轴题】2023学年七年级数学上册(人教版)-有理数压轴题考点训练(解析版)
![【常考压轴题】2023学年七年级数学上册(人教版)-有理数压轴题考点训练(解析版)](https://img.taocdn.com/s3/m/34ff7913f11dc281e53a580216fc700abb685239.png)
有理数压轴题考点训练1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6C .-4D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BCC .CDD .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9 a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
最新七年级上册数学压轴题(Word版 含解析)
![最新七年级上册数学压轴题(Word版 含解析)](https://img.taocdn.com/s3/m/1548d5f0ba4cf7ec4afe04a1b0717fd5360cb2e1.png)
最新七年级上册数学压轴题(Word版含解析)最新七年级上册数学压轴题(Word版含解析)一、堆放仪器箱问题我们需要研究如何堆放仪器箱,使得每层仪器箱的个数与层数之间满足一定的关系。
已知每层堆放仪器箱的个数an=n²−32n+247,其中n为整数且1⩽n<16.1) 当n=2时,an=187,则a5=5²−32×5+247=162,a6=6²−32×6+247=181.2) 第n层比第(n+1)层多堆放的仪器箱个数为an−a(n+1)=(n+1)−(n+1)²+32(n+1)−247.3) 假设每个仪器箱重54牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。
若仅堆放第1、2两层,每个仪器箱承受的平均压力为(2×54)/(2×160)=0.675.在确保仪器箱不被损坏的情况下,最多可以堆放4层。
因为当堆放第5层时,每个仪器箱承受的压力将超过160XXX,可能会被损坏。
二、数轴问题考虑数轴上点A、B、C的位置关系以及它们的数值。
1) a=-2,b=4,c=2.2) 点A与点C不能重合。
3) 设t秒后,点A到原点的距离为3t,点B到原点的距离为2t,点C到原点的距离为c。
则AB=-t,BC=t+2,因此AB=-3t/3,BC=(t+2)/3.4) 3AB-BC的值不随着时间t的变化而改变。
因为3AB-BC=-3t-2,是一个关于t的一次函数,其斜率为-3,即不随着t 的变化而改变。
三、求a、b、c问题已知b是最小的正整数,且a、b、c满足c-5+a+b=0.1) 根据条件可得a=-b+c+5,因此a、b、c不唯一。
2) x(1/x+1/x^2+5)=(x+1+2x^2)/x,化简过程如下:x(1/x+1/x^2+5)=(x+1)/x+2=(x+2x^2)/x。
3) 在条件a=-b+c+5和b=4下,设点A、B、C的坐标分别为a、4、c,点P的坐标为x。
七年级上册上册数学压轴题专题练习(解析版)
![七年级上册上册数学压轴题专题练习(解析版)](https://img.taocdn.com/s3/m/0199acac866fb84ae55c8da2.png)
(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.
①当t=1时,α=_________;
②猜想∠BCE和α的数量关系,并证明;
(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴正半轴向右平移t(0<t<3)个单位,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α,β满足|α-β|=45°,请用t的式子表示α、β并直接写出t的值.
(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.
5.如图,数轴上点 , 表示的有理数分别为 ,3,点 是射线 上的一个动点(不与点 , 重合), 是线段 靠近点 的三等分点, 是线段 靠近点 的三等分点.
(1)若点 表示的有理数是0,那么 的长为________;若点 表示的有理数是6,那么 的长为________;
(2)点 在射线 上运动(不与点 , 重合)的过程中, 的长是否发生改变?若不改变,请写出求 的长的过程;若改变,请说明理由.
6.如图,数轴上 , 两点对应的数分别为 ,-
(1)求线段 长度
(2)若点 在数轴上,且 ,求点 对应的数
(3)若点 的速度为 个单位长度/秒,点 的速度为 个单位长度/秒,点 的速度为 个单位长度/秒,点 , , 同时向右运动,几秒后,
七年级上册上册数学压轴题专题练习(解析版)
七年级上册数学压轴题(Word版 含解析)
![七年级上册数学压轴题(Word版 含解析)](https://img.taocdn.com/s3/m/2787899f58fb770bf68a5581.png)
(2)若|m+4|+|m-8|=20,求m的值;
(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____;n=______.
2.(阅读理解)如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为 或 或 .
用含t的代数式表示P到点A和点C的距离: ______, ______.
当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.
(1)当 为多少时, 是 的中点;
(2)若点 的运动速度是 个单位长度/秒,是否存在 的值,使得 ;
(3)若点 的运动速度是 个单位长度/秒,当点 , 是 边上的三等分点时,求 的值.
7.如图,已知 ,将一个直角三角形纸片( )的一个顶点放在点 处,现将三角形纸片绕点 任意转动, 平分斜边 与 的夹角, 平分 .
利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.
点A表示的数为______,点B表示的数为______.
4.已知 , 在数轴上对应的数分别用 , 表示,且点 距离原点10个单位长度,且位于原点左侧,将点 先向右平移35个单位长度,再向左平移5个单位长度,得到点 , 是数轴上的一个动点.
七年级数学上册上册数学压轴题专题练习(解析版)
![七年级数学上册上册数学压轴题专题练习(解析版)](https://img.taocdn.com/s3/m/95fdb54bcfc789eb162dc85b.png)
七年级数学上册上册数学压轴题专题练习(解析版)一、压轴题1.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.2.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图1是显示部分代数式的“等和格”,可得a=_______(含b 的代数式表示); (2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________; (3)图3是显示部分代数式的“等和格”,求b 的值。
(写出具体求解过程)3.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.5.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由. 6.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =7.尺规作图是指用无刻度的直尺和圆规作图。
部编数学七年级上册专题1.1数轴中的综合(压轴题专项讲练)(人教版)(解析版)含答案
![部编数学七年级上册专题1.1数轴中的综合(压轴题专项讲练)(人教版)(解析版)含答案](https://img.taocdn.com/s3/m/72a10fd5d5d8d15abe23482fb4daa58da0111ca8.png)
专题1.1 数轴中的综合【典例1】对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是 ;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为 .(1)根据“联盟点”的定义,分别求出两点之间的距离,然后再进行判断即可;(2)①根据点P所处的位置,由不同的线段的倍数关系求出答案即可;②分三种情况进行解答,即点A是点P,点B的“联盟点”,点B是点A、点P的“联盟点”,点P是点A、点B的“联盟点”进行计算即可.解:(1)点A所表示的数为﹣2,点B所表示的数是4,当点C1所表示的数是3时,AC1=5,BC1=1,所以C1不是点A、点B的“联盟点”,当点C2所表示的数是2时,AC2=4,BC2=2,由于AC2=2BC2,所以C2是表示点A、点B的“联盟点”,当点C3所表示的数是0时,AC3=2,BC3=4,由于2AC3=BC3,所以C3是表示点A、点B的“联盟点”,故答案为:C2或C3;(2)①设点P 在数轴上所表示的数为x ,当点P 在AB 上时,若PA =2PB ,则x +10=2(30﹣x ),解得x =503,若2PA =PB 时,则2(x +10)30﹣x ,解得x =103,当点P 在点A 的左侧时,由2PA =PB 可得2(﹣10﹣x )=30﹣x ,解得x =﹣50,综上所述,点P 表示的数为103或503或﹣50;②若点P 在点B 的右侧,当点A 是点P ,点B 的“联盟点”时,有PA =2AB ,即x +10=2×(30+10),解得x =70,当点B 是点A 、点P 的“联盟点”时,有AB =2PB 或2AB =PB ,即30+10=2(x ﹣30)或2×(30+10)=x ﹣30,解得x =50或x =110;当点P 是点A 、点B 的“联盟点”时,有PA =2PB ,即x +10=2×(x ﹣30),解得x =70;故答案为:70或50或110.1.(2022•烟台一模)如图,点A 在数轴上对应的数为﹣3,点B 对应的数为2,点P 在数轴上对应的是整数,点P 不与A 、B 重合,且PA +PB =5.则满足条件的P 点对应的整数有几个( )A .1个B .2个C .3个D .4个【思路点拨】先根据数轴上两点的距离可得AB =5,根据PA +PB =5可知:P 在A ,B 之间,从而得结论.【解题过程】解:∵点A 在数轴上对应的数为﹣3,点B 对应的数为2,∴AB =2﹣(﹣3)=5,∵点P 在数轴上对应的是整数,点P 不与A 、B 重合,且PA +PB =5,∴P 在A ,B 之间,∴满足条件的P 点对应的整数有:﹣2,﹣1,0,1,4个.故选:D.2.(2021秋•嘉鱼县期末)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是( )A.2018或2019B.2019或2020C.2020或2021D.2021或2022【思路点拨】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解题过程】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2020+1=2021,∴2020厘米的线段AB盖住2020或2021个整点.故选:C.3.(2021秋•房山区期末)有理数a,b,c,d在数轴上的对应点的位置如图所示.下面有四个推断:①如果ad>0,则一定会有bc>0;②如果bc>0,则一定会有ad>0;③如果bc<0,则一定会有ad<0;④如果ad<0,则一定会有bc<0.所有合理推断的序号是( )A.①③B.①④C.②③D.②④【思路点拨】根据原点的位置可得a,b,c,d的正负情况,再根据有理数的乘法法则可得答案.【解题过程】解:①如果ad>0,则原点在a的左边或d的右边,故bc同号,一定会有bc>0,所以①正确;②如果bc>0,则原点在b的左边或c的右边,故ad可能异号,会有ad<0,所以②错误;③如果bc<0,则原点在b、c之间,故ad异号,一定会有ad<0,所以③正确;④如果ad<0,则原点在a、b之间,故bc可能异号,会有bc<0,所以④错误;故选:A.4.(2021秋•邢台期末)一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A'落在射线CB上,并且A'B=6,则C点表示的数是( )A.1B.﹣3C.1或﹣4D.1或﹣5【思路点拨】设出点C所表示的数,根据点A、B所表示的数,表示出AC的距离,在根据A′B=6,表示出A′C,由折叠得,AC=A′C,列方程即可求解.【解题过程】解:设点C所表示的数为x,AC=x﹣(﹣14)=x+14,∵A′B=6,B点所表示的数为10,∴A′表示的数为10+6=16或10﹣6=4,∴AA′=16﹣(﹣14)=30,或AA′=4﹣(﹣14)=18,根据折叠得,AC=12 AA′,∴x+14=12×30或x+14=12×18,解得:x=1或﹣5,故选:D.5.(2021秋•九龙坡区期末)如图所示,圆的周长为4个单位长度,在圆的4等分点处分别标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴向右滚动,那么数轴上的数2021将与圆周上的哪个数字重合( )A.0B.1C.2D.3【思路点拨】分别找出圆周上数字0,1,2,3与数轴上的数重合的数字规律即可解答.【解题过程】解:先让圆周上数字0所对应的点与数轴上的数﹣2所对应的点重合,再让圆沿着数轴向右滚动,则圆周上数字0所对应的点与数轴上的数﹣2,2,6...﹣2+4n,圆周上数字1所对应的点与数轴上的数﹣1,3,7...﹣1+4n,圆周上数字2所对应的点与数轴上的数0,4,8...4n,圆周上数字3所对应的点与数轴上的数1,5,9...1+4n,∵2021=1+4×505,∴数轴上的数2021与圆周上数字3重合,故选:D.6.(2021秋•瓯海区月考)如图,一电子跳蚤在数轴的点P0处,第一次向右跳1个单位长度到点P1处,第二次向左跳2个单位长度到点P2处,第三次向右跳3个单位长度到点P3处,第四次向左跳4个单位长度到点P4处,以此类推,当跳蚤第十次恰好跳到数轴原点,则点P0在数轴上表示的数为( )A.﹣5B.0C.5D.10【思路点拨】设P0所表示的数是x,归纳出P n=x+1﹣2+3﹣4+...+(﹣1)n﹣1n,再根据P10=0,求出x的值即可.【解题过程】解:设P0所表示的数是x,由题意知,P1所表示的数是x+1,P2所表示的数是x+1﹣2,P3所表示的数是x+1﹣2+3,...,P n所表示的数是x+1﹣2+3﹣4+...+(﹣1)n﹣1n,∴P10所表示的数的是x+1﹣2+3﹣4+...+(﹣1)10﹣1×10,∵P10=0,即x+1﹣2+3﹣4+5﹣6+7﹣8+9﹣10=0,∴x+(1﹣2)+(3﹣4)+(5﹣6)+...+(9﹣10)=0,即x﹣5=0,解得x=5,故选:C.7.(2021秋•济源期末)已知A,B,C是数轴上的三个点.点A,B表示的数分别是1,3,如图所示,若BC=74AB,则点C表示的数是 −12或132. .【思路点拨】因为A、B两点表示的数为1,3,可以得到AB=2,又因为BC=74AB,所以BC=72,但是并不知道C点在B点的左还是右,依次讨论即可得到答案【解题过程】因为A、B两点表示的数为1,3,可以得到AB=2,又因为BC=74AB,所以BC=72.当C点在B点的左面时C点代表的数为3−72=−12;当C点在B点的右面时C点代表的数为3+72=132;故答案为:−12或132.8.(2021秋•洛川县校级期末)如图所示,数轴(不完整)上标有若干个点,每相邻两点相距一个单位长度,点A,B,C,D对应的数分别是a,b,c,d,且有一个点表示的是原点.若d+2a+5=0,则表示原点的应是点 C .【思路点拨】此题用排除法进行分析:分别设原点是点A或B或C或D.【解题过程】解:若原点为A,则a=0,d=7,此时d+2a+5=12,与题意不符合,舍去;若原点为B,则a=﹣3,d=4,此时d+2a+5=﹣3,与题意不符合,舍去;若原点为C,则a=﹣4,d=3,此时d+2a+5=0,与题意符合;若原点为D,则a=﹣7,d=0,此时d+2a+5=﹣9,与题意不符合,舍去.故答案为:C.9.(2021秋•南充期末)如图,数轴上A,B两点对应的数分别为﹣1,2,若数轴上的点C满足AC+BC=5,则点C表示的数为 ﹣2或3. .【思路点拨】分两种情况进行讨论:①点C在点A的左侧;②点C在点B的右侧,再根据所给的条件进行求解即可.【解题过程】解:设点C所表示的数为x,①当点C在点A的左侧时,∵AC+BC=5,∴﹣1﹣x+2﹣x=5,解得:x=﹣2;②点C在点B的右侧时,∵AC+BC=5,∴x﹣(﹣1)+x﹣2=5,解得:x=3,综上所述,点C表示的数为﹣2或3.故答案为:﹣2或3.10.(2022•石家庄二模)如图,在数轴原点O的右侧,一质点P从距原点10个单位的点A处向原点方向跳动,第一次跳动到OA的中点A1处,则点A1表示的数为 5 ;第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此跳动下去,则第四次跳动后,该质点到原点O的距离为 58 .【思路点拨】OA=10个单位,A1是OA的中点,故A1表示的数是5,距离原点的距离就是5;依次类推,四次跳动后,距离原点的距离为10×124=58.【解题过程】解:根据题意,A1是OA的中点,而OA=10,所以A1表示的数是10×12=5;A2表示的数是10×12×12=10×122;A3表示的数是10×1 23;A 4表示的数是10×124=10×116=58;故答案为:5;58.11.(2021秋•宜兴市期末)如图,点A 在数轴上表示的数是﹣8,点B 在数轴上表示的数是16,线段AB 的中点表示的数是 4 ,若点C 是数轴上的一个动点,当2AC ﹣BC =10时,点C 表示的数是 ﹣42或103 .【思路点拨】根据数轴上两点间距离计算即可求出线段AB 的中点表示的数,要求点C 表示的数,分三种情况,点C 在点A 的左侧,点C 在AB 之间,点C 在点B 的右侧.【解题过程】解:∵点A 在数轴上表示的数是﹣8,点B 在数轴上表示的数是16,∴线段AB 的中点表示的数是:−8162=4,设点C 表示的数是x ,分三种情况:当点C 在点A 的左侧,∵2AC ﹣BC =10,∴2(﹣8﹣x )﹣(16﹣x )=10,∴x =﹣42,∴点C 表示的数是:﹣42,当点C 在AB 之间,∵2AC ﹣BC =10,∴2[x ﹣(﹣8)]﹣(16﹣x )=10,∴x =103,∴点C 表示的数是:103,当点C 在点B 的右侧,∵AC ﹣BC =AB ,∴AC ﹣BC =16﹣(﹣8)=24,而已知2AC﹣BC=10,∴此种情况不存在.综上所述:点C表示的数是:﹣42或10 3,故答案为:4,﹣42或10 3.12.(2021秋•新泰市期末)我们知道,若有理数x1,x2表示在数轴上的点A1,A2,且x1<x2,则点A1与点A2之间的距离为|x2﹣x1|=x2﹣x1,现已知数轴上三点A、B、C,其中A表示的数为﹣3,B表示的数为3,C与A的距离等于m,C与B的距离等于n.请解答下列问题:(1)若点C在数轴上表示的数为﹣6.5,求m+n的值;(2)若m+n=8,请你直接写出点C表示的数为 ﹣4或4 ;(3)若C在点A、B之间(不与点A、B重合),且m=13n,求点C表示的数.【思路点拨】(1)利用两点间的距离求出m,n即可;(2)分两种情况讨论:点C在点A的左侧,点C在点B的右侧;(3)利用两点间的距离列出方程即可.【解题过程】解:(1)由题意得:m=﹣3﹣(﹣6.5)=﹣3+6.5=3.5,n=3﹣(﹣6.5)=3+6.5=9.5,所以m+n=3.5+9.5=13;(2)设点C表示的数为x,分两种情况:当点C在点A的左侧时,∵m+n=8,∴﹣3﹣x+(3﹣x)=8,∴x=﹣4,当点C在点B的右侧时,∵m+n=8,∴x﹣(﹣3)+(x﹣3)=8,∴x=4,故答案为:﹣4或4;(3)设点C表示的数为y,∵m=13 n,∴y﹣(﹣3)=13(3﹣y),∴y=−3 2.答:点C表示的数是−3 2.13.(2021秋•确山县期末)已知数轴上两点A,B对应的数分别为﹣1,3,点P为数轴上一动点,其对应的数为x.(1)若点P为AB的中点,则点P对应的数是 1 .(2)数轴的原点右侧有点P,使点P到点A,点B的距离之和为8.请你求出x的值.(3)现在点A,点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,直接写出点P对应的数.【思路点拨】(1)根据点P为AB的中点列方程即可解得答案;(2)分两种情况,当P在线段AB上时,由PA+PB=[x﹣(﹣1)]+(3﹣x)=4≠8,知这种情况不存在;当P在B右侧时,[x﹣(﹣1)]+(x﹣3)=8,解得x=5;(3)设运动的时间是t秒,表示出运动后A表示的数是﹣1+2t,B表示的数是3+0.5t,P表示的数是1﹣6t,根据点A与点B之间的距离为3个单位长度得:|(﹣1+2t)﹣(3+0.5t)|=3,解出t的值,即可得到答案.【解题过程】解:(1)∵A,B对应的数分别为﹣1,3,点P为AB的中点,∴3﹣x=x﹣(﹣1),解得x=1,∴点P对应的数是1,故答案为:1;(2)当P在线段AB上时,PA+PB=[x﹣(﹣1)]+(3﹣x)=4≠8,∴这种情况不存在;当P在B右侧时,[x﹣(﹣1)]+(x﹣3)=8,解得x=5,答:x的值是5;(3)设运动的时间是t秒,则运动后A表示的数是﹣1+2t,B表示的数是3+0.5t,P表示的数是1﹣6t,根据题意得:|(﹣1+2t)﹣(3+0.5t)|=3,解得t=23或t=143,当t=23时,P表示的数是1﹣6t=1﹣6×23=−3,当t=143时,P表示的数是1﹣6t=1﹣6×143=−27,答:点P对应的数是﹣3或﹣27.14.(2021秋•洪江市期末)如图一根木棒放在数轴上,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到B点时,它的右端在数轴上所对应的数为24;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为6(单位:cm),由此可得到木棒长为 6 cm.(2)图中A点表示的数是 12 ,B点表示的数是 18 .(3)由题(1)(2)的启发,请你能借助“数轴”这个工具帮助小红解决下列问题:问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要38年才出生;你若是我现在这么大,我已经118岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?【思路点拨】(1)此题关键是正确识图,由数轴观察知三根木棒长是24﹣6=18(cm),依此可求木棒长为6cm,(2)根据木棒长为6cm,将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为18;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为6,依此可求出A,B两点所表示的数;(3)在求爷爷年龄时,借助数轴,把小红与爷爷的年龄差看作木棒AB,类似爷爷若是小红现在这么大看作当B点移动到A点时,此时A点所对应的数为﹣38,小红若是爷爷现在这么大看作当A点移动到B点时,此时B点所对应的数为118,所以可知爷爷比小红大[118﹣(﹣38)]÷3=52,可知爷爷的年龄.【解题过程】解:(1)由数轴观察知,三根木棒长是24﹣6=18(cm),则木棒长为:18÷3=6(cm).故答案为:6;(2)∵木棒长为6cm,将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为24,∴B点表示的数是18,∵将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为6,∴A点所表示的数是12.故答案为:12,18;(3)借助数轴,把小红与爷爷的年龄差看作木棒AB,类似爷爷若是小红现在这么大看作当B点移动到A点时,此时A点所对应的数为﹣38,小红若是爷爷现在这么大看作当A点移动到B点时,此时B点所对应的数为118,∴可知爷爷比小红大[118﹣(﹣38)]÷3=52,可知爷爷的年龄为118﹣52=66(岁).故爷爷现在66岁.15.(2021秋•丰台区校级期中)平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是 D A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1 C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是 ﹣1009 .(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示 ﹣2015 的点重合;②若数轴上A 、B 两点之间的距离为2018(A 在B 的左侧,且折痕与①折痕相同),且A 、B 两点经折叠后重合,则A 点表示 ﹣1008 B 点表示 1010 .③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为 a b 2 .(用含有a ,b 的式子表示)【思路点拨】(1)①根据有理数的加法法则即可判断;②探究规律,利用规律即可解决问题;(2)①根据对称中心是1,即可解决问题;②由对称中心是1,AB =2018,则A 点表示﹣1008,B 点表示1010;③利用中点坐标公式即可解决问题.【解题过程】解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D .②一机器人从数轴原点处O 开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB =2018,∴则A 点表示﹣1008,B 点表示1010,③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为a b 2.故答案是;(1)①D ; ②﹣1009;(2)①﹣2015; ②﹣1008,1010;(3)a b 2.16.(2021秋•西城区期末)在数轴上有A,B,C,M四点,点A表示的数是﹣1,点B表示的数是6,点M位于点B的左侧并与点B的距离是5,M为线段AC的中点.(1)画出点M,点C,并直接写出点M,点C表示的数;(2)画出在数轴上与点B的距离小于或等于5的点组成的图形,并描述该图形的特征;(3)若数轴上的点Q满足QA=14QC,求点Q表示的数.【思路点拨】(1)根据已知可知点M表示的数是1,点C表示的数是3,即可解答;(2)分两种情况,在点B的左侧,在点B的右侧;(3)分两种情况,点Q在点A的左侧,点Q在AB的之间.【解题过程】解:(1)∵点B表示的数是6,点M位于点B的左侧并与点B的距离是5,∴点M表示的数是1,∵点A表示的数是﹣1,∴AM=1﹣(﹣1)=1+1=2,∵M为线段AC的中点,∴MC=AM=2,∴点C表示的数是3,点M,点C在数轴上的位置如图所示:∴点M,点C表示的数分别为:1,3.(2)与点B的距离小于或等于5的点组成的图形,是一条线段EF,如图所示:线段EF是以点B为中点,距离为10的线段,且点E在数轴上表示的数为1,点F在数轴上表示的数为11;(3)设点Q表示的数为x,分两种情况:当点Q在点A的左侧,∵QA=14 QC,∴﹣1﹣x=14(3﹣x),∴x=−7 3,∴点Q表示的数为−7 3,当点Q在AB的之间,∵QA=14 QC,∴x﹣(﹣1)=14(3﹣x),∴x=−1 5,∴点Q表示的数为:−1 5,综上所述:点Q表示的数为−73或−15.17.(2022•孟村县二模)如图,在一条直线上,从左到右依次有点A、B、C,其中AB=4cm,BC=2cm.以这条直线为基础建立数轴、设点A、B、C所表示数的和是p.(1)如果规定向右为正方向;①若以BC的中点为原点O,以1cm为单位长度建立数轴,则p= ﹣5 ;②若单位长度不变,改变原点O的位置,使原点O在点C的右边,且CO=30cm,求p的值;并说明原点每向右移动1cm,p值将如何变化?③若单位长度不变,使p=64,则应将①中的原点O沿数轴向 左 方向移动 23 cm;④若以①中的原点为原点,单位长度为ncm建立数轴,则p= −5n .(2)如果以1cm为单位长度,点A表示的数是﹣1,则点C表示的数是 5 .【思路点拨】(1)①建立数轴,确定原点,找到各点表示的数,相加即可;②同①,确定原点,找到各数即可;③同①,先设原点,表示各数,相加和为64,从而确定出原点即可;④单位长度为ncm,相当于把①中的单位长度除以n即可;(2)确定原点,表示各数,相加即可.【解题过程】解:(1)①BC中点为原点O,则C表示的数是1,B表示的数为﹣1,A表示的数为﹣5,∴p=﹣5+(﹣1)+1=﹣5,故答案为:﹣5;②∵CO=30cm,∴C表示的数是﹣30,B表示的数是﹣32,A表示的数是﹣36,∴p=﹣30+(﹣32)+(﹣36)=﹣98,原点出右移1cm,则各点表示的数就﹣1,所以和就减少3,即p值减少3;③根据②可知,原点向右平移1cm,p就减少3;原点向左平移1cm,p就增加3,∵p值是64,相对增加,∴可设左移xcm,得,﹣5+3x=64,∴x=23,故答案为:左;23;④单位长度除以n,则表示的数除以n,所以和除以n,即p=−5 n ;故答案为:−5 n ;(2)∵A点表示的数为﹣1,∴A点在原点左侧1cm处,∵AB=4cm,BC=2cm,∴C点到原点的距离为4﹣1+2=5,∴C点表示的数是5,故答案为:5.18.(2021秋•仪征市期末)如图,数轴上,O点与C点对应的数分别是0、60,将一根质地均匀的直尺AB 放在数轴上(A在B的左边),若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.(1)直尺AB的长为 20 个单位长度;(2)若直尺AB在数轴上O、C间,且满足BC=3OA,求此时A点对应的数;(3)设直尺AB以(2)中的位置为起点,以2个单位/秒的速度沿数轴匀速向右移动,同时点P从点A出发,以m个单位/秒的速度也沿数轴匀速向右移动,设运动时间为t秒.①若B、P、C三点恰好在同一时刻重合,求m的值;②当t=10时,B、P、C三个点中恰好有一个点到另外两个点的距离相等,请直接写出所有满足条件的m 的值.【思路点拨】(1)根据题意可得OA=AB=BC,即得AB=20;(2)根据AB=20,OC=60,BC=3OA,即得OA=40×113=10;(3)①B、C重合时t=60−302=15,即得15m=60﹣10,故m=103;②t=10时,运动后B表示的数是30+10×2=50,P表示的数是10+10m,C表示的数是60,分五种情况:(Ⅰ)当B是P、C中点时,(Ⅱ)当B与P重合时,(Ⅲ)当P是B、C中点时,(Ⅳ)当P与C重合时,(Ⅴ)当C是P、B中点时,分别列出方程,即可解得答案.【解题过程】解:(1)∵当A点移动到B点的位置时,B点与C点重合,∴AB=BC,∵当B点移动到A点的位置时,A点与O点重合.∴OA=AB,∴OA=AB=BC,∵OC=60,∴AB=60×13=20,故答案为:20;(2)∵AB=20,OC=60,∴OA+BC=40,∵BC=3OA,∴OA=40×113=10,∴A点对应的数是10;(3)①由(2)知,B运动前表示的数是30,∵直尺AB以(2)中的位置为起点,以2个单位/秒的速度沿数轴匀速向右移动,∴B、C重合时t=60−302=15(秒),根据题意得:15m=60﹣10,∴m=10 3,答:m的值是10 3;②t=10时,运动后B表示的数是30+10×2=50,P表示的数是10+10m,C表示的数是60,(Ⅰ)当B是P、C中点时,依题意有10+10m+60=50×2,解得m=3;(Ⅱ)当B与P重合时,依题意有10+10m=50,解得m=4;(Ⅲ)当P是B、C中点时,依题意有50+60=2(10+10m),解得m=4.5;(Ⅳ)当P与C重合时,10+10m=60;解得m=5,(Ⅴ)当C是P、B中点时,依题意有10+10m+50=60×2,解得m=6.综上所述,m的值是3或4或4.5或5或6.19.(2021秋•富县月考)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.如图,数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数−52,1,4是点A,B的“倍分点”的是 1,4 ;(2)当点A表示数﹣10,点B表示数30时,D为数轴上一个动点.①若点D是点A,B的“倍分点”,求此时点D表示的数;②若点D,A,B中,有一个点恰好是其它两个点的“倍分点”,求出此时点D表示的数.【思路点拨】根据题干提供新定义求解.(1)分别计算各数−52,1,4到A和B的距离,根据“倍分点”进行判断即可;(2)①分类讨论点D位置求解;②分类讨论:D,A,B分别是“倍分点”,列方程可解答.【解题过程】解:(1)∵﹣2+52=0.5,2+52=4.5,∴数−52不是点A,B的“倍分点”;∵1+2=3,2﹣1=1,∴数1是点A,B的“倍分点”;∵4﹣(﹣2)=6,4﹣2=2,∴数4是点A,B的“倍分点”;故答案为:1,4;(2)设点D对应的数为x,①当点D在A,B之间时,因为AB=30+10=40,所以当BD=14AB时,BD=10,即x=30﹣10=20;当BD=34AB时,BD=30,即x=30﹣30=0;当点D在点B右侧,AD=3BD,即x+10=3(x﹣30),解得x=50;当点D在点A左侧,BD=3AD,即30﹣x=3(﹣10﹣x),解得x=﹣30;综上,点D表示的数可为20,0,50,﹣30;②由①得点D是倍分点时,点D表示的数可为20,0,50,﹣30;当点A为倍分点,点D在A,B之间时,AB=3AD,即40=3(x+10),解得x=10 3;点D在点A左侧时,AD=3AB,即﹣10﹣x=3×40,解得x=﹣130;AB=3AD,40=3(﹣10﹣x),解得x=−70 3;点D在点B右侧,AD=3AB,即x﹣(﹣10)=3×40,解得x=110;当点B为倍分点时,同理可求x=503,﹣90,150,1303.综上,点D表示的数可为:20,0,50,﹣30,103,﹣130,−703,110,503,﹣90,150,1303.20.(2021秋•西湖区期末)已知点A,B,C,D是同一数轴上的不同四点,且点M为线段AB的中点,点N为线段CD的中点.如图,设数轴上点O表示的数为0,点D表示的数为1.(1)若数轴上点A,B表示的数分别是﹣5,﹣1,①若点C表示的数是3,求线段MN的长.②若CD=1,请结合数轴,求线段MN的长.(2)若点A,B,C均在点O的右侧,且始终满足MN=OA OB OC2,求点M在数轴上所表示的数.【思路点拨】(1)①先根据数轴上两点的距离可得AB的长,由线段中点的定义可得AM的长,同理得CN的长,由线段的和差关系可得MN的长;②存在两种情况:C在D的左边或右边,同理根据线段的和差关系可得MN的长;(2)设点A表示的数为a,点B表示的数为b,点C表示的数为c,结合数轴上两点间的距离公式,中点坐标公式和线段的和差关系列方程求解.【解题过程】解:(1)①如图1,∵点A,B表示的数分别是﹣5,﹣1,∴AB=﹣1﹣(﹣5)=4,∵M是AB的中点,∴AM=12AB=2,同理得:CD=3﹣1=2,CN=12CD=1,∴MN=AC﹣AM﹣CN=3﹣(﹣5)﹣2﹣1=5;②若CD=1,存在两种情况:i)如图2,点C在D的左边时,C与原点重合,表示的数为0,∴MN=AD﹣AM﹣DN=1﹣(﹣5)﹣2−12=72;ii)如图3,点C在D的右边时,C表示的数为2,∴MN=AC﹣AM﹣CN=2﹣(﹣5)﹣2−12=92;综上,线段MN的长为72或92;(2)设点A表示的数为a,点B表示的数为b,点C表示的数为c,∵点A、B、C、D、M、N是数轴上的点,且点M是线段AB的中点,点N是线段CD的中点,∴点M在数轴上表示的数为a b2,点N在数轴上表示1c2,∴MN=|a b2−1c2|,∵点A,B,C均在点O的右侧,且始终满足MN=OA OB OC2,∴2|a b2−1c2|=a+b+c,整理,得|a+b﹣1﹣c|=a+b+c,当a+b﹣1﹣c=a+b+c时,解得c=−12(不符合题意,舍去),当﹣a﹣b+1+c=a+b+c时,解得:a+b=1 2,∴点M在数轴上表示的数为a b2=14,综上,点M在数轴上所对应的数为1 4.。
最新七年级上册数学压轴题专题练习(解析版)
![最新七年级上册数学压轴题专题练习(解析版)](https://img.taocdn.com/s3/m/ce69373e773231126edb6f1aff00bed5b9f3738c.png)
最新七年级上册数学压轴题专题练习(解析版)最新七年级上册数学压轴题专题练(解析版)一、压轴题1.[问题提出]一个边长为$n$ cm($n\geq 3$)的正方体木块,在它的表面涂上颜色,然后切成边长为1 cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?问题探究]我们先从特殊的情况入手:1)当$n=3$时,如图(1)。
没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$1\times 1\times 1=1$个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个。
2)当$n=4$时,如图(2)。
没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$2\times 2\times 2=8$个小正方体;一面涂色的:在面上,每个面上有4个,正方体共有6个面,因此一面涂色的共有24个;两面涂色的:在棱上,每个棱上有2个,正方体共有12条棱,因此两面涂色的共有24个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有8个顶点,因此三面涂色的共有8个。
问题解决]一个边长为$n$ cm($n\geq 3$)的正方体木块,没有涂色的:把这个正方体的表面“剥去”剩下的正方体,有$$(n-2)^3$$个小正方体;一面涂色的:在面上,共有$$6(n-2)^2$$个;两面涂色的:在棱上,共有$$12(n-2)$$个;三面涂色的:在顶点处,共有$$8$$个。
问题应用]一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1 cm的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积。
解:设大正方体的边长为$n$ cm,则根据问题解决部分的公式,$$12(n-2)=96,$$解得$n=8$,因此大正方体的体积为$$8^3=512\text{ cm}^3.$$答案:512 $\text{cm}^3$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册数学压轴题专题练习(解析版)一、压轴题1.如图,已知数轴上两点A,B表示的数分别为﹣2,6,用符号“AB”来表示点A和点B 之间的距离.(1)求AB的值;(2)若在数轴上存在一点C,使AC=3BC,求点C表示的数;(3)在(2)的条件下,点C位于A、B两点之间.点A以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C以2个单位/秒的速度也沿着数轴的正方向运动,到达B点处立刻返回沿着数轴的负方向运动,直到点A到达点B,两个点同时停止运动.设点A运动的时间为t,在此过程中存在t使得AC=3BC仍成立,求t的值.2.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。
如图的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)图1是显示部分代数式的“等和格”,可得a=_______(含b的代数式表示);(2)图2是显示部分代数式的“等和格”,可得a=__________,b=__________;(3)图3是显示部分代数式的“等和格”,求b的值。
(写出具体求解过程)3.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .5.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.6.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.7.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片? 8.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?9.已知:∠AOB =140°,OC ,OM ,ON 是∠AOB 内的射线.(1)如图1所示,若OM 平分∠BOC ,ON 平分∠AOC ,求∠MON 的度数: (2)如图2所示,OD 也是∠AOB 内的射线,∠COD =15°,ON 平分∠AOD ,OM 平分∠BOC .当∠COD 绕点O 在∠AOB 内旋转时,∠MON 的位置也会变化但大小保持不变,请求出∠MON 的大小;(3)在(2)的条件下,以∠AOC =20°为起始位置(如图3),当∠COD 在∠AOB 内绕点O 以每秒3°的速度逆时针旋转t 秒,若∠AON :∠BOM =19:12,求t 的值.10.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.11.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.12.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)8;(2)4或10;(3)t的值为167和329【解析】【分析】(1)由数轴上点B在点A的右侧,故用点B的坐标减去点A的坐标即可得到AB的值;(2)设点C表示的数为x,再根据AC=3BC,列绝对值方程并求解即可;(3)点C位于A,B两点之间,分两种情况来讨论:点C到达B之前,即2<t<3时;点C 到达B之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A,B表示的数分别为﹣2,6∴AB=6﹣(﹣2)=8答:AB的值为8.(2)设点C 表示的数为x ,由题意得 |x ﹣(﹣2)|=3|x ﹣6| ∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x ∴x =10或x =4答:点C 表示的数为4或10. (3)∵点C 位于A ,B 两点之间,∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t , ①点C 到达B 之前,即2<t <3时,点C 表示的数为4+2(t ﹣2)=2t ∴AC =t +2,BC =6﹣2t ∴t +2=3(2t ﹣6) 解得t =167②点C 到达B 之后,即t >3时,点C 表示的数为6﹣2(t ﹣3)=12﹣2t ∴AC =|﹣2+t ﹣(12﹣2t )|=|3t ﹣14|,BC =6﹣(12﹣2t )=2t ﹣6 ∴|3t ﹣14|=3(2t ﹣6) 解得t =329或t =43,其中43<3不符合题意舍去答:t 的值为167和329【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.2.(1)-b;(2) :a=-2,b=2;(3)9. 【解析】 【分析】(1)由每行、每列的3个代数式的和相等,列出关系式,即可确定a 与b 的关系; (2)由第一行与第三列、对角线上与第二行的和相等,可得a 与b 的值; (3)根据“等和格"的定义列方程,然后整理代入,即可求出b 的值. 【详解】解:(1)由题意得:-2a+a=3b+2a ,即a=-b ; 故答案为:-b ; (2)由题意得:2322283a a b aa ab b -+=+⎧⎨-+=-+⎩解得:22a b =-⎧⎨=⎩故答案为:a=-2,b=2(3)由题意得:2222223a a a a a a a ++-=+++,即:23a a +=-22223322a a a b a a a a +++=++++,可得:2223b a a =--+;()2232(3)39b a a =-+=⨯-+=+故答案为9. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是充分利用“每行,每列及对角线上的3个数(或代数式)的和都相等"列出等式. 3.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】 (1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14;(2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯-21()3=-;611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=;故答案为:21()3-,45; (4)由(3)得到规律:21()n n a a-=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a-,故答案为:21()n a-;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭11186=-- 29=-.【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序. 4.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】 【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可.【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=; 数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -; (2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-, ∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<, ∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=,即代数式15c c 的最小值是6.故答案为:6. 【点睛】本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键. 5.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【解析】 【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论; 【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3; ∴AB=9;∵P 到A 和点B 的距离相等, ∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t - 分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -, t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -, t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.6.(1)80°,20°;(2)90°;(3)当030AOB <∠<时,45BOM CON ∠+∠=;当3090AOB <∠<,45CON BOM ∠-∠=,理由见解析【解析】 【分析】(1)利用平角的定义、角平分线的定义和角的和差即可得出结论 (2)设AOM COM x ∠=∠=,再根据已知12BOM COD ∠=∠得出∠BOM=90°-x , 再利用BOC BOM COM ∠=∠+∠即可得出结论(3)分030AOB <∠<,3090AOB <∠<两种情况加以讨论 【详解】解:(1)∵∠AOB=40°,∠COD=60°∴∠BOC=180°-∠AOB -∠COD=80°,∠AOC=180°-∠COD =120° ∵OM 平分∠AOC ∴∠AOM=60°∴∠BOM=∠AOM-∠AOB =20° 故答案为:80°,20° (2)∵OM 平分∠AOC∴设AOM COM x ∠=∠=,则1802COD x ∠=-∵12BOM COD ∠=∠ ∴()11802902BOM x x ∠=-=- ∴9090BOC BOM COM x x ∠=∠+∠=-+= (3)当030AOB <∠<时,即OB 在OM 下方时设AOB x ∠=∴90AOC x ∠=-∴1452AOM x ∠=-∴13454522BOM x x x ∠=--=- ∴119022DOA DOB x ∠==-. ∴13909022CON DOC DON x x x ∠=∠-∠=+-+= ∴45BOM CON ∠+∠=②当3090AOB <∠<,即OB 在OM 上方时设AOB x ∠=∴90AOC x ∠=-∴1452AOM x ∠=-∴3452BOM x ∠=- ∴1809090DOC x x ∠=-+=+,∵ON 平分BOD ∠,∴119022DON BOD x ∠=∠=-∴32CON x ∠= ∴45CON BOM ∠-∠=【点睛】本题考查角的相关计算,难度适中,涉及角平分线的定义和邻补角相加等于180°的知识点;同时,里面的小题从易到难,体现了分类讨论的数学思想.7.(1)45;(2)(1)2n n -;(3)(1)2n n -;(4)共需拍照991张,共需冲印2025张纸质照片【解析】【分析】(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.【详解】解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).故答案为:45;(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条. 故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成(1)2n n -个角; 故答案为:(1)2n n -; (4)解:4545-119912+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片【点睛】此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.8.(1)①10°,②18°;(2)圆圆的说法正确,理由见解析.【解析】【分析】(1)①根据∠AOB 与∠COD 互余求出∠COD ,再利用角度的和差关系求出∠AOC+∠BOD=30°,最后根据∠AOC=2∠BOD 即可求出∠BOD ;②设∠BOD=x,根据角平分线表示出∠COD和∠BOC,根据∠AOC=2∠BOD表示出∠AOC,最后根据∠AOB与∠COD互余建立方程求解即可;(2)分两种情况讨论:OC靠近OA时与OC靠近OB时,画出图形分类计算判断即可.【详解】解:(1)①∵∠AOB与∠COD互余,且∠AOB=60°,∴∠COD=90°-∠AOB=30°,∴∠AOC+∠BOD=∠AOB-∠COD=60°-30°=30°,∵∠AOC=2∠BOD,∴2∠BOD+∠BOD=30°,∴∠BOD=10°;②设∠BOD=x,∵OD平分∠BOC,∴∠BOD=∠COD=x,∠BOC=2∠BOD=2x,∵∠AOC=2∠BOD,∴∠AOC=2x,∴∠AOB=∠AOC+∠COD +∠BOD=4x,∵∠AOB与∠COD互余,∴∠AOB+∠COD=90°,即4x+x=90°,∴x=18°,即∠BOD=18°;(2)圆圆的说法正确,理由如下:当OC靠近OB时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠BOC+∠BOD,∴∠AOD+∠BOD+∠BOC+∠BOD=180°,∵∠AOC=∠AOD+∠BOD+∠BOC,∴∠AOC+∠BOD=180°,∵∠AOC=2∠BOD,∴2∠BOD+∠BOD=180°,∴∠BOD=60°;当OC靠近OA时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠AOC+∠AOD,∴∠AOD+∠BOD+∠AOC+∠AOD=180°,∵∠AOC=2∠BOD,∴∠AOD+∠BOD+2∠BOD +∠AOD=180°,即3∠BOD+2∠AOD=180°,∵∠AOD不确定,∴∠BOD也不确定,综上所述,当OC靠近OB时,∠BOD的度数为60°,当OC靠近OA时,∠BOD的度数不确定,所以圆圆的说法正确.【点睛】本题考查角的计算,正确找出角之间的关系,分情况画出图形解答是解题的关键. 9.(1)∠MON的度数为70°.(2)∠MON的度数为62.5°.(3)t的值为20.【解析】【分析】(1)根据角平分线的性质以及角的和差倍关系转化求出角的度数;(2)根据角平分线的性质可以求得:∠MON=12(∠AOB+∠COD)﹣∠COD,代入数据即可求得;(3)由题意得∠AON=12(20°+3t+15°),∠BOM=12(140°﹣20°﹣3t),由此列出方程即可求解.【详解】(1)∵ON平分∠AOC,OM平分∠BOC,∴∠CON=12∠AOC,∠COM=12∠BOC∠MON=∠CON+∠COM=12(∠AOC+∠BOC)=12∠AOB又∠AOB=140°∴∠MON=70°答:∠MON 的度数为70°. (2)∵OM 平分∠BOC ,ON 平分∠AOD ,∴∠COM =12∠BOC ,∠DON =12∠AOD 即∠MON =∠COM +∠DON ﹣∠COD =12∠BOC +12∠AOD ﹣∠COD =12(∠BOC +∠AOD )﹣∠COD . =12(∠BOC +∠AOC +∠COD )﹣∠COD =12(∠AOB +∠COD )﹣∠COD =12(140°+15°)﹣15° =62.5°答:∠MON 的度数为62.5°.(3)∠AON =12(20°+3t +15°), ∠BOM =12(140°﹣20°﹣3t ) 又∠AON :∠BOM =19:12,12(35°+3t )=19(120°﹣3t )得t =20答:t 的值为20.【点睛】本题考查了与角平分线有关的计算,根据角平分线的定义得出所求角与已知角的关系转化,然后根据已知条件求解是解决问题的关键.10.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可. 【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒ 40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.11.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,12.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.。