第3章 线性电阻电路的一般分析方法.

合集下载

第03章电阻电路的一般分析

第03章电阻电路的一般分析

例3 列支路电流法方程。
a
解:
I1 7
+ 70V

I2
1+
5U
_
7 I3 11 +
U 2-
节点a: –I1–I2+I3=0 回路1: 7I1–11I2 - 70 +5U =0 回路2: 11I2+7I3 - 5U =0 增补方程:
b
U=7I3
(1-18)
§3.4 网孔电流法
网孔电流——假想每个网孔中有一个网孔电流。方向可 任意假设。
(1-22)
理想电流源(恒流源)支路的处理
①若恒流源支路仅有一个网孔电流穿过,则该网孔电 流= ± 该恒流源电流(同方向取+,否则取-)。 ②非上述情况时:设恒流源两端电压,当作恒压源列方 程。然后增补恒流源电流与网孔电流的关系方程。
例2 列网孔电流方程。
R1
R2 im2 I3s
+ im1 I5s
第三章
电阻电路的一般分析
重点: 1.支路电流法; 2. 网孔电流法; 3.回路电流法; 4.节点电压法。
对于简单电路,通过电阻串、并联关系或 Y—△等效变换关系即可求解。如:
i总 R
R
R i=?
+
-u
2R
2R
2R 2R
i总
i总

u 2R
+
- u 2R
111 u i i总 2 2 2 16R
例4 列网孔电流方程。
解:网孔电流方向如图所示。 (R1 + R3)i1-R3i3=-U2
+
U1 _
R1
iS
R3 i1
+

电路分析基础第3章

电路分析基础第3章

R11im1+ R12 im2 = us11
R21im1 + R22im2 = uS22
R11=R1+R2 R22=R2+R3 R12=R21=R2 自阻
YANGTZE NORMAL UNIVERSITY 自阻总是正
R1 i1
a
R3
网孔1所有电阻之和
网孔2所有电阻之和
互阻 网孔1、2的公共电阻
i2 R2 + im1 + uS 1 uS2 – – b
us + 2
YANGTZE NORMAL UNIVERSITY
R1
L1
L2
R2
us -
+
L
1
i2
4 3
i4
R2
5
2
i5
C
1 3
4
5
R1
i2 i4 i5
有向图
返回
YANGTZE NORMAL UNIVERSITY
§3-2 KCL和KVL的独立方程数
1、KCL的独立方程数
2
1 1 4 3 5 2 3
YANGTZE NORMAL UNIVERSITY
电路分析基础
1
YANGTZE NORMAL UNIVERSITY
第三章 电阻电路的一般分析
重点:
支路电流法
网孔电流法 回路电流法 节点电压法
YANGTZE NORMAL UNIVERSITY
目的:找出求解线性电路的一般分析方法 。 对象:含独立源、受控源的电阻网络的直流稳态解。 (可推广应用于其他类型电路的稳态分析中) 应用:主要用于复杂的线性电路的求解。 基础: 电路的连接关系—KCL,KVL定律 元件特性(约束)(对电阻电路,即欧姆定律) 相互独 立

第3章 电阻电路的一般分析总结

第3章 电阻电路的一般分析总结

第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。

2、熟练地运用节点法和回路法分析计算电路。

3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。

其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。

1.支路——Branch流过同一个电流的电路部分为一条支路。

2.节点——node三条或者三条以上支路的汇集称为节点。

4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。

6.回路——loop电路中的任意闭合路径,称为回路。

8.网孔——mesh一般是指内网孔。

平面图中自然的“孔”,它所限定的区域不再有支路。

例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。

树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。

一个连通图的树可能存在多种选择方法。

10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。

树一经选定,基本回路唯一地确定下来。

对于平面电路而言,其全部网孔是一组独立回路。

3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。

从而得到含2b 个变量的2b 个独立方程。

又称为“2b 法”。

2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。

3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。

第3章 电阻电路的一般分析

第3章 电阻电路的一般分析
2 3
解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2

邱关源《电路》第五版第3章电阻电路的一般分析

邱关源《电路》第五版第3章电阻电路的一般分析

第 1 步 选定各支路电流参考方向,如图 3-1 所示。 第 2 步 对(n-1)个独立节点列 KCL 方程 如果选图 3-1 所示电路中的节点 4 为参考节点,则节点 1、2、3 为独 立节点,其对应的 KCL 方程必将独立,即: 1 I1 I3 I4 0 2 I1 I 2 I5 0 3 I 2 I3 I6 0 第 3 步.对 b (n 1) 个独立回路列关于支路电流的 KVL 方程 Ⅰ: R1 I 1 R5 I 5 U s 4 R4 I 4 U s1 0 Ⅱ: R2 I 2 U s 2 R6 I 6 R5 I 5 0 Ⅲ: R4 I 4 U s 4 R6 I 6 U s3 R3 I 3 0 第 4 步.求解
第三步,网孔电流方程的一般形式
R11im1 R12im 2 R13im3 us11 R21im1 R22im 2 R23im3 us 22 R31im1 R32im 2 R33im3 us 33
式中,Rij(i=j)称为自电阻,为第 i 个网孔中各支路的电阻之和,值恒为 正。Rij(i≠j)称为互电阻,为第 i 个与第 j 个网孔之间公共支路的电阻之 和,值可正可负;当相邻网孔电流在公共支路上流向一致时为正,不一 致时为负。 usii 为第 i 个网孔中的等效电压源。其值为该网孔中各支路电
G5 1 + US

2 G1 G3 G2 G4
3
4
图 3-8
b.对不含有电压源支路的节点利用直接观察法列方程: G1U n1 (G1 G2 G3 )U n 2 G3U n3 0
G5U n1 G3U n (G3 G4 G5 )U n3 0
c.求解 ② 含多条不具有公共端点的理想电压源支路,如图 3-9。 a.适当选取参考点:令 U n4 0 ,则 U n1 U s 。 b. 虚设电压源电流为 I,利用直接观察法形成方程

清华考研 电路原理课件 第3章 线性电阻电路的一般分析方法

清华考研 电路原理课件 第3章  线性电阻电路的一般分析方法

返回目录
3.2 回路电流法(Loop Current Method)
基本思想 以假想的回路电流为未知量列写回路的KVL方程。 若回路电流已求得,则各支路电流可用回路电流线性组合表 示。 a 选图示的两个独立回路, 设回路电流分别为il1、 il2。 支路电流可由回路电流表出
I1 R1 US1
+ –
+ : 流过互阻的两个回路电流方向相同 - : 流过互阻的两个回路电流方向相反 0 : 无关
uSlk: 第k个回路中所有电压源电压升的代数和。
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,标明回路电流及方向; (2) 对l个独立回路,以回路电流为未知量,列写 其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示); 网孔电流法(mesh-current method) 对平面电路( planar circuit ),若以网孔为独立回 路,此时回路电流也称为网孔电流,对应的分析方法称 为网孔电流法。
本章重点 本章重点 3. 3. 1 1 支路电流法 支路电流法 3. 3. 2 2 回路电流法 回路电流法 3. 3. 3 3 节点电压法 节点电压法
重点 本章重点 � 本章
• 熟练掌握电路方程的列写方法 � 支路电流法 � 回路电流法 � 节点电压法
返回目录
3.1 支路电流法 (Branch Current Method)
支路电流法: 以各支路电流为未知量列写电路方程分析电路的方法。 举例说明 2
支路数 b=6
R4
节点数 n=4
i2
1
R2 i3 R3 R1 i1 R6
+ 4
(1) 取支路电流 i1~ i6为独立变

电工技术-电子教案 第3章 电阻电路的一般分析方法

电工技术-电子教案  第3章 电阻电路的一般分析方法

3.2 回路电流法(续6)
例1 试用网孔电流法求图示电路各个支路电流。
解: 选三个网孔为独立回路, 网孔电流分别为 im1 、 im2 及 im3 。 可写出网孔方程为
解此方程得
im11A, im20.5A, im31.5A
各支路电流为 i1im11A, i2im1im20.5A
3.2 回路电流法(续7)
回路电流法
回路电流法是以各回路电流作为未知变量来列写电路方程,
Байду номын сангаас
并求解回路电流,进而求取各支路电流和支路电压的方法。此 时所得方程称为回路方程。 只需对独立回路列写KVL方程,方程数为b- ( n-1)。 回路电流是假设的沿着每个回路边界构成的闭合路径自行流 动的电流。 支路电流等于流经该支路的回路电流的代数和。 若所选回路正好是网孔,则以各网孔电流作为未知变量来列 写电路方程,并求解网孔电流,进而求取各支路电流和支路电
压的方法称为网孔电流法。
3.2 回路电流法(续1)
回路方程的列写
该电路有6条支路、4个节点,因 此,该电路的独立回路所包含的回 路数为3。选回路1、2、3为独立回 路,这3个回路的回路电流分别用il1 、 il2 、 il3表示,则各支路电流与回 路电流的关系为
3.2 回路电流法(续2)
以回路电流为电路变量,对回路1、2 、3列写KVL方程
联立解得

3.3 结点电压法
结点电压法
结点电压法是以各结点电压作为未知变量来列写电路方程,
并求解结点电压,进而求取各支路电压和支路电流的方法。此 时所得方程称为结点方程。 只需对独立结点列写KCL方程,方程数为n-1。 在电路中任意选择某一节点为参考节点,则其它节点与参考 节点之间的电压称为节点电压,其参考方向由其它节点指向参 考节点。 任一支路都连接在两个节点上,所以支路电压等于节点电压 或相关两个节点电压之差。

第3章 电阻电路的一般分析方法

第3章 电阻电路的一般分析方法
R5
(2) 列KCL方程: iR出= iS入
结点 1 i1+i6=iS3 代入支路特性(用结点电压表示):
结点 2
un 2 un 2 un3 un 2 un3 un1 un 2 is 2 (2) R2 R3 R4 R6
i2 + i3 + i4 – i6= -iS2
电路物理量的关系 (电流、电压)
本课程主要研究电路分析,其基本方法: 确定变量 根据约束关系列方程 求解
特点:不改变电路结构,由根据约束关系建立方程求解。
回路电流法(网孔法)和结点电压法。
根据列方程时所选变量的不同可分为支路电流法、
章目录 上一页 下一页
3.1 支路电流法
一、支路电流法:以各支路电流为未知量列写电路, 方程分析电路的方法,称为支路电流法。 步骤:
方法2:选取独立回路时,使理想电流源支路仅仅属 于一个回路, 该回路电流即IS 。
R3 _ Ui + US1_ R1 I1=IS -R2I1+(R2+R4+R5)I2+R5I3=-US2 R1I1+R5I2+(R1+R3+R5)I3=US1
章目录 上一页 下一页
+
I3

R4 I2 R5
IS R2 I1 _ US2 +
u2=R2(iL1-iL2)
章目录 上一页 下一页
回路电流法的一般步骤: (1) 选定独立回路,并在图中标出。 (2) 对独立回路,以回路电流为未知量,列写其 KVL方程。
注意自电阻总是正,互电阻可正可负; 沿着回路绕行方向,电源压升为正,压降 为负; (3)当电路中有受控源或无伴电流源时需另行处理; (4) 求各支路电流(用回路电流表示);

线性电阻电路的一般分析法

线性电阻电路的一般分析法

独立KVL回路选择:
方法1. 每选一个回路,让该回路包 含新的支路,选满L个为止。(如 上例中1、3、7回路(方程)。)
方法2. 对平面电路,L个网孔是一组 独立回路。(如上例中1、2、4回 路。)
2
1
1
2
3
3
4
5
64
16
返回 上页 下页
方法3. 选定一棵树,每一连支与若干树支可构成一个回 路,称为基本回路(单连支回路)。L条连支对应的L 个基本回路是独立的。
iS1
-i3+i5=-iS2
把支路电流用节点 电压表示:
un1 R1
un1 un2 R2
iS1
iS2
iS2
1 i2 R2
i3 R3
3
i1
2 i4
R1 R4
R5
+ u_S
i5
un1 un2 un2 un3 un2 0
un2R2 un3 R 35 3
unR3 3 uS R5
R4 iS 2
①选定参考节点,标明其余n-1个独立节点的电压;
②列KCL方程:
iS2
iR出 iS入
i1+i2=iS1+iS2 -i2+i4+i3=0 -i3+i5=-iS2
1 i2 R2 i3 R3 3
iS1 i1
2 i4
R1 R4
R5 i5 + u_S
33
返回 上页 下页
1.什么是传统机械按键设计?
传统的机械按键设计是需要手动按压按键触动PCBA上的开关按键来实现功 能的一种设计方式。
返回 上页 下页
整理得:
1 ( R1
1 R2

线性电阻电路的一般分析方法-A

线性电阻电路的一般分析方法-A

受控源是电路中一种特殊的元件,其电压或电流受其他元件的控制。通
过应用叠加定理,可以将受控源转化为独立源,从而简化电路分析和计
算。
THANKS.
叠加定理的步骤
1. 将复杂电路分解为若干个独 立源和电阻元件的简单电路。
2. 分别计算各个独立源单独作 用于电路时产生的电流或电压

3. 将各个电流或电压值进行代 数相加,得到总电流或电压。
4. 根据总电流或电压和电阻值 ,计算出任意支路的电流或电 压。
叠加定理的应用实例
01
1. 计算复杂电路的总电阻
网孔分析法的步骤
确定网孔
根据电路图,将电路分解 为若干个网孔,每个网孔 由一个或多个支路组成。
设定电流变量
在每个网孔中设定一个 电流变量,并标明电流
的方向。
列写方程
解方程
根据基尔霍夫定律(KCL) 和欧姆定律,列出每个网孔
的电压和电流方程。
求解列出的方程组,得 到各网孔的电流和电压。
网孔分析法的应用实例
线性电阻电路的分析
05
方法-叠加定理
叠加定理的原理
叠加定理是线性电路的基本性质,它表明在多个独立源共同作用的线性电阻电路 中,任一支路的电流或电压等于各个独立源单独作用于电路时在该支路产生的电 流或电压的代数和。
叠加定理只适用于线性电阻电路,对于非线性元件或含有非线性元件的电路,叠 加定理不成立。
线性电阻电路的一般分 析方法-a
目录
• 线性电阻电路的基本概念 • 欧姆定律与基尔霍夫定律 • 线性电阻电路的分析方法-节点分析法 • 线性电阻电路的分析方法-网孔分析法 • 线性电阻电路的分析方法-叠加定理
线性电阻电路的基本
01

第三章--电阻电路的一般分析

第三章--电阻电路的一般分析
所以网孔法只需按 KVL列电路方程。 1. 分析步骤:
i1 R1 ① R3 i3
i2
us+1
-
imu1sR2+2
im2
+ us3
-
-
(1)标出网孔电流的参考方向;

(2)以各自的网孔电流方向为绕行方向,
列KVL方程; 注意:im1和im2都流过R2!
孔1: R1 im1+R2 im1-R2im2 = us1 -us2 孔2:-R2 im1+R2 im2 +R3 im2 = us2-us3
3

4
5
④6
4个方程相加结果为0,不是相互独立的。
把任意3个方程相加起来,必得另一个方程。
相差一个符号,原因是各电流在结点① ② ③若
是流入(出),则在结点④就是流出(入) 。
2019年9月13日星期
9

上述4个方程中,任意3个是独立的。
对具有n个结点的电路,独立的KCL方程为任意 的(n-1)个 。 与独立方程对应的结点叫做独立结点。
现在介绍有关 “图论”的初步知识, 目的是研究电路的连 接性质,并讨论电路 方程的独立性问题。
因为KCL和KVL与元件的性质无关, 所以讨论电路方程的独立性问题时,可以用一
个简单的线段来表示电路元件。
2019年9月13日星期
3

用线段代替元件,称支路。 线段的端点称结点 。
这样得到的几何结构图称为 图形,或“图(Graph)”。
二、 KVL的独立方程数 与KVL的独立方程对应的回路称独立回路。
因此,要列出KVL的独立方程组,首先要找出与之 对应的独立回路组。
有时,寻找独立回路组不是一件容易的事。利用 “树”的概念会有助于寻找一个图的独立回路组。

《电路理论基础》学习指导(李晓滨) 第3章.ppt

《电路理论基础》学习指导(李晓滨) 第3章.ppt
第3章 线性电阻电路的一般分析法
第3章 线性电阻电路的一般分析法
3.1 内容提要 3.2 重点、难点 3.3 典型例题 3.4 习题解答
第3章 线性电阻电路的一般分析法
3.1 内容提要
1. KCL、KVL方程的独立性 图:点与线的集合。 电路的图:每一支路用一“线段”表示,每一节点用 一“点”表示。 回路:一个路径的起点和终点为同一点。 平面电路:若一个电路可画在一个平面上,且在非节 点处不相交,则称之为平面电路,否则为非平面电路。 网孔:内部不含其他支路的回路。
含电流源、受控源电路网孔电流方程的列写: (1) 当电路中含有理想电流源时,尽可能使电流源的电 流成为网孔电流,这样,网孔电流就成为已知量,可以不用 列该网孔的网孔方程; (2) 当电流源的电流不能成为网孔电流时,设该电流源 的两端电压为u , 再列一个该电流源支路的补充方程。 (3) 当电路中含有受控源时,将受控源当作独立源用上 述(1)、(2)同样的方法列方程,然后列一个有关控制量的补 充方程。
第3章 线性电阻电路的一般分析法 解 选取网孔电流im1、im2、im3, 列网孔电流方程:
(R1 R2 R3)im1 R3im2 R2im3 us3 R3im1 (R3 R4 R5)im2 R4im3 us3 R2im1 R4im2 (R2 R4 R6 )im3 us6
第3章 线性电阻电路的一般分析法 2. 节点分析法 若电路的节点数为n,则独立的节点数为n-1。只含电 阻和电流源的电路的节点方程为
G11un1 G12un2
G21un1
G22un2
G u 1(n1) n(n1) is11 G u 2(n1) n(n1) is22
G u G u G u i (n1)1 n1

电路分析基础第3章 线性电阻电路的基本分析方法和电路定理 173页PPT

电路分析基础第3章 线性电阻电路的基本分析方法和电路定理 173页PPT

(3) 根据KVL,建立回路电压方程。 该电路有三个回路,在列回路电压方程前,先将回路的
绕行方向标示于图中。
回路Ⅰ: 回路Ⅱ: 回路Ⅲ:
R1i1+R3i3=us1 R2i2-R3i3=-us2 R1i1+R2i2=us1-us2
(3.1-3) (3.1-4) (3.1-5)
第3章 线性电阻电路的基本分析方法和电路定理
第3章 线性电阻电路的基本分析方法和电路定理 【例3.2-4】 电路如图3.2-5所示,试列写其节点方程。
图3.2-5 例3.2-4用图
第3章 线性电阻电路的基本分析方法和电路定理
解 此电路含有两个理想电压源支路,而且它们的一端 并不接到一个共同节点上,因此不可能使两个理想电压源的 某一端都同时接地(为参考节点)。对于这类问题可采用如下 处理方法:
【例3.1-1】 电路如图3.1-2所示,试求各支路电流。 解 选定各支路电流的参考方向和回路的参考方向,并
标示于图中。
该电路中,节点数n=2,网孔数m=2。应用基尔霍夫定 律列出一个独立节点电流方程和两个独立回路电压方程如下:
解之,得
I1=I2+I3 2I1+1I3=6 4I2-1I3=-2
I1=2 A, I2=0 A, I3=2 A
第3章 线性电阻电路的基本分析方法和电路定理
G11611030.701.310331103 1.5103S
Is111103611503 1.5103A
将上述数据代入式(3.2-5)(节点方程的一般形式),得节点方 程为
1.5×10-3 u1=1.5×10-3 (3) 解方程求出节点电压。 解上述方程得
节点1: i2-i1-is6=0 节点2: i4+i3-i2=0 节点3: i5+is6-i3=0 节点4: i1-i4-i5=0

22745-第3章电阻电路的分析方法

22745-第3章电阻电路的分析方法

• 在这3个方程中,无论哪一个都不能从其 他两个相加减而导出,因而它们是独立的。
• 如果任意再取一个回路,如由支路(1, 4,5,3)构成的回路,列出的回路电压方 程为
R1 I1 R4 I 4 R5 I 5 R3 I 3 U S1 U S3
• 一般说来,对于具有b条支路,n个节点的 电路,应用基尔霍夫电压定律只能列出 l = b(n1) = bn + 1个独立的回路电压方程。
u1 un1 , u2 un1 , u3 un1 un 2 , u4 un1 un 2 , u5 un 2
图3-3-1 节点电压法
• 同时,节点电压自动满足了KVL,因为 沿任意一回路的各支路电压,若都以节点 电压来表示,则其代数和恒等于零。 • 例如,对于R2、R3、R5所构成的回路, 有
(3)根据KVL和VCR对(b−n + 1)个独 立回路列写KVL方程。 (4)求解上述方程,得到b个支路电流。 (5)求解电路的其他变量,如求解电 压、功率等。
3.2 网孔电流法和回路电流法
• 支路电流法需要求解b个联立方程,如果 电路结构比较复杂,支路较多,上述方法 在求解时将相当繁杂。
• 能否使方程数目减少下来而简化手工求 解的工作量呢?网孔电流法和回路电流法 就是基于这种想法而提出的一类改进方法。
(3)选取(bn + 1)个独立回路,指 定回路绕行方向,应用基尔霍夫电压 定律列出回路方程。对平面电路可取 各网孔为独立回路。 (4)联立求解上述b个独立方程,便 可求得全部支路电流。
• 例3-1-1 对图3-1-2所示的电路,若R1 = 6, R2 = 12,R3 = 24,uS1 = 96V,uS2 = 60V, 求各支路电流及各电压源的功率。

电路分析第03章线性电阻电路一般分析方法汇总

电路分析第03章线性电阻电路一般分析方法汇总
(元件特性代入) (4) 求解上述方程,得到b个支路电流; (5) 其它分析。
支路法的特点: 直接法。要同时列写 KCL和KVL方程, 方程数
较多,且规律性不强(相对于后面的方法)。
例1. US1=130V, US2=117V, R1=1, R2=0.6, R3=24.
a
I1
I2
I3
R1
R2
+ 1 + 2 R3
KCL自动满足。回路电流法只需对独立回路列写KVL方程。
回路电流法:以回路电流为未知量列写电路方程分析电路 的方法。
回路电流法的独立方程数为b-(n-1)。与支路电流法 相比,方程数可减少n-1个。
i1 R1
+ uS1

a
i2 R2 il1 + il2 uS2

b
回路1:R1 il1+R2(il1- il2)-uS1+uS2=0 i3 回路2:R2(il2- il1)+ R3 il2 -uS2=0 R3
R1 i1
R5 i5 4
3
i6
R6 + uS –
回路3: u1 + u5 + u6 = 0
可以检验,式(3)的3个方程是独 立的,即所选的回路是独立的。
独立回路:独立方程所对应的回路。
综 合 式 (1) 、 (2) 和 (3) , 便 得 到 所 需 的
6+3+3=6=2b个独立方程。将式(1)的6个 i2 支路方程代入式(3),消去6个支路电压,1 便得到关于支路电流的方程如下:
其中 Rkk:自电阻(为正) ,k=1,2,…,l ( ∵绕行方向取参考方向)。
+ : 流过互阻两个回路电流方向相同 Rjk:互电阻 - : 流过互阻两个回路电流方向相反
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档