函数值域的求法大全
函数值域的13种求法
函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的几种常用方法
求函数值域的几种常用方法函数的值域是指函数在定义域上所有可能的输出值的集合。
求函数值域的方法可以分为几种常用的途径,包括图像法、解析法、等价关系法和数列法等。
下面将详细介绍这些方法。
一、图像法图像法是通过绘制函数的图像来确定函数的值域。
具体步骤如下:1.根据函数的定义域,确定合适的坐标系并绘制出函数的图像。
2.观察图像的上下边界,确定最小值和最大值,并将这些值确定为函数的值域的下边界和上边界。
二、解析法解析法是通过对函数进行化简和分析,找出函数的特性来确定值域。
具体步骤如下:1.根据函数的定义表达式,观察函数的性质,例如函数的奇偶性、周期性等。
2.利用函数的性质,找出函数的最小值和最大值,并将这些值确定为函数的值域的下边界和上边界。
三、等价关系法等价关系法是通过将函数与其他已知函数进行比较来确定函数的值域。
具体步骤如下:1.将函数的定义表达式进行变形,使其更容易与已知函数进行比较。
2.将函数与已知函数进行比较,找出它们的区别和相似之处。
3.根据已知函数的值域,可以确定函数的值域的下边界和上边界。
四、数列法数列法是通过构造特定的数列来逼近函数的值域。
1.根据函数的定义域,构造一个数列,使得数列中的每一个数都在函数的定义域内。
2.计算函数在数列中每一个数的值,并将这些值确定为函数的值域的一部分。
3.根据数列的性质,可以逼近函数的值域的下边界和上边界。
需要注意的是,这些方法都只能对一些简单的函数有效,对于复杂的函数,求值域可能需要借助数学分析工具、数值计算方法或者计算机模拟来进行。
此外,不同的方法可以结合使用,以增加求值域的准确性。
求函数值域的方法大全
求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
函数值域求法大全
函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
函数值域求法十一种
函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。
例如,求函数 $y=\frac{1}{x}$ 的值域。
解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。
2.配方法配方法是求二次函数值域最基本的方法之一。
例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。
解:将函数配方得:$y=(x+1)^2+2$。
由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。
故函数的值域是:$[2,4]$。
3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。
解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。
1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。
2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。
4.反函数法例如,求函数 $y=3x+4$ 的值域。
解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。
例13.求函数y sinx cosx的值域。
解:由三角函数的性质可知。
1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。
函数求值域的15种方法
函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
函数值域求法十一种
函数值域求法十一种函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x1y =的值域。
解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2xy 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x222=++-(1)∵R x ∈ ∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥∆,仅保证关于x 的方程:0y x )1y (2x222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
求函数值域的12种方法
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
函数值域求法大全课件
• 通过进一步化简,得到$y = t + \frac{1}{t} - 2$。
示例解析
• 根据不等式性质,当$t > 0$时,$y \geq 2\sqrt{t \cdot \frac{1}{t}} 2 = 0$。
• 当且仅当$t = 1$时取等号,因此 $y$的值域为$\lbrack 0, +\infty)$。
函数域求法大全件
• 反表示法 • 判式法 •元法
01
引言
函数值域的概念
函数值域定义
函数值域是指函数在定义域内所 有可能的输出值的集合。
函数值域的表示
函数值域通常用闭区间或开区间 的形式表示,如 [a, b] 或 (a, b)。
函数值域的重要性
确定函数的输出范围
通过求函数的值域,可以确定函数在 定义域内的所有可能输出值的范围, 从而更好地理解函数的性质和行为。
示例解析
示例
求函数$y = frac{1}{x}$的值域。
解析
将原函数转化为$x = frac{1}{y}$的形式,即反函数形式。由于$x$不能为0,所以$y$不能为无穷大,因此原函数 的值域为$y in (-infty, 0) cup (0, +infty)$。
05
判式法
定义与特点
定义
判别式法是一种通过判断一元二次方程实数根的情况,从而确定二次函数值域的方法。
解析
将函数$f(x) = x^2 2x$转化为二次函数形 式,得到$f(x) = (x 1)^2 - 1$。利用判别 式法,当Δ = b^2 4ac = 0时,函数取得 最小值-1,因此函数的 值域为$[-1, +infty)$。
示例2
求函数$f(x) = x^2 + 4x + 3$的值域。
函数求值域15种方法
函数求值域15种方法在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.函数值域常见的求解思路:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数值域的求法大全
函数值域的求法大全值域为R(注意判别式);对数函数y=logax(a>0,a≠1)的定义域为R+,值域为R;指数函数y=ax(a>0,a≠1)的定义域为R,值域为(0,+∞);三角函数y=sin x,y=cos x的值域均为[-1,1];反三角函数y=arcsin x的定义域为[-1,1],值域为[-π/2,π/2];y=arccos x的定义域为[-1,1],值域为[0,π];y=arctan x的定义域为R,值域为(-π/2,π/2)。
利用函数的单调性来求值域对于单调递增函数f(x),其值域为[f(a),f(b)];对于单调递减函数f(x),其值域为[f(b),f(a)]。
利用反函数来求值域设函数f(x)的反函数为g(x),则f(x)的值域等于g(x)的定义域,即f(x)的值域为{x|g(x)∈R}。
利用配方法来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过配方法将其化为y=a(x+p)2+q的形式,其中a>0,(p,q)为顶点坐标,此时,y的值域为[q,+∞)或(−∞,q]。
利用不等式来求值域对于形如y=f(x)=ax2+bx+c(a>0)的二次函数,可通过求解不等式ax2+bx+c≥0来确定其值域。
以上是常见的求值域的方法,不同的函数类型可能需要不同的方法来求值域。
在解题过程中,要根据具体情况选择合适的方法,结合图像、单调性、反函数等性质进行分析,才能得出正确的结果。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
求函数值域是数学中常见的问题。
下面介绍两种常用的方法:单调性法和换元法。
单调性法是指利用函数的单调性来确定函数的值域。
具体来说,可以先找到函数在给定区间内的单调区间,然后比较区间两端点的函数值,从而确定函数的最大值或最小值。
当顶点横坐标是字母时,需要根据其对应区间特别是区间两端点的位置关系进行讨论。
求函数值域的12种方法
求函数值域的12种方法函数是中学数学的重要的基本概念之一,它与代数式、方程、不等式、三角函数、微积分等内容有着密切的联系,应用十分广泛。
函数的基础性强、概念多,其中函数的定义域、值域、奇偶性等是难点之一,是高考的常见的题型。
下面就函数的值域的求法,举例说如下。
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数求值域15种方法
函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。
例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。
方法二:对于一些简单的函数,可以使用数学知识来确定其值域。
例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。
方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。
例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。
方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。
例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。
方法五:利用函数的奇偶性来确定函数的值域。
如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。
根据函数的奇偶性可以推断出函数的值域。
方法六:利用函数的周期性来确定函数的值域。
如果函数有周期T,那么函数的值域在一个周期内是相同的。
可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。
方法七:利用函数的极限来确定函数的值域。
可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。
如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。
方法八:利用函数的导数来确定函数的值域。
可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。
如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。
函数值域求法大全
函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。
解:原函数化为关于x 的一元二次方程(1)当1y ≠时,R x ∈ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21 例5. 求函数)x 2(x x y -+=的值域。
解:两边平方整理得:0y x )1y (2x 222=++-(1)∵R x ∈∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
函数值域的十五种求法
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4. 求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5. 求函数的值域。
解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。
解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。
求函数值域的十三种方法
求函数值域的十三种方法求函数值域是数学中常见的问题,通过求函数值域可以了解函数的取值范围,对于解决实际问题和理论分析都有重要意义。
下面将介绍求函数值域的十三种方法。
一、观察法观察法是最直观的方法,通过观察函数的定义域和性质,可以初步确定函数的值域。
例如,对于一个关于实数的二次函数,如果其开口向上,则可以判断其值域为大于等于最低点的y坐标的实数集合。
二、代数法代数法是通过运用代数运算的方法求函数值域。
例如,对于一个有理函数,可以通过求其对应的分式函数的极限来确定函数的值域。
三、图像法图像法是通过绘制函数的图像来求函数值域。
通过观察图像的变化趋势,可以确定函数的值域。
例如,对于一个周期函数,可以通过绘制其一个周期内的图像,然后根据图像的波动范围确定函数的值域。
四、导数法导数法是通过求函数的导数来求函数值域。
通过分析导数的增减性和极值点,可以确定函数的值域。
例如,对于一个单调递增函数,其值域为整个定义域;对于一个有界函数,其值域为一个闭区间。
五、反函数法反函数法是通过求函数的反函数来求函数值域。
通过求反函数的定义域,可以得到函数的值域。
例如,对于一个严格单调增函数,其反函数的定义域即为函数的值域。
六、极限法极限法是通过求函数的极限来求函数值域。
通过分析函数的极限可以确定函数的趋势和边界,从而确定函数的值域。
例如,对于一个无界函数,可以通过求其极限来确定函数的值域。
七、积分法积分法是通过求函数的积分来求函数值域。
通过分析函数的积分可以确定函数的曲线下面积,从而确定函数的值域。
例如,对于一个连续非负函数,可以通过求其积分来确定函数的值域。
八、级数法级数法是通过求函数级数的和来求函数值域。
通过分析级数的收敛性和和的性质,可以确定函数的值域。
例如,对于一个幂级数函数,可以通过求级数的收敛域来确定函数的值域。
九、微分方程法微分方程法是通过求函数满足的微分方程来求函数值域。
通过求微分方程的解析解或数值解,可以确定函数的值域。
求函数值域的四种方法
求函数值域的四种方法一、观察法。
1.1 这种方法就像是我们用眼睛去打量一个人,直观又简单。
对于一些简单的函数,我们可以直接通过观察函数的性质来确定值域。
比如说一次函数y = 2x + 1,x 可以取任意实数,那随着x的变化,y也会相应地在实数范围内变化,所以这个一次函数的值域就是全体实数。
这就好比我们看一个一目了然的事情,不用费太多周折。
1.2 再看函数y = x²,因为任何实数的平方都大于等于0,所以这个函数的值域就是[0,+∞)。
这就像我们知道太阳总是从东边升起一样确定,一眼就能看出来这个函数值的范围。
二、配方法。
2.1 配方法就像是给函数做个“美容整形”。
拿二次函数y = x² 2x + 3来说,我们可以把它配方成y = (x 1)²+ 2。
因为(x 1)²大于等于0,所以y就大于等于2。
这就好比我们把一个有点杂乱的东西整理得井井有条,然后就能清楚地看到它的价值范围了。
2.2 还有函数y = -x²+ 4x 1,配方后得到y = -(x 2)²+ 3。
由于-(x 2)²小于等于0,所以这个函数的值域就是(-∞,3]。
这就像我们把一个原本模糊不清的东西,通过自己的巧手整理,让它的界限清晰起来。
2.3 配方法就像是一个神奇的魔法,能把复杂的二次函数变得简单易懂,让我们轻松地找出值域这个“宝藏”。
三、换元法。
3.1 换元法有点像“偷梁换柱”。
例如函数y = 2x + √(x 1),我们可以设t = √(x 1)(t≥0),那么x = t²+ 1。
这样原函数就变成了y = 2(t²+ 1)+ t = 2t²+ t + 2。
这就把原来带根号的复杂函数转化成了一个二次函数,然后我们就可以用配方法或者观察法来求值域了。
这就像我们在一个迷宫里,找到了一条新的通道,一下子豁然开朗。
3.2 再比如函数y = x + √(1 x²),我们设x = sinθ(-π/2≤θ≤π/2),那么原函数就变成了y = sinθ+ cosθ。
高中数学:求函数值域的方法十三种
精品资料 欢迎下载高中数学:求函数值域的十三种方法一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性八、函数单调性法(☆)九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、一一映射法 十三、 多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。
【例1】求函数1y =的值域。
,∴11≥,∴函数1y =的值域为[1,)+∞。
【例2】求函数x 1y =的值域。
【解析】∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。
【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。
二. 配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。
【例1】 求函数225,[1,2]y x x x =-+∈-的值域。
【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。
【解析】由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t(2)当∈t [-3,-2]时,求g(t)的最值。
函数值域的求法大全
综上所述,函数 的值域为{ y| y1且y }
方法二:把已知函数化为函数 (x2)
由此可得y1,∵x=2时 即 ∴函数 的值域为{ y| y1且y }
函数值域求法十一种
1. 直接观察法
对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数 的值域。
解:∵
∴
显然函数的值域是:
利用判别式求值域时应注意的问题
用判别式法求值域是求函数值域的常用方法,但在教学过程中,很多学生对用判别式求值域掌握不好。一是不理解为什么可以这样做,二是学生对哪些函数求值域可以用判别式法,哪些函数不能也比较模糊。本人结合自己的教学实践谈谈对本内容的一点体会。
一、判别式法求值域的理论依据
例1、求函数 的值域
综合(1)、(2)知此函数的值域为
二、注意函数式变形中自变量的取值范围的变化
例2:求函数 的值域。
错解:将函数式化为
(1)当 时,代入上式得 ,∴ ,故 属于值域;
(2)当 时, ,
综合(1)、(2)可得函数的值域为 。
错因:解中函数式化为方程时产生了增根( 与 虽不在定义域内,但是方程的根),因此最后应该去掉 与 时方程中相应的 值。所以正确答案为 ,且 。
象这种分子、分母的最高次为2次的分式函数可以考虑用判别式法求值域。
解:由 得:
(y-1)x2+(1-y)x+y=0 ①
上式中显然y≠1,故①式是关于x的一元二次方程
用判别式法求函数的值域是求值域的一种重要的方法,但在用判别式法求值域时经常出错,因此在用判别式求值域时应注意以下几个问题:
一、要注意判别式存在的前提条件,同时对区间端点是否符合要求要进行检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数值域的求法大全题型一 求函数值:特别是分段函数求值例1 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别.跟踪训练4 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)]. 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f [f (1)]=f (23)=23+123+2=58.5.已知函数f (x )=x 2+x -1. (1)求f (2),f (1x);(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f (1x )=1x 2+1x -1=1+x -x 2x2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2,或x =-3. (3)4.函数f (x )对任意自然数x 满足f (x +1)=f (x )+1,f (0)=1,则f (5)=________. 答案 6解析 f (1)=f (0)+1=1+1=2,f (2)=f (1)+1=3,f (3)=f (2)+1=4,f (4)=f (3)+1=5,f (5)=f (4)+1=6.二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。
求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k x ky 的定义域为{x|x ≠0},值域为{y|y ≠0};二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{a b ac y y 4)4(|2-≤}.例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像)解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5] ②略③ 当x>0,∴x x y 1+==2)1(2+-xx 2≥, 当x<0时,)1(x x y -+--==-2)1(2----xx -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法) 函数xx y 1+=的图像为:二次函数在区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;解:∵3)2(1422--=+-=x x x y ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R ,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y ≥-3 }. ②∵顶点横坐标2∉[3,4],当x=3时,y= -2;x=4时,y=1;∴在[3,4]上,min y =-2,m ax y =1;值域为[-2,1].③∵顶点横坐标2∉ [0,1],当x=0时,y=1;x=1时,y=-2, ∴在[0,1]上,min y =-2,m ax y =1;值域为[-2,1].④∵顶点横坐标2∈ [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6, ∴在[0,1]上,min y =-3,m ax y =6;值域为[-3,6].注:对于二次函数)0()(2≠++=a c bx ax x f ,⑴若定义域为R 时, ①当a>0时,则当a bx 2-=时,其最小值a b ac y 4)4(2min -=; ②当a<0时,则当a bx 2-=时,其最大值ab ac y 4)4(2max -=; ⑵若定义域为x ∈ [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b]. ①若0x ∈[a,b],则)(0x f 是函数的最小值(a>0)时或最大值(a<0)时, 再比较)(),(b f a f 的大小决定函数的最大(小)值.②若0x ∉[a,b],则[a,b]是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.练习:1、求函数y =3+x 32-的值域解:由算术平方根的性质,知x 32-≥0,故3+x 32-≥3。
∴函数的值域为[)+∞,3.2、求函数[]5,0,522∈+-=x x x y 的值域 解: 对称轴 []5,01∈=x[]20,420,54,1max min 值域为时时∴====∴y x y x1 单调性法例3 求函数y=4x -x 31-(x ≤1/3)的值域。
设f(x)=4x,g(x)= -x 31-,(x ≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-x 31-在定义域为x ≤1/3上也为增函数,而且y ≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y ≤4/3}。
小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
练习:求函数y=3+x -4的值域。
(答案:{y|y ≥3})2 换元法例4 求函数x x y -+=12 的值域解:设t x =-1,则)0(122≥++-=t t t y[)(]2,21,01max ∞-∴==∴+∞∈=值域为,时当且开口向下,对称轴y t t点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。
这种解题的方法体现换元、化归的思想方法。
它的应用十分广泛。
练习:求函数y=x x --1的值域。
(答案:{y|y ≤-3/4} 求xx xx cos sin cos sin 1++的值域;例5 (三角换元法)求函数21x x y -+=的值域解: 11≤≤-x ∴设[]πθθ,0cos ∈=x[][]2,12,1)4sin(2sin cos sin cos -∴-∈+=+=+=原函数的值域为πθθθθθy小结:(1)若题目中含有1≤a ,则可设)0,cos (22,sin πθθπθπθ≤≤=≤≤-=a a 或设 (2)若题目中含有122=+b a 则可设θθsin ,cos ==b a ,其中πθ20<≤(3)若题目中含有21x -,则可设θcos =x ,其中πθ≤≤0 (4)若题目中含有21x +,则可设θtan =x ,其中22πθπ<<-(5)若题目中含有)0,0,0(>>>=+r y x r y x ,则可设θθ22sin ,cos r y r x ==其中⎪⎭⎫⎝⎛∈2,0πθ3 平方法例5 (选)求函数x x y -+-=53 的值域解:函数定义域为:[]5,3∈x[][][][]2,24,21,0158,5,31582)5()3(2222原函数值域为得由∴∈∴∈-+-∈-+-+-+-=y x x x x x x x y4 分离常数法 例6 求函数21+-=x x y 的值域 由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为)(bc ad dcx c adb c a y ≠+-+=,用复合函数法来求值域。
练习 求函数6412+-=x x y 的值域 求函数133+=x xy 的值域求函数 y =1212+-x x 的值域;(y ∈(-1,1))例7 求13+--=x x y 的值域解法一:(图象法)可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图,观察得值域{}44≤≤-y y解法二:(不等式法)414114)1(134)1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 同样可得值域练习:1y x x =++的值域 )[∞+,1例8 求函数[])1,0(239∈+-=x y xx的值域解:(换元法)设t x=3 ,则 31≤≤t 原函数可化为[][]8,28,3;2,13,121,2max min 2值域为时时对称轴∴====∴∉=+-=y t y t t t t y 例9求函数xx y 2231+-⎪⎭⎫ ⎝⎛= 的值域解:(换元法)令1)1(222+--=+-=x x x t ,则)1(31≤⎪⎭⎫⎝⎛=t y t由指数函数的单调性知,原函数的值域为⎪⎭⎫⎢⎣⎡+∞,31例10 求函数 )0(2≤=x y x的值域解:(图象法)如图,值域为(]1,0 (换元法)设t x=+13 ,则()111131113113>-=+-=+-+=t t y xx x 101101<<∴<<∴>y tt()1,0原函数的值域为∴例13 函数1122+-=x x y 的值域解法一:(逆求法)110112<≤-∴≥-+=y yyx[)1,1-∴原函数的值域为解法二:(换元法)设t x =+12,则原函数值域即得∴<≤-∴≤<∴≥112201y tt解法三:(判别式法)原函数可化为 010)1(2=++⋅+-y x x y 1) 1=y 时 不成立2) 1≠y 时,110)1)(1(400≤≤-⇒≥+--⇒≥∆y y y11<≤-∴y综合1)、2)值域}11|{<≤-y y 解法四:(三角换元法)∴∈Rx 设⎪⎭⎫⎝⎛-∈=2,2tan ππθθx ,则()(]1,12cos ,22cos tan 1tan 122-∈∴-∈-=+--=θππθθθθ y∴原函数的值域为}11|{<≤-y y 例14 求函数34252+-=x x y 的值域解法一:(判别式法)化为0)53(422=-+-y yx yx1)0=y 时,不成立 2)0≠y 时,0≥∆得500)53(8)4(≤≤⇒≥--y y y y 50≤<∴y综合1)、2)值域}50|{≤<y y解法二:(复合函数法)令t x x =+-3422,则ty 5=11)1(22≥+-=x t2550≤<∴y 所以,值域}50|{≤<y y例15 函数11++=xx y 的值域 解法一:(判别式法)原式可化为 01)1(2=+-+x y x(][)∞+-∞-∴-≤≥∴≥--∴≥∆,31,1304)1(02 原函数值域为或y y y解法二:(不等式法)1)当0>x 时,321≥∴≥+y xx 2) 0<x 时,12)(1)(1-≤∴-≤⎥⎦⎤⎢⎣⎡-+--=+y x x x x综合1)2)知,原函数值域为(][)∞+-∞-,31,例16 (选) 求函数)1(1222->+++=x x x x y 的值域 解法一:(判别式法)原式可化为 02)2(2=-+-+y x y x[)∞+∴-≤∴->-≤≥⇒≥---∴≥∆,221220)2(4)2(02原函数值域为舍去或y x y y y y解法二:(不等式法)原函数可化为 当且仅当0=x 时取等号,故值域为[)∞+,2例17 (选) 求函数)22(1222≤≤-+++=x x x x y 的值域解:(换元法)令t x =+1 。