人教版数学九年级12月月考试题
浙江省杭州十三中教育集团九年级数学12月月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题
某某省某某十三中教育集团2015-2016学年九年级数学12月月考试题一.仔细选一选(本题有10个小题,每小题3分,共30分)1.如图,已知圆心角∠BOC=76°,则圆周角∠BAC的度数是()A.152°B.76°C.38°D.36°2.江堤的横断面如图,堤高BC=10米,迎水坡AB的坡比是1:,则堤脚AC的长是()A.20米B.20米C.米D.10米3.将抛物线y=2x2先向上平移两个单位,再向右平移3个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+2 B.y=2(x+3)2﹣2 C.y=2(x﹣3)2+2 D.y=2(x﹣3)2﹣2 4.如图,△ABC中,BC=3,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.5.从一幅扑克牌中抽出5X红桃,4X梅花,3X黑桃放在一起洗匀后,从中一次随机抽出10X,恰好红桃、梅花、黑桃3种牌都抽到,这件事情是()A.必然事件B.随机事件C.不可能事件D.很可能事件6.如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是()7.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.8.在△ABC中,∠A=60°,以BC为直径画圆,则点A()A.一定在圆外B.一定在圆上C.一定在圆内D.可能在圆外,也可能在圆内,但一定不在圆上9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC 的值为()A.B.C.D.10.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12二.认真填一填(本题有6个小题,每小题4分,共24分)11.已知线段a=4,b=8,则a、b的比例中项线段等于.12.如图,已知在Rt△ABC中,∠ACB=90°,点D为AB中点,CD=5,sinA=,则BC=.13.如图,⊙O的半径为2,AB是⊙O的一条弦,∠O=60°,则图中阴影弓形的面积为.14.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.15.如图,⊙O的直径AB=8,P是圆上任一点(A,B除外),∠APB的平分线交⊙O于C,弦EF过AC,BC的中点M,N,则EF的长是.16.如图,在Rt△ABC中,∠C=90°,AC=10,BC=30,动点P从点B开始沿边BC向点C以每秒3个单位长度的速度运动,动点Q从点C开始沿边CA向点A以每秒1个单位长度的速度运动,连接PQ,点P、Q分别从点B、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当t=秒时,三角形△PCQ的面积最大.(2)在整个运动过程中,线段PQ的中点所经过的路程长为.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以17.(1)已知:a:b:c=1:3:5,求;(2)计算:2cos30°﹣tan45°﹣.18.某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元90 51 90(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+b(a≠0);②y=a(x﹣h)2+k(a≠0);③y=(a≠0).你可选择的函数的序号是.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?19.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m 23 31 60 130 203 251摸到黑球的频率0.23 0.21 0.30 0.26 0.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.20.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.21.如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是;(填写所有符合条件的序号)①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出草图,求BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)22.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.23.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(1)求抛物线的解析式;(2)求tan∠BAC的值;(3)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E 的坐标是多少时,点M在整个运动中用时最少?2015-2016学年某某省某某十三中教育集团九年级(上)月考数学试卷(12月份)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)1.如图,已知圆心角∠BOC=76°,则圆周角∠BAC的度数是()A.152°B.76°C.38°D.36°【考点】圆周角定理.【分析】直接根据圆周角定理进行解答即可.【解答】解:∵∠BOC与∠BAC是同弧所对的圆心角与圆周角,∠BOC=76°,∴∠BAC=∠BOC=×76°=38°.故选C.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.2.江堤的横断面如图,堤高BC=10米,迎水坡AB的坡比是1:,则堤脚AC的长是()A.20米B.20米C.米D.10米【考点】解直角三角形的应用-坡度坡角问题.【分析】在Rt△ABC中,已知了坡面AB的坡比是铅直高度BC和水平宽度AC的比值,据此即可求解.【解答】解:根据题意得: =1:,解得:AC=BC=10(米).故选D.【点评】本题考查了坡比的定义,理解定义是关键.3.将抛物线y=2x2先向上平移两个单位,再向右平移3个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+2 B.y=2(x+3)2﹣2 C.y=2(x﹣3)2+2 D.y=2(x﹣3)2﹣2 【考点】二次函数图象与几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向上平移2个单位,再向右平移3个单位得到的点的坐标为(3,2),然后根据顶点式写出平移后抛物线的解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),把点(0,0)向上平移2个单位,再向右平移3个单位得到的点的坐标为(3,2),所以平移后抛物线的解析式为y=2(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.如图,△ABC中,BC=3,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.【考点】相似三角形的性质.【分析】由△ABC∽△BDC,根据相似三角形的对应边成比例,可得,又由BC=3,AC=4,即可求得答案.【解答】解:∵△ABC∽△BDC,∴,∵B C=3,AC=4,∴CD==.故选D.【点评】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的对应边成比例定理的应用,注意数形结合思想的应用.5.从一幅扑克牌中抽出5X红桃,4X梅花,3X黑桃放在一起洗匀后,从中一次随机抽出10X,恰好红桃、梅花、黑桃3种牌都抽到,这件事情是()A.必然事件B.随机事件C.不可能事件D.很可能事件【考点】随机事件.【分析】根据必然事件、随机事件以及不可能事件的定义即可判断.【解答】解:从中一次随机抽出10X,恰好红桃、梅花、黑桃3种牌都抽到,是必然事件,故选A.【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,C是以AB为直径的⊙O上一点,已知AB=10,BC=6,则圆心O到弦BC的距离是()【考点】垂径定理;勾股定理;圆周角定理.【专题】几何图形问题;数形结合.【分析】首先由AB为直径,AB=10,BC=6,可求得AC的长,然后过点O作OD⊥BC于点D,易得OD是△ABC的中位线,则可求得答案.【解答】解:∵AB为直径,∴∠C=90°,∵AB=10,BC=6,∴AC==8,过点O作OD⊥BC于点D,∴BD=CD,∵OA=OB,∴OD=AC=4.即圆心O到弦BC的距离是4.故选B.【点评】此题考查了垂径定理、圆周角定理、勾股定理以及三角形中位线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】网格型.【分析】利用网格构造直角三角形,根据锐角三角函数的定义解答.【解答】解:如图:在B点正上方找一点D,使BD=BC,连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO==;AC==;则sinA===.故选:B.【点评】本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.8.在△ABC中,∠A=60°,以BC为直径画圆,则点A()A.一定在圆外B.一定在圆上C.一定在圆内D.可能在圆外,也可能在圆内,但一定不在圆上【考点】点与圆的位置关系;圆周角定理.【分析】根据圆周角定理可知当点A位于以BC为直径的圆上时,圆周角等于90°,根据BC 所对的角小于90°可以判断点A在圆外.【解答】解:如图:以BC为直径的圆中,低昂点A′在圆上时,∠BA′C=90°,因为∠A=60°,所以点A在圆外,故选A.【点评】本题考查了点与圆的位置关系及圆周角定理,熟知直径所对的圆周角是直角是解决此题的关键.9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC 的值为()A.B.C.D.【考点】相似三角形的判定与性质.【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.【点评】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12【考点】圆的综合题.【分析】易知直线y=kx﹣3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【解答】解:对于直线y=kx﹣3k+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.【点评】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.二.认真填一填(本题有6个小题,每小题4分,共24分)11.已知线段a=4,b=8,则a、b的比例中项线段等于4.【考点】比例线段.【分析】根据比例中项的定义直接列式求值,问题即可解决.【解答】解:设a、b的比例中项为λ,∵a=4,b=8,∴λ2=ab=32,∴λ=±,即a、b的比例中等于.【点评】该题主要考查了比例中项等基本概念问题;解题的关键是灵活变形、准确计算.12.如图,已知在Rt△ABC中,∠ACB=90°,点D为AB中点,CD=5,sinA=,则BC= 6 .【考点】解直角三角形;直角三角形斜边上的中线.【专题】推理填空题.【分析】根据在Rt△ABC中,∠ACB=90°,点D为AB中点,CD=5,sinA=,可得AB的长,从而可得BC的长.【解答】解:∵在Rt△ABC中,∠ACB=90°,点D为AB中点,CD=5,sinA=,sinA=,∴AB=2CD=10,∴BC=ABsinA=10×=6,故答案为:6.【点评】本题考查解直角三角形和直角三角形斜边上的中线,解题的关键是明确题意,找出各边之间的关系和边与角之间的关系.13.如图,⊙O的半径为2,AB是⊙O的一条弦,∠O=60°,则图中阴影弓形的面积为π﹣.【考点】扇形面积的计算.【分析】过点O作OD⊥AB于点D,根据∠O=60°,OA=OB可知△OAB是等边三角形,故∠OAB=60°,由锐角三角函数的定义求出OD的长,再根据S弓形=S扇形AOB﹣S△OAB即可得出结论.【解答】解:过点O作OD⊥AB于点D,∵∠O=60°,OA=OB=2,∴△OAB是等边三角形,∴∠OAB=60°,∴OD=OAsin60°=2×=,∴S弓形=S扇形AOB﹣S△OAB=﹣×2×=π﹣.故答案为:π﹣.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.14.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.15.如图,⊙O的直径AB=8,P是圆上任一点(A,B除外),∠APB的平分线交⊙O于C,弦EF过AC,BC的中点M,N,则EF的长是4.【考点】圆周角定理;勾股定理;三角形中位线定理;垂径定理.【分析】由于PC平分∠APB,易得,如果连接OC交EF于D,根据垂径定理可知:OC 必垂直平分EF.由于M、N是AC、BC的中点,因此MN是△ABC的中位线,根据平行线分线段成比例定理可得:OD=CD=OC=2.连接OE,可在Rt△OED中求出ED的长,即可得出EF 的值.【解答】解:∵PC是∠APB的角平分线,∴∠APC=∠CPB,∴弧AC=弧BC;∴AC=BC;∵AB是直径,∴∠ACB=90°.即△ABC是等腰直角三角形.连接OC,交EF于点D,则OC⊥AB;∵M、N是AC、BC的中点,∴MN∥AB;∴OC⊥EF,OD=OC=2.连接OE,根据勾股定理,得:DE=2,EF=2ED=4.故答案为:4.【点评】此题综合运用了圆周角定理及其推论发现等腰直角三角形,再进一步根据等腰三角形的性质以及中位线定理,求得EF的弦心距,最后结合垂径定理和勾股定理求得弦长.16.如图,在Rt△ABC中,∠C=90°,AC=10,BC=30,动点P从点B开始沿边BC向点C以每秒3个单位长度的速度运动,动点Q从点C开始沿边CA向点A以每秒1个单位长度的速度运动,连接PQ,点P、Q分别从点B、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)当t= 5 秒时,三角形△PCQ的面积最大.(2)在整个运动过程中,线段PQ的中点所经过的路程长为5.【考点】二次函数的应用;直角三角形斜边上的中线.【专题】几何动点问题.【分析】(1)根据题意得到CP=BC﹣BP=30﹣3t,CQ=t,根据三角形的面积公式得到S△PCQ=PCCQ=t=﹣t2+15t,根据二次函数的顶点坐标公式即可得到结论;(2)线段PQ的中点所经过的路程为一个三角形的中位线长.【解答】解:(1)∵CP=BC﹣BP=30﹣3t,CQ=t,∵∠C=90°,∴S△PCQ=PCCQ=t=﹣t2+15t,当t=﹣=5时,三角形△PCQ的面积最大;(2)线段PQ的中点所经过的路程是线段MN的长,如图所示:当P在B处,Q在C处时,PQ的中点为BC的中点,当点Q运动10秒时,P、Q停止运动,PQ的中点为N,P到达D,Q到达A,过点A作AE∥MN交BC于点E,此时CD=30﹣3×10=0,∴MD=15﹣0=15,∵N是AD的中点,∴M是DE的中点,∴EM=D M=15,MN=AE,∴CE=0+15+15=30,∴AE==10,∴MN=5;即线段PQ的中点所经过的路程长为.故答案为:5,5.【点评】本题考查二次函数的应用,勾股定理,三角形面积的计算,三角形中位线的性质,正确的作出图形是解题的关键.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以17.(1)已知:a:b:c=1:3:5,求;(2)计算:2cos30°﹣tan45°﹣.【考点】比例的性质;特殊角的三角函数值.【分析】(1)根据比例的性质,可用x表示a,b,c,根据分式的性质,可得答案;(2)根据特殊角三角函数值,可得答案.【解答】解:(1)a:b:c=1:3:5,得a=x,b=3x,c=5x,==;(2)2cos30°﹣tan45°﹣=2×﹣1﹣(﹣1)=0.【点评】本题考查了比例的性质,利用比例的性质,可用x表示a,b,c是解题关键.18.某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天 4 10 36市场价y元90 51 90(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:①y=ax+b(a≠0);②y=a(x﹣h)2+k(a≠0);③y=(a≠0).你可选择的函数的序号是②.(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?【考点】二次函数的应用.【分析】(1)根据市场价y(单位:元)与上市时间x(单位:天)的数据,逐一判断出可选择的函数的序号是哪个即可.(2)根据二次函数最值的求法,求出该纪念币上市多少天时市场价最低,最低价格是多少即可.【解答】解:(1)①设纪念币的市场价y与上市时间x的变化关系是y=ax+b时,则,解得.∴y=﹣6.5x+116,∵﹣6.5×36+116=﹣118≠90,∴纪念币的市场价y与上市时间x的变化关系不是y=﹣6.5x+116;②设纪念币的市场价y与上市时间x的变化关系是y=a(x﹣h)2+k(a≠0)时,则解得∴y=(x﹣20)2+26,∴纪念币的市场价y与上市时间x的变化关系是y=(x﹣20)2+26.③4×90=360,10×51=510,36×90=3240,∵360≠510≠3240,∴纪念币的市场价y与上市时间x的变化关系不是y=(a≠0).∴选择的函数的序号是②.(2)∵y=(x﹣20)2+26,∴当x=20时,y有最小值26,∴该纪念币上市20天时市场价最低,最低价格为26元.答:该纪念币上市20天时市场价最低,最低价格为26元.【点评】此题注意考查了二次函数的应用,要熟练掌握,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值X围.19.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m 23 31 60 130 203 251摸到黑球的频率0.23 0.21 0.30 0.26 0.253(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是0.25 ;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.【考点】利用频率估计概率;列表法与树状图法.【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可;(3)列表将所有等可能的结果列举出来,然后利用概率公式求解即可.【解答】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=3.答:估计袋中有3个白球.(3)用B代表一个黑球,W1、W2、W3 代表白球,将摸球情况列表如下:总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为.【点评】此题考查列表法和树状图法求概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.【考点】圆周角定理;坐标与图形性质;等边三角形的判定与性质.【专题】证明题.【分析】(1)连接PB.根据直径所对的圆周角是直角判定PB⊥OM;由已知条件OA=OB推知OM是三角形APB的中位线;最后根据三角形的中位线定理求得点P的坐标、由⊙M的半径长求得点C的坐标;(2)连接AC,证△AMC为等边三角形,根据等边三角形的三个内角都是60°、直径所对的圆周角∠ACP=90°求得∠OCE=30°,然后在直角三角形OCE中利用30°角所对的直角边是斜边的一半来证明BE=2OE.【解答】(1)解:连接PB,∵PA是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)(2分)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以圆的半径MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(1分)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形(2分)又∵AP为圆M的直径得∠ACP=90°得∠OCE=30°(1分)∴OE=1,BE=2∴BE=2OE.(2分)【点评】本题综合考查了圆周角定理、等边三角形的判定与性质以及坐标与图形性质.解答该题时通过作辅助线AC、BP构建直径所对的圆周角∠ACP、∠ABP,然后利用圆周角定理来解决问题.21.如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是②③;(填写所有符合条件的序号)①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出草图,求BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)【考点】解直角三角形.【分析】根据给出的条件作出辅助线,根据锐角三角函数的概念和勾股定理求出BC的长,得到(1)(2)的答案.【解答】解:(1)②③;(2)方案一:选②作AD⊥BC于D,则∠ADB=∠ADC=90°.在Rt△ABD中,∵∠ADB=90°,∴AD=ABsinB=12,BD=ABcosB=16,在Rt△ACD中,∵∠ADC=90°,∴CD==5,∴BC=BD+CD=21.方案二:选③作CE⊥AB于E,则∠BEC=90°,由S△ABC=ABCE得CE=12.6,在Rt△BEC中,∵∠BEC=90°,∴BC==21.【点评】本题考查了解直角三角形,勾股定理,特殊角的三角函数值的应用,能求出各个角的度数和求出各个边的长是解此题的关键,难度适中.22.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ、CP,若AQ⊥CP,求t的值.【考点】相似三角形的判定与性质.【专题】动点型.【分析】(1)分两种情况:①当△BPQ∽△BAC时,BP:BA=BQ:BC;当△BPQ∽△BCA时,BP:BC=BQ:BA,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解答】解:根据勾股定理得:BA=;(1)分两种情况讨论:①当△BPQ∽△BAC时,,∵BP=5t,QC=4t,AB=10,BC=8,∴,解得,t=1,②当△BPQ∽△BCA时,,∴,解得,t=;∴t=1或时,△BPQ∽△BCA;(2)过P作PM⊥BC于点M,AQ,CP交于点N,如图所示:则PB=5t,PM=3t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴,解得t=.【点评】本题考查了相似三角形的判定与性质;由三角形相似得出对应边成比例是解题的关键.23.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).(1)求抛物线的解析式;(2)求tan∠BAC的值;(3)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E 的坐标是多少时,点M在整个运动中用时最少?【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据解方程组,可得B点坐标,根据直角三角形的性质,可得BC,AC,根据角的和差,可得∠ACB的度数,根据正切函数的定义,可得答案;(3)根据锐角三角函数,可得AE与NE的关系,根据路程与速度,可得DE+EN,根据两点之间线段最短,可得DE+EN=D′E+EN,根据矩形的判定与性质,可得ND′=OC=3,ON=D′C=DC,根据线段的和差,可得ON,根据直角三角形的性质,可得NE的长,可得答案.【解答】解:(Ⅰ)把A(0,3),C(3,0)代入y=x2+mx+n,得.解得.∴抛物线的解析式为y=x2﹣x+3.(2)联立,解得:(不符合题意,舍),,∴点B的坐标为(4,1).过点B作BH⊥x轴于H,如图1.∵C(3,0),B(4,1),∴BH=1,OC=3,OH=4,CH=4﹣3=1,∴BH=CH=1.∵∠BHC=90°,∴∠BCH=45°,BC=.同理:∠ACO=45°,AC=3,∴∠ACB=180°﹣45°﹣45°=90°,∴tan∠BAC===;(3)过点E作EN⊥y轴于N,如图2.在Rt△ANE中,EN=AEsin45°=AE,即AE=EN,∴点M在整个运动中所用的时间为+=DE+EN.作点D关于AC的对称点D′,连接D′E,则有D′E=DE,D′C=DC,∠D′CA=∠DCA=45°,∴∠D′CD=90°,DE+EN=D′E+EN.根据两点之间线段最短可得:当D′、E、N三点共线时,DE+EN=D′E+EN最小.此时,∵∠D′CD=∠D′NO=∠NOC=90°,∴四边形OCD′N是矩形,∴ND′=OC=3,ON=D′C=DC.对于y=x2﹣x+3,当y=0时,有x2﹣x+3=0,解得:x1=2,x2=3.∴D(2,0),OD=2,∴O N=DC=OC﹣OD=3﹣2=1,∴NE=AN=AO﹣ON=3﹣1=2,∴点E的坐标为(2,1).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用直角三角的性质得出BC,AC的长是解题关键,又利用了正切函数的定义;利用两点之间线段最短得出EN+DE=ND′是解题关键,又利用了矩形的判定与性质.。
2024年人教版(2024)九年级数学下册月考试卷含答案
2024年人教版(2024)九年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共9题,共18分)1、已知线段AB=6cm,点O是直线AB上任意一点,那么线段AO与线段BO的和的最小值及差的绝对值的最大值分别为()A. 0cm,6cmB. 3cm,6cmC. 3cm,3cmD. 6cm,6cm2、投掷两颗普通的正方体骰子,则点数之和为“3的倍数”的概率是()A.B.C.D.3、抛物线的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为则b,c的值为()A. b=2,c=0B. b=2,c=-6C. b=-6,c=8D. b=-6,c=24、【题文】关于x的不等式组只有6个整数解,则a的取值范围是()A. -≤a≤-4B. -<a≤-4C. -≤a<-4D. -<a<-45、如图绕轴转一周,可以得到下列哪个图形()A.B.C.D.6、如果老师要求你作一个“去年北京市冬季气温统计表”,为了收集数据,你应该()A. 实地测量B. 询问北京的朋友C. 查找资料D. 等老师介绍7、已知点M(4,3)和N(1,-2),点P在y轴上,且PM+PN最短,则点P的坐标是()A. (0,0)B. (0,1)C. (0,-1)D. (-1,0)8、已知:如图,DE∥BC,且那么△ADE与△ABC的面积比S△ADE:S△ABC=()A. 2:5B. 2:3C. 4:9D. 4:259、计算(2sin60°+1)+(-0.125)2006×82006的结果是()A.B. +1C. +2D. 0评卷人得分二、填空题(共5题,共10分)10、(2015•临清市一模)如图,已知菱形ABCD的对角线AC=2,∠BAD=60°,BD边上有2013个不同的点p1,p2,,p2013,过p i(i=1,2,,2013)作P i E i⊥AB于E i,P i F i⊥AD于F i,则P1E1+P1F1+P2E2+P2F2+ P2013E2013+P2013F2013的值为____.11、已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系为____.12、(2014•武汉模拟)如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为____.13、(2013年四川绵阳4分)对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G 分别是OB、OD、EF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”.若△GOM的面积为1,则“飞机”的面积为____________.14、【题文】方程化为一元二次方程的一般形式是____评卷人得分三、判断题(共8题,共16分)15、周长相等的三角形是全等三角形.()16、把一袋糖果分给小朋友,每人分得这袋糖果的.____.(判断对错)17、按四舍五入法取近似值:40.649≈3.6____(精确到十分位).18、判断题(对的打“∨”;错的打“×”)(1)(-1)0=-10=-1;____(2)(-3)-2=-;____(3)-(-2)-1=-(-2-1);____(4)5x-2=.____.19、a2b+ab2=ab(a+b)____.(判断对错)20、____.(判断对错)21、判断:一条线段有无数条垂线. ()评卷人得分四、证明题(共4题,共16分)22、已知,如图,AB,CD是半径为4的⊙O的两条直径,CD⊥AB,点P是上的一个动点;连接BP,交半径OC于点E,过点P的直线PH与OC延长线交于点H(1)当PH=EH时;求证:直线PH是⊙O的切线;(2)当E为OC中点时,求PC的长.23、已知a,b,c,d四个数成比例,且a,d为外项.求证:点(a,b),(c,d)和坐标原点O在同一直线上.24、如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.25、如图,不等边△ABC内接于⊙O,I是其内心,且AI⊥OI.若AC=9,BC=7,则AB=____.评卷人得分五、计算题(共1题,共10分)26、(2014•义乌市)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是____.参考答案一、选择题(共9题,共18分)1、D【分析】【分析】先想象有几种可能,求出符合题意的情况,根据AB=6cm求出最小值和最大值即可.【解析】【解答】解:当O在线段AB上时;AO+BO的值最小,是AB,即线段AO与线段BO的和的最小值是6cm;当O在AB的延长线或在BA的延长线上时;|AO-BO|的值最大,是AB,即可线段AO与线段BO 的差的绝对值的最大值是6cm;故选D.2、B【分析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与点数之和为“3的倍数”的情况,再利用概率公式求解即可求得答案.【解析】【解答】解:列表得:。
九年级数学12月月考试题新人教版
2015—2016学年度第一学期阶段检测(2)九年级数学试题一、选择题:本大题共12小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,填在右侧的答题栏中,每小题选对得3分,错选、不选或多选均记0分,满分36分. 1. 某反比例函数的图象过点(1,-4),则此反比例函数解析式为( ) A .xy 4=B . xy 41=C . x y 4-= D . xy 41-= 2. 一元二次方程x 2+px -6=0的一个根为2,则p 的值为( ) A .-1B .-2C . 1D .23. 抛物线22y x =,22y x =-,212y x =的共同性质是( ) A .开口向上B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大4. 下列四个图形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )5. 如图,⊙O 的直径CD 垂直于弦AB 于点E ,且CE=2,OB=4,则AB 的长为( ) A . 32 B . 4C . 6D .346. 从标号分别为1,2,3,4,5的5张卡片中,随机抽取一张,下列事件中,必然事件是( ) A .标号小于6B. 标号大于6C . 标号是奇数D . 标号是37. 下列一元二次方程中没有实数根的是( )A .2240x x +-=B .2440x x -+=C .2250x x --=D .2340x x ++=8. 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是( )A . 5个B . 6个C . 7个D . 8个9. 如果点A (-3,y 1),B (-2,y 2),C (1,y 3)都在反比例函数kyx(k >0)的图象上,那么,y 1,y 2,y 3的大小关系是( )A .132y y y B .213y y y C .123y y yD .321yy y10. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,CD ⊥AB ,若∠DAB =70°,则∠BOC = ( ) A. 70° B. 130° C. 140° D. 160°11. 圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( )A .90°B .120°C .150°D .180°12. 二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +b 2-4ac 与反比例函数y =xcb a ++在同一坐标系内的图象大致为( )二、填空题:本大题共6个小题,每小题填对最后结果得4分,满分24分. 13. 在﹣1、3、﹣2这三个数中,任选两个数的积作为k 的值,使反比例函数的图象在第一、三象限的概率是 .14. 已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,则实数m 的取值范围是 .15. 如图所示,将△ABC 绕点A 按逆时针旋转30°后,得到△ADC ′,则∠ABD 的度数是 . 16.已知抛物线m x x y +-=822的顶点在x 轴上,则m= .17. 如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)18. 对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则201520152211B A B A B A +++ 的值是 三、解答题:本大题共8个小题,满分60分.解答时请写出必要的演推过程. 19. (本小题满分12分,每小题6分) (1)解方程:x 2+2x -3=0(2)已知反比例函数xmy -=5,当x =2时,y =3. ①求m 的值;②当3≤x≤6时,求函数值y 的取值范围.20.(6分) 方程22(6)x m x m -++=0有两个相等的实数根,且满足12x x +=12x x ,试求m 的值。
九年级下数学12月份月考试卷
九年级下数学12月份月考试卷问卷一、选择题(本题有12小题,每小题3分,共36分)1.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是2. 二次函数2(1)2y x=++的最小值是A.2 B.1 C.-3 D.2 33.已知⊙O的半径为2,点0到直线a 的距离为2,则直线a 与⊙O的位置关系是A.相离B.相切C.相交D.不能确定4.设方程x2-4x-1=0的两个根为x1与x2,则x1x2的值是A.4 B.-1 C.1 D. 05.如图,AB是⊙O的直径,弦CD⊥AB于点E,连结OC,若OC=5,OE=3,则CD=A.4 B.6 C.8 D.106.点P(2,1)关于原点对称的点的坐标为A.(-2,-1) B.(2,1) C.(2,-1)D.(-2,1)7. 将抛物线向左平移1个单位得到新的抛物线,则新抛物线的解析式是A. B.C. D.8. 如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P’BA,则∠PBP’的度数是A.45°B.60°C.90°D.120°9.下列事件为必然事件的是A.小王数学考试成绩是120分 B.某射击运动员射靶一次,正中靶心C.打开电视机,正在播放新闻 D.口袋中有2个红球和1个白球,从中摸出2个球,其中必有红球10.如图PA、PB是⊙O的切线,AC是⊙O的直径,∠P=40°,则∠BAC的度数是A.10°B.20°C.30°D.40°11. 甲、乙、丙、丁四名选手参加100米决赛,赛场共设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到3号的概率A.1 B.12C.34D.1412. 二次函数y=ax2+bx+c的图象如下图所示,则下列关系式不正确的是A.a<0 B.abc>0 C.a+b+c>0 D.b2-4ac>0二﹑细心填一填:(每小题3分,共18分)13.一元二次方程x2=16的解是.14. 100件外观相同的产品中有5件不合格.现从中任意抽取1件进行检测,抽到不合格产品的概率是.15 . 如图,A,B,C是⊙O上的三点,∠AOB=100°,则∠ACB度数是度.16.已知圆锥的底面半径为4,母线长为6,则它的侧面积为_________.17. 已知O⊙的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC=__________cm18.如图,在直角坐标系中,已知点)0,3(-A,)4,0(B,对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为.三、解答题(66分)19.(6分)解方程: x2-2x=320.(6分)如图,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E,BEA∆旋转后能与DFA∆重合。
20211116人教版初中数学九年级上册十二月月考试卷含答案
20211116人教版初中数学九年级上册十二月月考试卷含答案----3a2b5d63-6ea1-11ec-995c-7cb59b590d7d九年级第一次月考数学试卷一、多项选择题(每题3分,共18分)1、下列方程中,关于的一元二次方程是()a、 C.2。
抛物线;③顶点坐标为数为()a.1b、二,c.3d、四,;④b、 d。
,下列结论:①抛物线的开口向下;②对称轴为直线当,它随着的增加而减少,正确的结论之一是3、若关于的一元二次方程a。
且b。
有实数根,则的取值范围是()c.d。
且4.在以下四幅图中,图中的一个矩形是通过将另一个矩形顺时针旋转90°形成的a.①②,b。
②③,b.C① ④ 图像交叉d.②④,,如果点的图象上,则下d.5.已知的二次函数列结论正确的是()同样在二次函数中c.6.二次函数y?ax2?十、a2?1.A.0图像可能是()二、填空(每题3分,共24分)7.如果第二个字母Y?2x2的图像沿Y轴向下平移一个单位,然后向右平移三个单位,则获得图像的函数分析公式为___8。
方程式x2?3x的解是____9。
二次函数化为形式:________.11=__________.? X1x210。
已知X1和X2是方程2x2-5x-3=0的两个根11、如图所示,△abc中,∠bac=33°,将△abc绕点a按顺时将针旋转50°以获得△ ab'C',然后是∠ B′AC为______12。
制动后,由于惯性的作用,移动的汽车将继续向前滑动一段距离,这段距离称“刹车距离”.某轿车的刹车距离下述函数关系式:,汽车的速度限制是与车速的杭甬高速公路上交通事故发生后,交警部门将制动距离测量为超速(填写“是”或“否”)。
13.二次函数,请推断:刹车时,汽车________如图所示,方程式有两个不相等的实数根,则的取值范围是________.14.已知抛物线y=AX2+BX+C在两点a(2,0)和B(4,0)处与X轴相交,顶点c到x轴的距离为2,则此抛物线的解析式为______.三、解答题(15题8分,16、17、18、19题各6分,共32分)15、用适当的方法解下列方程:(每小题4分,共8分)(2)x2?2倍?一16、若抛物线y?x?3x?a与x轴只有一个交点,求实数a的值.17.已知关于x=0的方程式x2+2x+A2。
人教版九年级数学上册12月月考试卷.docx
初中数学试卷桑水出品九年级12月数学月考试卷(时间:120分钟 总分:120分)一、精心选一选,相信自己的判断!(每小题3分,共30分) 1 2 3 4 5 6 7 8 9 101、下列命题为真命题的是( )A 、点确定一个圆B 、度数相等的弧相等C 、圆周角是直角的所对弦是直径D 、相等的圆心角所对的弧相等,所对的弦 也相等 2.圆内接四边形ABCD ,∠A ,∠B ,∠C 的度数之比为3:4:6,则 ∠ D 的度数为( )度A 、60B 、80C 、100D 、1203、如图,圆周角∠A =30,弦BC =3,则圆O 的直径是( )A 、4B 、3C 、5D 、64、如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 和D 两点,AB=10cm,CD=6cm,则AC 长为 ( )A 0.5cmB 1cmC 1.5cmD 2cmACO(3题) (4题) (6题)5.已知圆的内接正六边形的周长为18,那么圆的面积为 ( ) (A )18π (B )9π (C )6π (D )3π6.如图AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧上的一点,已知∠BAC =ο80,那么∠BDC =( )度.A 、60B 、80C 、100D 、1207.在半径为3的圆中,150°的圆心角所对的弧长是( )A .154πB .152πC .54πD .52π8、CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =6,则BE 的长是( ) A .1或9 B .9C .1D .49.已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) (A ) 6(2)5 (C )210 (D )21410.如图所示,在同心圆中,两圆半径分别是2和1,∠AOB=120度, 则阴影部分的面积为( )A .4πB .2πC .34π D .π(9题) (10题)二、填空题(每题3分,共18分)11、若⊙O 的半径为5,弦AB 的弦心距为3,则AB = .12、直线l 与⊙O 有两个公共点A ,B ,O 到直线l 的距离为5cm ,AB =24cm ,则⊙O 的半径是 cm .13、已知扇形的弧长为π,半径为1,则该扇形的面积为14、圆锥的高为33cm ,底面圆半径为3cm ,则它的侧面积等于 .15、如图5,已知AB 是⊙O 的直径,P A =PB ,∠P =60°,则弧»CD所对的圆心角等于DCABO16.如图所示,O是△ABC的内心,∠BOC=100°,则∠A=______.三、细心做一做:(本大题共6小题,每小题12分,共72分)17.(12分)如图4,已知⊙O的半径是6cm,弦CB=63cm,OD⊥BC,垂足为D,求∠COB18.(12分)AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.求证:直线CD是⊙O的切线;19、(12分)在Rt△ABC中,∠C=90゜,AC=5,BC=12,以C为圆心,R 为半径作圆与斜边AB相切,求R的值。
九年级数学12月月考数学试题含答案
九年级数学试题(时间90分钟满分120分)一、选择题:(每题3分,共计36分)1.如图是由多个完全相同的小正方体组成的几何体,其左视图是()A.B.C.D.2.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m的值为()A.6 B.-6 C.12 D.-123.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C .D .4.已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A. y1<0<y2 B. y2<0<y1 C. y1<y2<0 D. y2<y1<05.如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或96.下列运算:sin30°=0-2==ππ-,24.其中运算结果正确的个数为()A.4B.3C.2D.17.关于反比例函数y=﹣,下列说法正确的是()A.图象过(1,2)点B.图象在第一、三象限C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大8.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为().A.B.51 C.1D.101学校:班级:姓名:考号:(第8题图) (第9题图)9.如图,在平面直角坐标系中,直线AB 与x 轴交于点A (﹣2,0),与x 轴夹角为30°,将△ABO 沿直线AB 翻折,点O 的对应点C 恰好落在双曲线y=(k ≠0)上,则k 的值为( ) A . 4 B .﹣2 C .D .﹣10.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为( )A . 236πB . 136πC . 132πD . 120π11.如图,为测量一颗与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为()30.tan A α米.30sin B α米.30tan C α米.30cos D α米12.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x =-、2y x=的图象交于B 、A 两点,则∠OAB 大小的变化趋势为 A.逐渐变小B.逐渐变大C.时大时小D.保持不变二、填空题:(每题4分,共计24分) 13. 下列四个立体图形中,左视图为矩形的是.14.如图,菱形ABCD的边长为15,sin∠BAC=35,则对角线AC的长为.15.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y= (x<0)的图象上,则k=.(第14题图)(第15题图)16.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为m(结果保留根号).(16题图)(18题图)17.在Rt△ABC中,∠C = 90°,AB = 3BC,则sin B = ,cos B = ;18.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题:(共计60分)19.计算:(7分)()﹣1﹣20150+|﹣|﹣2sin60°.20.(8分)如图,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比例函数y2=(m≠0)的一个交点.(1)求正比例函数及反比例函数的表达式;(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2?21.(7分)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的正切值.22.(10分)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.(1)求证:四边形AEBD 是菱形;(2)如果OA=3,OC=2,求出经过点E 的反比例函数解析式.23.(8分)如图,要测量A 点到河岸BC 的距离,在B 点测得A 点在B 点的北偏东30°方向上,在C 点测得A 点在C 点的北偏西45°方向上,又测得BC=150m .求A 点到河岸BC 的距离.(结果保留整数)(参考数据:≈1.41,≈1.73)24.(10分)如图,在平面直角坐标系中,一次函数)0(≠+=k b kx y 的图象与反比例函数)0(≠=m xmy 的图象交于A 、B 两点,与x 轴交于C 点,点A 的坐标为(n ,6),点C 的坐标为(﹣2,0),且tan ∠ACO=2.(1)求该反比例函数和一次函数的解析式; (2)求点B 的坐标;第20题图(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)25.(10分)张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:≈1.732)参考答案及评分标准一、选择题:1、C .2、A .3、B .4、B5、C .6、D7、D8、C9、D . 10、B 11、 C 12、D 二、填空题:13、①④;14、24;15、-4;16、10;17、322,31;18、①②③三、解答题: 19、 解:原式=2﹣1+﹣2×=1.20.解:(1)将点A (1,2)代入正比例函数y 1=kx (k ≠0)与反比例函数y 2=(m ≠0)得, 2=k ,m=1×2=2,故y 1=2x (k ≠0),反比例函数y 2=;(2)如图所示:当0<x <1时,y 1<y 2.21. 解:(1)画出俯视图,如图所示:(2)连接EO 1,如图所示:∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO===,22、解:(1)证明:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形.…………………………………………2分又∵四边形OABC是矩形,∴OB=AC,且互相平分,∴DA=DB.∴四边形AEBD是菱形.…………………………………………5分(2)连接DE,交AB于点F.由(1)四边形AEBD是菱形,∴AB与DE互相垂直平分.………………………6分又∵OA=3,OC=2,∴EF=DF=12OA=32,AF=12AB=1 .∴E点坐标为(92,1).…………………………………………8分设反比例函数解析式为kyx =,把点E(92,1)代入得92k=.∴所求的反比例函数解析式为92yx =.…………………………………………10分23、解:过点A作AD⊥BC于点D,设AD=xm.在Rt△ABD中,∵∠ADB=90°,∠BAD=30°,∴BD=AD•tan30°=x.在Rt△ACD中,∵∠ADC=90°,∠CAD=45°,∴CD=AD=x.∵BD+CD=BC,∴x+x=150,∴x=75(3﹣)≈95.即A点到河岸BC的距离约为95m.24.(本题满分10分) 解:(1)过点A 作AD ⊥x 轴于D ,∵C 的坐标为(﹣2,0),A 的坐标为(n ,6), ∴AD=6,CD=n+2, ∵tan ∠ACO=2,∴==2,解得:n=1,故A (1,6),………………………2分 ∴m=1×6=6,∴反比例函数表达式为:x y 6=,………………………3分又∵点A 、C 在直线y =kx +b 上,∴,解得:, ∴一次函数的表达式为:y =2x +4;………………………5分(2)由得:x x 642=+,解得:x=1或x=﹣3, ∵A (1,6),∴B (﹣3,﹣2);………………………8分(3)分两种情况:①当AE ⊥x 轴时, 即点E 与点D 重合,此时E 1(1,0);………………………9分 ②当EA ⊥AC 时, 此时△ADE ∽△CDA ,则=, DE==12,又∵D 的坐标为(1,0),∴E 2(13,0).………………………10分25、解:如图,过B 作BE ⊥CD 交CD 延长线于E , ∵∠CAN=45°,∠MAN=30°, ∴∠CAB=15°∵∠CBD=60°,∠DBE=30°, ∴∠CBD=30°,∵∠CBE=∠CAB+∠ACB,∴∠CAB=∠ACB=15°,∴AB=BC=20,在Rt△BCE中,∠CBE=60°,BC=20,∴CE=BCsin∠CBE=20×BE=BCcos∠CBE=20×0.5=10,在Rt△DBE中,∠DBE=30°,BE=10,∴DE=BEtan∠DBE=10×,∴CD=CE﹣DE=≈11.5,答:这棵大树CD的高度大约为11.5米.。
九年级上12月月考数学试题含答案
九年级数学试题一、选择题(每题3分,共30分)1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中2个黑球、4个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球 ;B .摸出的是3个黑球;C .摸出的是2个白球、1个黑球;D .摸出的是2个黑球、1个白球。
2、如图,四边形ABCD 是⊙O 的内接四边形,若80B ∠=︒,则ADC ∠的度数是 ( )A.60°B.80°C.90°D.100°3、半径为3,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π4、用反证法证明命题“三角形的内角中至少有一个角不大于60°”时,假设正确的是( ) A 、假设三个内角都不大于60°; B .假设三个内角至多有一个大于60°; C .假设三个内角都大于60°; D .假设三个内角至多有二个大于60°。
5、如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,则点O 是( ) A .△ACD 的重心B .△ABC 的外心 C .△ACD 的内心D .△ABC 的垂心6、己知正六边形的边长为4,则它的内切圆的半径为( ) A .B.C. 27、一天晚上,婷婷帮助妈妈清洗3随机地搭配在一起,则颜色搭配正确的概率是( )A.91B.61 C.31 D.928、如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为3,∠B=135°,则的长( )A.23π B. π C.π2 D. 3π 9、如图,从一块直径是6m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )mA.4303 B.24 C.30 D.15210、如图,⊙O 是△ABC 的外接圆,BC 为直径,AD 平分∠BAC 交⊙O 于D ,点P 为△ABC 的内心,25=PD ,AB=8.下列结论:①∠BAD=45°;②PD=PB ;③BC PD 22=;④S △A PC =6.其中正确结论的个数是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省东莞市中堂星晨学校届九年级数学12月月考试题(满分120分,考试时间100分钟)班级姓名总分一.选择题(共10小题,每小题3分,共30分)1.如图所示的几何体的俯视图是()2.菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10 B.8 C.6 D.53.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于()A.B.C.D.4.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在5.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.6.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.57.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.B.C.D.A.2≤k≤B.6≤k≤10C.2≤k≤6D.2≤k≤8.如图☉O中,半径OD⊥弦AB于点C,连接AO并延长交☉O于点E,连接EC,若AB=8,CD=2, 则EC的长度为()51013B.8C.2D.2A.2象可能是10.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B. 2个C.3个D.4个二.填空题(共6小题,每小题4分,共24分)11.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则= _________ .12.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位的概率是_________ .13.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是_________ cm3.14.在平面直角坐标系xOy中,点P到x轴的距离为3个单位长度,到原点O的距离为5个单位长度,则经过点P的反比例函数的解析式为_________ .15.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是_________ .16.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是_________ .(填写所有正确结论的序号)三.解答题(一)(本大题3小题,每小题5分,共15分17.(5分)解方程:x2+4x+2=0.18、(5分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是_________ ;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是_________ ;(3)△A2B2C2的面积是_________ 平方单位.19.(5分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为_________ ;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB于点E.(1)k的值为_________ ;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.21.(8分)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,推出了如下收费标准(如图所示):某单位组织员工去具有喀斯特地貌特征的黄果树风景区旅游,共支付给旅行社旅游费用27000元,请问该单位这次共有多少名员工去具有喀斯特地貌特征的黄果树风景区旅游?22(8分)在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.24.(9分)如图,在Rt△ABC中,∠B=90°,AC=60,AB=30.D是AC上的动点,过D作DF⊥BC 于F,过F作FE∥AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.25.(9分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?一、选择题:(每题3分,共24分)题号 1 2 3 4 5 6 7 8 9 10 答案 D D C A A A A D A D11、 4 12、 13、 1814、 y=或y=﹣ 15、 16、①③④三.解答题(一)(本大题3小题,每小题5分,共15分17、(5分)解:∵x2+4x+2=0∴x2+4x=﹣2∴x2+4x+4=﹣2+4∴(x+2)2=2∴x=﹣2∴x 1=﹣2+,x2=﹣2﹣18、(5分)(1)(2,﹣2)(2)(1,0)(3) 1019、(5分)(1)(2)(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:=.四、解答题(二)(本大题3小题,每小题8分,共24分)20、(88分)(1) 9(2)S△OCD=S△OBE,理由是:∵点D,E在函数的图象上,∴S△OCD=S△OAE=,∵点D为BC的中点,∴S△OCD=S△OBD,即S△OBE=,∴S△OCD=S△OBE.21、(8分)解:设该单位去具有喀斯特地貌特征的黄果树旅游人数为x人,则人均费用为1000﹣20(x ﹣25)元由题意得 x[1000﹣20(x﹣25)]=27000整理得x2﹣75x+1350=0,解得x1=45,x2=30.当x=45时,人均旅游费用为1000﹣20(x﹣25)=600<700,不符合题意,应舍去.当x=30时,人均旅游费用为1000﹣20(x﹣25)=900>700,符合题意.答:该单位这次共有30名员工去具有喀斯特地貌特征的黄果树风景区旅游.22、(8分)解:(1)∵1﹣35%﹣20%﹣20%=25%,∴1000×25%=250(辆).答:参加销展的D型轿车有250辆;(2)如图,1000×20%×50%=100;(3)四种型号轿车的成交率:A:×100%=48%;B:×100%=49%;C:50%;D:×100%=52%∴D种型号的轿车销售情况最好.(4)∵.∴抽到A型号轿车发票的概率为.四、解答题(三)(本大题3小题,每小题9分,共27分)23、(9分)(1)证明:过点F作FG⊥BC于点G.∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE和△EGF中,∴△ABE≌△EGF(AAS).∴AB=EG,BE=FG.又∵AB=BC,∴BE=CG,∴∠FCG=∠45°,即CF平分∠DCG,∴CF是正方形ABCD外角的平分线.(2)∵AB=3,∠BAE=30°,tan30°=,BE=AB•tan30°=3×,即CG=.在Rt△CFG中,cos45°=,∴CF=.24、(9分)解:(1)∵在Rt△ABC中,∠B=90°,AC=60,AB=30,∴∠C=30°,∵CD=x,DF=y.∴y=x;(2)∵四边形AEFD为菱形,∴AD=DF,∴y=60﹣x∴方程组,解得x=40,∴当x=40时,四边形AEFD为菱形;(3)∵△DEF是直角三角形,∴∠FDE=90°,∵FE∥AC,∴∠EFB=∠C=30°,∵DF⊥BC,∴∠DEF+∠DFE=∠EFB+∠DFE,∴∠DEF=∠EFB=30°,∴EF=2DF,∴60﹣x=2y,与y=x,组成方程组,得解得x=30,∴当△DEF是直角三角形时,x=30.解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.。