自考流体力学复习要点

合集下载

流体力学知识点总结

流体力学知识点总结

流体力学知识点总结流体力学是一门研究流体(包括液体和气体)运动规律以及流体与固体之间相互作用的学科。

它在工程、物理、化学、生物等多个领域都有着广泛的应用。

以下是对流体力学一些重要知识点的总结。

一、流体的物理性质1、密度流体的密度是指单位体积流体的质量。

对于液体,其密度通常较为稳定;而气体的密度则会随着压力和温度的变化而显著改变。

2、黏性黏性是流体内部阻碍其相对流动的一种特性。

黏性的大小用黏度来衡量。

牛顿流体遵循牛顿黏性定律,其黏度为常数;非牛顿流体的黏度则随流动条件而变化。

3、压缩性压缩性表示流体在压力作用下体积缩小的性质。

液体的压缩性通常很小,在大多数情况下可以忽略不计;气体的压缩性则较为显著。

二、流体静力学1、压力压力是指流体作用于单位面积上的力。

在静止流体中,压力的大小只与深度和流体的密度有关,遵循静压力基本方程。

2、帕斯卡定律加在密闭液体任一部分的压强,必然按其原来的大小,由液体向各个方向传递。

3、浮力物体在流体中受到的浮力等于排开流体的重量。

三、流体运动学1、流线与迹线流线是在某一瞬时,流场中一系列假想的曲线,曲线上每一点的切线方向都与该点的流速方向相同。

迹线则是某一流体质点在一段时间内运动的轨迹。

2、流量与流速流量是单位时间内通过某一截面的流体体积,流速是流体在单位时间内通过的距离。

四、流体动力学1、连续性方程连续性方程表明,在定常流动中,通过流管各截面的质量流量相等。

2、伯努利方程伯努利方程描述了理想流体在沿流线运动时,压力、速度和高度之间的关系。

其表达式为:\\frac{p}{\rho} +\frac{1}{2}v^2 + gh =\text{常数}\其中,\(p\)为压力,\(\rho\)为流体密度,\(v\)为流速,\(g\)为重力加速度,\(h\)为高度。

3、动量方程动量方程用于研究流体与固体之间的相互作用力。

五、黏性流体的流动1、层流与湍流层流是一种流体质点作有规则、分层的流动;湍流则是流体质点的运动杂乱无章。

流体力学复习要点

流体力学复习要点

流体力学复习要点流体力学复习要点第一章绪论1.1流体的主要物理力学性质1、流体的主要物理力学性质包括哪几部分?2、水的密度为1000kg/m33、牛顿内摩擦定律4、牛顿内摩擦定律表明内摩擦力的大小与流体的角变形速率成正比5、流体的黏度,运动黏性系数与动力黏性系数的关系;液体的μ随温度的升高而减小,气体的μ随温度的升高而增大1.2作用在流体上的力1、按作用方式的不同分为:表面力和质量力2、单位质量力是作用在单位质量流体上的质量力1.3流体的力学模型1、常用的物理力学模型:连续介质模型、理想流体、不可压缩流体。

2、连续介质模型是指的流体是一种毫无空隙的充满其所占空间的连续体的假定。

流体质点指的是大小同一切流体空间相比微不足道,又含有大量分子具有一定质量的流体微元。

3、理想流体是指假定流体没有黏性4、不可压缩流体是指假定流体的密度是一个常数第一章流体静力学2.1静止流体中压强的特征1、静压强的定义2、静止流体中压强的特征:(1)静止流体只能承受压应力,压强的方向垂直指向作用面(受力面的内法线方向)(2)流体内同一点的静压强的大小在各个方向均相等2.2流体平衡微分方程1、等压面:压强相等的空间点构成的面2、对于仅受重力作用的联通的同一均质流体,等压面为水平面。

2.3重力作用下流体静压强的分布规律1、p z C gρ+= 当质量力仅为重力时,静止流体内部任一点的p z gρ+是常数 2、0p p g ρ=+h 3、压强的度量:相对压强、绝对压强、真空度。

4、静压强分布图的绘制2.4压强的测量一般采用仪器测得都是相对压强2.5流体的相对平衡1、等加速直线运动的流体的等压面:倾斜面2、等角速旋转运动的流体的等压面:旋转抛物面2.6液体作用在平面上的总压力1、解析法c F p A= c c c +D I y y y A=(注意一下:y D 代表的是什么) 2、图解法F=bS 2.6作用在曲面上的液体压力1、压力体的组成有3个面,分别是:2、压力体的绘制第二章流体运动理论与动力学基础3.1流体运动的描述方法欧拉法中加速度由两部分组成:位变加速度、时变加速度(或者说迁移加速度和当地加速度)3.2流场的基本概念(分类)1、按照运动要素是否随时间发生变化,分为:恒定流和非恒定流2、按照运动要素与坐标变量之间的关系分为:一元流、二元流和三元流。

自考科目流体力学复习题模板

自考科目流体力学复习题模板

三、填空题1.流体力学是研究流体的机械运动规律及其应用的科学,是力学的分支学科。

2.液体和气体统称流体,流体的根本特征是具有流动性3.流体力学的研究方法大体上有理论、数值和实验三种。

4.作用在流体上的力,按作用方法的不同分为外表力和质量力两类。

5.质量力的大小用单位质量力表示。

6.压缩体是流体受压,分子间距离减小,体积缩小的性质。

7.膨胀性是流体受热,分子间距增大,体积膨胀的性质。

8.相对压强是以当地大气压为基准起算的压强。

9.位置水头是单位重量液体具有的相对于基准面的重力势能。

10.压力表测得的压强是相对压强。

11.描述流体运动有拉格朗日和法欧拉法两种方法。

12.流线是表示某时刻流动方向的曲线,曲线以上各质点的速度矢量都与该曲线相切。

13.流体质点在一段时间内的运动轨迹称为迹线。

14.某时刻,在流场内任意作一封闭曲线,过曲线上各点作流线,所构成的管状曲面称为流管;充满流体的流管称为流速。

15.在流束上作出的与全部流线正交的横断面是过水断面〔过流断面〕。

16.凡流线是平行直线的流动为均匀流。

17.由于沿程阻力做功而引起的水头损失称为沿程水头损失。

18.雷诺数是以宏观特征量表征的质点所受惯性作用和粘性作用之比。

19.层流常见于很细的管道流动,或者低速、高粘流体的管道流动。

20.紊流光滑区地流速分布分为粘性底层和紊流核心两局部。

21.主流脱离边壁,漩涡区地形成是造成局部水头损失的主要原因。

22.在绕流物体边界别离点下游形成的涡旋区统称为尾流。

23.绕流助力系数取决于雷诺数、物体的形状以及外表的粗糙情况。

24.孔口出流时,水流与孔壁仅在一条周线上接触,壁厚对出流无影响,这样的孔口称为薄壁孔口。

25.水由孔口流入大气中称为自由出流。

26.孔口出流〔或入流〕过程中,容器内水位随时间变化〔降低或升高〕,导致孔口的流量随时间变化的流动,称为孔口的变水头出流。

27.流体沿管道满管流动的水力现象称为有压管流。

28.有压管流沿程水头损失包含沿程水头损失和局部水头损失。

《流体力学》各章节复习要点

《流体力学》各章节复习要点

第一章一、名词解释1.理想流体:没有粘性的流体2.惯性:是物体所具有的反抗改变原有运动状态的物理性质。

3.牛顿内摩擦力定律:流体内摩擦力T 的大小与液体性质有关,并与流速梯度和接触面A成正比而与接触面上的压力无关。

4.膨胀性:在压力不变条件下,流体温度升高时,其体积增大的性质。

5.收缩性:在温度不变条件下,流体在压强作用下,体积缩小的性质。

6.牛顿流体:遵循牛顿粘性定律得流体。

二、填空题1.流体的动力粘性系数,将随流体的(温度)改变而变化,但随流体的(压力)变化则不大。

2.动力粘度μ的国际单位是(s p a ⋅或帕·秒)物理单位是(达因·秒/厘米2或2/cm s dyn ⋅)。

3.运动粘度的国际单位是(米2/秒、s m /2),物理单位是(沱 )。

4.流体就是各个(质点)之间具有很大的(流动性)的连续介质。

5.理想流体是一种设想的没有(粘性)的流体,在流动时各层之间没有相互作用的(切应力),即没有(摩擦力)三、单选题1. 不考虑流体粘性的流体称( )流体。

AA 理想B 牛顿C 非牛顿D 实际2.温度升高时,空气的粘性( ) BA .变小B .变大C .不变D .不能确定3.运动粘度的单位是( ) BA .s/m 2B .m 2/sC .N ·m 2/sD .N ·s/m 24.与牛顿内摩擦定律直接有关的因素是( ) CA .切应力与速度B .切应力与剪切变形C .切应力与剪切变形速度D .切应力与压强5.200℃体积为2.5m 3的水,当温度升至800℃时,其体积变化率为( ) C200℃时:1ρ=998.23kg/m 3; 800℃时: 2ρ=971.83kg/m 3A .2.16%B .1.28%C .2.64%D .3.08%6.温度升高时,水的粘性( )。

AA .变小B .变大C .不变D .不能确定2.[动力]粘度μ与运动粘度υ的关系为( )。

BA .υμρ=B .μυρ=C .ρυμ= D .μυ=P3.静止流体( )剪切应力。

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。

流体元可看做大量流体质点构成的微小单元。

2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律)(1)流体质点无线尺度,只做平移运动(2)流体质点不做随即热运动,只有在外力的作用下作宏观运动;(3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。

4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。

5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:6.牛顿流体:动力粘度为常数的流体称为牛顿流体。

7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。

液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。

、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。

8.温度对粘度的影响:温度对流体的粘度影响很大。

液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。

压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。

9.描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。

它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。

流体力学复习资料

流体力学复习资料

流体力学复习资料流体力学是研究流体(包括液体和气体)的平衡和运动规律的学科。

它在工程、物理学、气象学、海洋学等众多领域都有着广泛的应用。

以下是为大家整理的流体力学复习资料,希望能对大家的学习有所帮助。

一、流体的物理性质1、流体的密度和比容密度(ρ)是指单位体积流体的质量,公式为:ρ = m / V 。

比容(ν)则是密度的倒数,即单位质量流体所占的体积,ν = 1/ρ 。

2、流体的压缩性和膨胀性压缩性表示流体在压力作用下体积缩小的性质,通常用体积压缩系数β来衡量,β =(1 / V)×(dV / dp)。

膨胀性是指流体在温度升高时体积增大的特性,用体积膨胀系数α来描述,α =(1 / V)×(dV / dT)。

3、流体的粘性粘性是流体抵抗剪切变形的一种属性。

牛顿内摩擦定律:τ =μ×(du / dy),其中τ为切应力,μ为动力粘度,du / dy 为速度梯度。

二、流体静力学1、静压强的特性静压强的方向总是垂直于作用面,并指向作用面内。

静止流体中任意一点处各个方向的静压强大小相等。

2、静压强的分布规律对于重力作用下的静止液体,其静压强分布公式为:p = p0 +ρgh ,其中 p0 为液面压强,h 为液体中某点的深度。

3、压力的表示方法绝对压力:以绝对真空为基准度量的压力。

相对压力:以大气压为基准度量的压力,包括表压力和真空度。

三、流体动力学基础1、流体运动的描述方法拉格朗日法:跟踪流体质点的运动轨迹来描述流体的运动。

欧拉法:通过研究空间固定点上流体的运动参数随时间的变化来描述流体的运动。

2、流线和迹线流线是在某一瞬时,在流场中所作的一条曲线,在该曲线上各点的速度矢量都与该曲线相切。

迹线是流体质点在一段时间内的运动轨迹。

3、连续性方程对于定常流动,质量守恒定律表现为连续性方程:ρ1v1A1 =ρ2v2A2 。

4、伯努利方程理想流体在重力作用下作定常流动时,沿流线有:p /ρ + gz +(1 / 2)v²=常量。

流体力学考试必备复习资料.doc

流体力学考试必备复习资料.doc

1.流体力学介绍(研宄对象、A容、方法)2.连续介质模型3.流动流体的粘性4.流体物理性质5.作用在流体上的力流体力学的概念流体力学:力学的一个分支。

力学研究中广泛采用抽象的理论模型:如质点,质点组,刚体,连续介质等。

理论力学研究这些理论模型的普遍运动规律和一般性原理。

连续介质力学研宂连续介质的运动规律,包括弹性力学(固体)和流体力学(液体和气体)。

流体力学:研宄流体在静止和运动时的受力与运动规律。

即流体在静止和运动时的压力分布, 流速变化,流y:大小,能传递与损失以及流体与同体壁而间的相互作用力等问题。

名词解释:连续介质--由没有空隙、完全充满所占空间的无数质点所组成的物质.流体的构成流体rh大量分子组成;流体分子无休止地作不规则的运动;流体分子之间经常相互碰撞,交换动量和能量。

流体力学的研宄内容流体的平衡规律:流体的运动规律;流体与流体以及流体与固体之间相互作用的规律。

流体力学的研究方法理论研究方法建立力学模型通过对流体性质及运动的观察,根据问题的要求,抓住主要因素,忽略次要因素,建立力学模型。

对力学模型根据物理定律或实验公式,以数学形式建立描写流体运动的封闭方程组,并给出初始条件和边界条件。

求解利用各种数学工具准确地或近似地解出方程纟11,建立起所求问题的流体各参量之间的解析关系或数值关系。

优缺点准确,清晰,但由于数学发展水平的局限,只能应用于简单理论模型,而不能应用于实际复杂的流体运动。

实验研究方法通过实验测S的方法研究流体的力学规律。

实验研宄是流体力学研宄的重要方法。

通过实验,可以给理论研宄以启示,并检验理论是否正确。

通过实验研究,还可建立一定的经验公式,用來解决工程M题。

优缺点可靠,准确,具有指导意义;但是受实验尺度和边界条件限制,有些实验无法开展,或耗资巨大。

数值研究方法流体力学方程的解析解十分难求,因此用数值计算的方法利用计算机对流体力学方程求解成为重要手段。

通常将流体力学的数学模型在计算域上离散化,然后采用一定的数值计算方法计算,以得到流场各参数的变化规律。

全国自考流体力学知识点汇总

全国自考流体力学知识点汇总

3347 流体力学全国自考第一章绪论1、液体和气体统称流体,流体的基本特性是具有流动性。

流动性是区别固体和流体的力学特性。

2、连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续踢来研究。

3、流体力学的研究方法:理论、数值和实验。

4、表面力:通过直接接触,作用在所取流体表面上的力。

5、质量力:作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力。

重力是最常见的质量力。

6与流体运动有关的主要物理性质:惯性、粘性和压缩性。

7、惯性:物体保持原有运动状态的性质;改变物体的运功状态,都必须客服惯性的作用。

8、粘性:流体在运动过程中出现阻力,产生机械能损失的根源。

粘性是流体的内摩擦特性。

粘性又可定义为阻抗剪切变形速度的特性。

9、动力粘度:是流体粘性大小的度量,其值越大,流体越粘,流动性越差。

10、液体的粘度随温度的升高而减小,气体的粘度随温度的升高而增大。

11、压缩性:流体受压,分子间距离减小,体积缩小的性质。

12、膨胀性:流体受热,分子间距离增大,体积膨胀的性质。

13、不可压缩流体:流体的每个质点在运动过程中,密度不变化的流体。

14、气体的粘度不受压强影响,液体的粘度受压强影响也很小。

第二章流体静力学1、精致流体中的应力具有一下两个特性:应力的方向沿作用面的内法线方向。

静压强的大小与作用面方位无关。

2、等压面:流体中压强相等的空间点构成的面;等压面与质量力正交。

3、绝对压强是以没有气体分子存在的完全真空为基准起算的压强、4、相对压强是以当地大气压强为基准起算的压强。

5、真空度:若绝对压强小于当地大气压,相对压强便是负值,有才呢个•又称负压,这种状态用真空度来度量。

6工业用的各种压力表,因测量元件处于大气压作用之下,测得的压强是改点的绝对压强超过当地大气压的值,乃是相对压强。

因此,先跪压强又称为表压强或计示压强。

7、z+p/ p g=C:z为某点在基准面以上的高度,可以直接测量,称为位置高度或位置水头.。

自考科目流体力学复习题重点

自考科目流体力学复习题重点

1. 上临界雷诺数是〔 B 〕。

A.从紊流转变为层流的判别数B.从层流转变为紊流的判别数C.从缓流转变为急流的判别数D.从缓变流转变为急变流的判别数2. 短管淹没出流的计算时,作用水头为〔C 〕。

A.短管出口中心至上游水面高差;B.短管出口中心至下游水面高差;C.上下游水面高差D.以上答案都不对3. 长管的总水头线与测压管水头线〔A 〕。

A.相重合B.相平行,呈直线C.相平行,呈阶梯状D.以上答案都不对4. 明渠水流雷诺数的表达式为〔D 〕。

A. B. C. D.5. 两根直径不同的管道,一根输油,一根输水,两管中流速也不同,油和水的下临界雷诺数分别为Re c 和2Re c ,则它们的关系是〔 C 〕。

A. B. C. D.无法确定6. 在缓坡明渠中不可以发生的流动是〔 B 〕。

A.均匀缓流;B.均匀急流;C.非均匀缓流;D.非均匀急流7. 渐变流肯定是〔C 〕A.均匀流B.紊流C.缓流D.以上答案都不对8. 明渠均匀流是指〔D 〕。

A.速度方向不变,大小可以沿流向改变的流动B.断面流速均匀分布的流动C.运动要素不随时间变化的流动D.流速大小方向沿流向不变的流动9. 明渠水力最正确断面〔在Q 、i 、n 肯定的条件下〕是〔 B 〕。

A.缓流过渡到急流是的断面B.过水断面面积最小的断面C.Fr=1的断面D.湿周最大的断面10. 水力最正确断面是〔 B 〕。

A.湿周肯定,面积最大的断面B.面积肯定,湿周最小的断面νvg =Re νvz =Re νvA =Re νvR =Re 2Re Re c c >2Re Re c c <2Re Re c c =C.最低造价的断面D.最小糙率的断面11. 半圆形明渠,半径为4米,水深4米,其水力半径为 〔 C 〕。

A.4米B.3米C.2米D.1米12. 谢才公式〔C 〕A.仅可适用于明渠流B.仅可适用于管流C.适用于明渠流和管流D.仅可适用于明渠紊流13. 谢才公式中谢才系数的单位是〔B 〕。

【3347】流体力学复习资料

【3347】流体力学复习资料

流体力学复习资料第一章绪论1.1流体力学及其任务一、流体力学的研究对象流体力学是一门技术基础课,也是水利工程、土木工程、环境工程、交通工程、建筑工程等专业的必修课程。

学习流体力学课程必须具备物理学、理论力学和材料力学等基础知识。

通过本课程的学习,要求能掌握液体平衡和液体运动的基本概念、基本理论和分析方法,能正确区分不同水流的运动状态和特点,掌握水流运动的基本规律,能解决实际工程中有关管流和明渠流的常见水力学问题,为今后学习专业课程、从事专业技术工作打下良好的基础。

流体力学——研究流体机械运动规律及其应用的科学。

(一)流体的定义1.自然界物质存在的主要形态:固态、液态和气态;2.具有流动性的物体(即能够流动的物体);流动性:在微小剪切力作用下汇发生连续变形的特性。

3.流体包括液体和气体;4.流体与固体的区别;①固体的变形与受力的大小成正比;②任何一个微小的剪切力都能使流体发生连续的变形。

5.液体与气体的区别①液体的流动性小于气体;②液体具有一定的体积;气体充满任何容器,而无一定体积。

(二)流体的特征:流动性二、流体的连续介质假设问题的引出:①微观:流体是由大量做无规则热运动的分子所组成,分子间存有空隙,在空间是不连续的。

②宏观:一般工程中,所研究流体的空间尺度要比分子距离大得多。

(一)流体的连续介质假设1.定义:不考虑流体分子间的间隙,把流体视为由无数连续分布的流体微团组成的连续介质。

2.流体微团必须具备的两个条件①必须包含足够多的分子;②体积必须很小,且具有一定质量。

(二)采用流体连续介质假设的优点1.避免了流体分子运动的复杂性,只需研究流体的宏观运动。

2.可以利用数学工具来研究流体的平衡与运动规律。

三、流体力学的研究方法流体力学研究方法:理论方法、数值方法和实验方法。

理论方法:建立理论模型,并运用数学方法求出理论结果。

数值方法:在计算机应用的基础上,采用各种离散化方法(有限差分法、有限元法等),建立各种数值模型,通过计算机进行数值计算和数值实验,得到要时间和空间上,许多数字组成的集合体,最终获得定量描述流场的数值解。

流体力学复习提纲

流体力学复习提纲

《流体力学》复习提纲第一部分:基本知识第一章 流体及其主要物理性质1. 流体的概念。

2. 连续介质假设的内容,质点的概念。

3. 液体和气体相对密度的定义。

4. 密度、重度、相度密度的相互计算。

5. 体积压缩系数和体积膨胀系数的定义,写出其数学表达式。

6. 动力粘度与运动粘度的相互计算、粘度的国际单位和物理单位及单位换算。

7. 作用在流体上的力的分类:分为质量力和表面力两大类。

8. 温度对液体和气体粘性的影响规律。

9. 什么是理想流体和实际流体。

10. 牛顿内摩擦定律的内容及其两种数学表达式。

重点习题:1-1,1-4,1-5,第二章 流体静力学1. 静压强的两个重要特性是什么?2. 欧拉平衡方程及其全微分形式3. 绝对压力、相对压力(表压力)、真空度三种压力的概念。

4. 工程大气压和标准大气压的区别。

5. 静力学基本方程C pz =+γ中每一项的几何意义和物理意义是什么?6. 绝对静止和两种典型的相对静止流体(等加速水平运动和绕轴等角速旋转运动)中的压力分布规律和等压面的形状。

7. 液式测压计的计算。

8. 掌握静止流体作用在平面和曲面上的总压力的计算方法(包括总压力的大小﹑方向和作用点)等,会进行有关计算。

重点习题:2-6,2-9,2-18,2-19第三章 流体运动学与动力学基础1. 研究流体运动的两种方法:拉格朗日法和欧拉法。

2. 欧拉法表示的质点加速度公式3. 定常流与非定常流的概念4. 流线与迹线的概念5. 流量的概念及三种流量表示方法及相互换算。

6. 欧拉运动方程7. 实际流体总流伯努利方程的三条水头线的画法和意义8. 水力坡降的概念。

9. 实际流体总流伯努利方程。

10. 节流式流量计的工作原理是什么?11. 理解测速管(或皮托管)的原理和用途。

12. 泵的扬程H 的概念及其与泵有效功率泵N 的关系?13. 连续性方程反映了什么物理基本原理?质量守恒定律14. 掌握连续方程﹑总流伯努利方程和动量方程的应用,动量方程部分应会进行弯管、渐缩管和平板等受力的计算。

《流体力学》复习提纲Ⅰ

《流体力学》复习提纲Ⅰ

《流体力学与流体机械》(上)复习提纲第一章流体及其物理性质1.流体如何定义?流体为什么具有流动性?流体与固体有何本质区别?液体与气体的特点有何不同?2.何谓流体微团和流体质点?把流体作为连续性介质假设有何实际意义?分析该假设的合理性。

3.理解和熟练掌握流体的密度、重度、比重和比容等重要物性参数的概念,特别需要注意比重和重度的区别,均匀流体和非均匀流体,以及混合流体的密度、重度等物性参数的应如何计算?重度与密度之间的关系,熟练掌握等压条件下气体密度的简化计算式(1-13)。

4.何谓流体的压缩性和膨胀性?流体压缩性和膨胀性的大小如何度量?流体的体积压缩系数βp、体积弹性系数E及体积膨胀系数β的单位是什么?如何用这三个系数的大小来判别流体压T缩性的大小?5.理解和熟练掌握理想气体状态方程的形式和物理意义,以及方程中各物理量的单位。

6.可压缩流体和不可压缩流体是如何定义的?液体就是不可压缩流体、而气体就是可压缩流体吗?不可压缩流体是真是存在的流体吗?引入不可压缩流体的概念有何实际意义?在什么情况下可以认为流体是不可压缩的?7.理解和掌握马赫数M的概念及其物理意义,为什么说当M<0.3时,流体的可压缩性可以忽略不计?8.何谓流体的粘性和粘性力(内摩擦力)?为什么流体会具有粘性?重点掌握流体的粘性是怎样产生的?流体与固体壁面间的粘性和粘性力是如何构成的?流体的内摩擦力与固体壁面间的摩擦力有何区别?它们所遵循的规律相同吗?9.深入理解和熟练掌握牛顿内摩擦定律的内容、数学表达式的形式及其物理含义和工程应用。

何谓速度梯度?10.深入理解和熟练掌握流体的动力粘度和运动粘度的物理本质及含义、二者之间的区别与联系,分析影响流体的粘性的两大主要因素——压力和温度对流体的粘性的影响。

11.处于静止状态或等速运动状态下的流体是没有粘性的吗?何谓流体的粘性切应力?12.了解流体粘度的常用测量方法及恩氏粘度的概念,以及恩氏粘度如何转换成运动粘度和动力粘度。

《流体力学》各章节复习要点

《流体力学》各章节复习要点

《流体力学》各章节复习要点第一章:流体力学基本概念1.流体力学的研究对象是流体运动的性质、规律和力学行为。

2.流体和固体的区别,流体的分类和性质。

3.流体的基本力学性质,包括压强、密度和粘度等。

4.流体的运动描述,包括质点、流线、流管和速度场等概念。

5.流体的变形和应力,包括剪切应力、正应力、黏性和流变性等。

第二章:流体静力学1.流体静压力的基本特征,流体静力学方程和压强的传递规律。

2.流体的浮力,浸没体和浮力的计算方法。

3.子液面、大气压和液体柱的压强和压力计的应用。

4.流体的液面,压强分布和压力容器。

第三章:流体动力学基本方程1.流体运动描述的方法,包括拉格朗日方法和欧拉方法。

2.质点、质点流函数和速度场等的关系。

3.流体的基本方程,包括连续性方程、动量方程和能量方程。

4.流体的不可压缩性和可压缩性假设。

第四章:定常流动和流动的形态1.定常流动和非定常流动的概念和特点。

2.流体流动的形态,包括层流和紊流。

3.流体的压强分布和速度分布。

4.流体的速度分布和速度云。

第五章:流体的动能和势能1.流体的动能、动能方程和功率。

2.流体的势能、势能方程和能率。

3.流体的势能和扬程。

第六章:粘性流体力学基本方程1.粘性流体的三个基本性质,包括黏性、切变应力和流变规律。

2.线性流体的黏性流动,包括牛顿黏性流体模型和黏性损失。

3.非线性流体的黏性流动,包括非牛顿流体和粘弹性流体。

第七章:边界层流动1.边界层的概念和特点。

2.压强分布和速度分布的边界层。

3.边界层和物体间的摩擦阻力。

第八章:维持边界层流动的力1.维持边界层流动的作用力,包括压力梯度、粘性力和凸面力。

2.维持边界层流动的条件和影响因素。

第九章:相似定律和模型试验1.流体力学中的相似原理和相似定律。

2.物理模型和模型试验的概念和应用。

第十章:流体力学的应用1.流体力学在水利工程中的应用,包括水力学、河流动力学和波动力学等。

2.流体力学在能源领域中的应用,包括风力发电和水力发电等。

流体力学考试复习资料考点(1)

流体力学考试复习资料考点(1)

流体⼒学考试复习资料考点(1)⼀、流体⼒学及其研究对象流体:液体和⽓体的总称。

流体⼒学:是研究流体的科学,即根据理论⼒学的普遍原理,借助⼤量的实际资料,运⽤数学和实验⽅法来研究流体的平衡和运动规律及其实际应⽤的⼀门科学。

流体⼒学研究的对象:液体和⽓体流⼆、流体的⼒学特性1、流体与固体的区别主要在于受剪应⼒后的表现有很⼤的差异。

固体--能承受剪应⼒、压应⼒、张应⼒,没有流动性。

流体--只能承受压应⼒,不能承受拉⼒和剪⼒,否则就会变形流动,即流体具有流动性。

2、液体与⽓体的主要差别在于受压后的表现上的差异。

液体:受压后体积变化很⼩,常称不可压缩流体;液体的形状随容器的形状⽽变,但其体积不变。

⽓体:受压后体积变化很⼤,常称可压缩流体;⽓体的形状和体积都随容器⽽变。

注:⽓体的体积变化⼩于原体积的20%时,可近似看作不可压缩流体。

1.1.1流体的密度1、流体密度的定义及计算定义:单位体积流体的质量,以ρ表⽰,单位为kg/m3(1)均质流体:标态(2)混合流体:混合⽓体:混合液体:2、流体的密度与温度、压⼒的关系(1)液体:⼯程上,液体的密度看作与温度、压⼒⽆关。

(2)⽓体:与温度和压⼒有关。

理想⽓体:或⼯业窑炉:P=P0分析:t↑ρ↓;t↓ρ↑1.1.2流体的连续性流体的连续性:流体看成是由⼤量的⼀个⼀个的连续近质点组成的连续的介质,每个质点是⼀个含有⼤量分⼦的集团,质点之间没有空隙。

质点尺⼨:⼤于分⼦平均⾃由程的100倍。

连续性假设带来的⽅便:(1)它使我们不考虑复杂的微观分⼦运动,只考虑在外⼒作⽤下的宏观机械运动。

(2)能运⽤数学分析的连续函数⼯具。

【例题】已知烟⽓的体积组成百分组成为:H2O12%,CO218%,N270%,求此烟⽓标态在及200℃的密度。

【解】200℃时的烟⽓密度:【例题】将密度为1600㎏/m3糖浆按1:1的质量⽐⽤清⽔稀释,求稀释后糖浆溶液的密度。

【解】按题意,糖浆和⽔各占50%,据公式:1.1.3流体的压缩性和膨胀性1.1.3.1流体的压缩性1、压缩性的定义流体在外⼒作⽤下改变⾃⾝容积的特性。

流体力学及流体机械复习资料

流体力学及流体机械复习资料

"流体力学与流体机械"复习考试资料仅供内部学习交流使用平安131班编制绪论:1.流体力学是以研究流体〔包括液体和气体〕为研究对象,研究其平衡和运动根本规律的科学。

主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失。

2.流体力学的主要研究方法:实验研究、理论分析、数值计算。

第一章流体及其物理性质1.流体:在任何微小剪切力下能产生连续变形的物质即为流体。

主要特征:流动性2.连续介质假说:质点〔而不是分子〕是组成宏观流体的最小基元,质点与质点之间没有间隙其物理性质各向同性,且在空间和时间上具有连续性。

3.流体的粘性(1)流体产生粘性的原因:流体的内聚力;动量交换;流体分子和固体壁面之间的附着力。

(2)流层之间的内摩擦力:带动力和阻力〔一对大小相等、方向相反的作用力〕(3)流体内摩擦切应力:τ=μ·〔du/dy) (N/m2)τ=F/A=μ·U/h (N/m2)(4)相对运动的结果使流体产生剪切变形。

流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。

(5)粘性的度量:动力粘度μ=τ/〔du/dy) (pa·s)运动粘度ν=μ/ρ (m2/s)温度升高时,流体的粘性降低,气体的粘性增加。

4.课后习题答案第二章流体静力学1.作用在流体上的力〔1〕外表力:作用在被研究流体的外表上,其大小与被作用的面积成正比,如法向压力和切向摩阻力。

〔平衡流体不存在外表切向力,只有外表法向力〕〔2〕质量力:作用在被研究流体的每个质点上,其大小与被研究流体的质量成正比,如重力和惯性力。

质量力常用单位质量力表示,所谓单位质量力,是指作用在单位质量流体上的质量力。

2.流体静压力及其特性流体处于平衡状态时,外表力只有压力,称其为静压力,单位面积上作用的静压力称为静压强。

静压力有两个重要特性:①静压力垂直于作用面,并沿着作用面内法线方向;②平衡流体中任何一点的静压力大小与其作用面的方位无关,其值均相等。

流体力学总结复习(1)

流体力学总结复习(1)

流体力学总结复习(1)流体力学总结复习流体力学是研究流体运动规律和特性的学科,广泛应用于工程、地质、气象、海洋等众多领域。

下面我们来对流体力学知识进行一次总结复习。

一、基本概念1. 流体:能够流动,在外力作用下形状能够变化的物质。

2. 流动:在流体中,由于外力作用下引起的变形并迅速影响到流体的整个体积的现象。

3. 流量:单位时间内穿过某一横截面的流体体积。

4. 压力:单位面积上的力。

二、流体力学的基本方程1. 质量守恒定律(连续方程):流体在任意两个截面的实际流量相等。

2. 动量守恒定律(牛顿第二定律):力是液体加速度的乘数。

3. 能量守恒定律(伯努利方程):流体在稳态流动过程中,流速越大,压力越小,反之亦然。

三、常见问题1. 流体的稳定性问题:稳定流动和不稳定流动分别是哪两种类型,有何区别?答:稳定流动指的是流体在正常工作状态下保持相同的流速、流量或密度的现象;不稳定流动指流体存在涡流,会导致流体在某些区域压力变低,而在其它区域则压力变高的现象。

2. 压力的公式推算问题:在同一高度、不同密度流体内,相等的质量在重力作用下会产生相等的压力,如何推算压力的公式?答:根据巴斯德公式p=F/A可得出,同等质量下仅仅因为液体密度而引起压力的不同,则对应产生的质量也相对应减小或增大,乘上液体密度,可得出公式p= (F/m)/A =g(h1-h2)/A。

其中,F为质量,A为面积,g为重力加速度,h1-h2为液体高度差。

3. 管道系统的计算问题:已知流量、水管长度、摩擦系数等参数,如何通过管路系统的计算公式推算管道流量?答:在未考虑管道阻力的前提下,管道系统的计算公式为Q=C*A*V。

其中,Q为单位时间内的流量,C为摩擦系数,A为管道横截面积,V为流速。

在考虑管道阻力之后,还需要增加修正系数,将管道阻力纳入考虑之中。

四、结语上述流体力学的相关内容是我们学习和应用流体力学的基础,同时也是我们将来学习更为复杂的流体力学问题的必要条件。

《流体力学》复习提纲20111023

《流体力学》复习提纲20111023

《流体力学》复习提纲学习重点——四个基本:基本概念(术语)、基本原理(方法)、基本方程(公式)、基本计算(应用)复习思考题;自测题;习题第一章绪论基本要求理解流体的主要物理性质,特别是粘滞性和牛顿内摩擦定律;理解连续介质假设和流体质点的概念;理解理想流体和实际流体、可压缩流体和不可压缩流体的概念;掌握作用在流体上的质量力、表面力的概念和表示方法。

1-1 流体力学的任务及其发展简史1、流体力学的主要研究内容①流体在外力作用下,静止与运动的规律;②流体与边界的相互作用。

流体力学研究流体的宏观运动规律,是宏观力学的一个独特分支。

2、流体力学的研究方法和数学方法(1)研究方法:①理论分析(Theoretical analysis);②实验研究(Experimental study);③数值模拟(Numerical simulation)。

(2)数学方法(Mathematical method):①矢量分析(vector analysis);②场论(Field theory)。

1-2 流体的主要物理力学性质(力学模型)1、流体的基本特性—流动性①流体(气体和液体)区别于固体的主要物理特性是易于流动。

②流体几乎不能承受拉力,没有抵抗拉伸变形的能力。

③流体能承受压力,具有抵抗压缩变形的能力。

④流体不能承受集中力,只能承受分布力。

⑤运动流体具有抵抗剪切变形的能力,这种抵抗体现在限制剪切变形的速率而不是大小上,这就是流体的粘滞性。

⑥流体在静止时不能承受剪切力、抵抗剪切变形。

流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。

只要有剪切力的作用,流体就不会静止下来,发生连续变形而流动。

作用在流体上的剪切力不论多么微小,只要有足够的时间,便能产生任意大的变形。

2、流体质点概念和连续介质假设(1)流体质点概念①宏观(流体力学处理问题的尺度)上看,流体质点足够小,只占据一个空间几何点,体积趋于零。

②微观(分子自由程的尺度)上看,流体质点是一个足够大的分子团,包含了足够多的流体分子,以致于对这些分子行为的统计平均值将是稳定的,作为表征流体物理特性和运动要素的物理量就定义在流体质点上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论物质的三种形态:固体、液体和气体。

液体和气体统称为流体。

流体的基本特征:具有流动性。

所谓流动性,即流体在静止时不能承受剪切力,只要剪切力存在,流体就会流动。

流体无论静止或流动,都不能承受拉力。

连续介质假设:把流体当做是由密集质点构成的、内部无空隙的连续体。

质点:是指大小同所有流动空间相比微不足道,又含有大量分子,具有一定质量的流体微元。

作用在流体上的力按其作用方式可分为:表面力和质量力。

表面力:通过直接接触,作用在所取流体表面上的力(压力、摩擦力),在某一点用应力表示。

质量力:作用于流体的每个质点上且与流体质量成正比的力(重力、惯性力、引力),用单位质量力表示流体的主要物理性质:惯性、粘性、压缩性和膨胀性。

惯性:物体保持原有运动状态的性质,其大小用质量表示。

密度:单位体积的质量,粘性:是流体的内摩擦特性,或者是流体阻抗剪切变形速度的特性。

流体粘性大小用粘度度量,粘度包括动力粘度μ和运动粘度υ无粘性流体:指无粘性,即μ=0的流体。

不可压缩流体:指流体的每个质点在运动全过程中,密度不变化的流体。

压缩性:流体受压,分子间距减小,体积缩小的性质。

膨胀性:流体受热,分子间距增大,体积膨胀的性质。

压缩系数:在一定的温度下,增加单位压强,液体体积的相对减小值,,体积模量体膨胀系数:在一定的压强下,单位温升,液体体积的相对增加值,(简答)简述气体和液体粘度随压强和温度的变化趋势及不同的原因。

答:气体的粘度不受压强影响,液体的粘度受压强影响也很小;液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大,其原因是:分子间的引力是液体粘性的主要因素,而分子热运动引起的动量交换是气体粘性的主要因素。

\第二章流体静力学绝对压强pabs:以没有气体分子存在的完全真空为基准起算的压强。

相对压强p:以当地大气压pa为基准起算的压强,各种压力表测得的压强为相对压强,相对压强又称为表压强或计示压强。

真空度pv:绝对压强小于当地大气压的数值。

测量压强做常用的仪器有:液柱式测压计和金属测压表。

液柱式测压计包括测压管、U形管测压计、倾斜式微圧计和压差计。

平面上静水总压力的计算方法有:图算法和解析法。

潜体:全部浸入液体中的物体。

浮体:部分浸入液体中的物体。

阿基米德原理:液体作用于潜体或浮体上的总压力,只有铅垂向上的浮力,大小等于所排开的液体重量,作用线通过潜体的几何中心。

(简答)试述静止流体中应力的特性。

答:(1)应力的方向沿作用面的内法线方向;(2)静压强的大小与作用面的方位无关。

流体平衡微分方程及物理意义:物理意义:在静止流体中,各点单位质量流体所受质量力与表面力相平衡。

等压面的概念、性质及连通器内等压面的判断:流体中压强相等的空间点构成的平面或曲面称为等压面。

其性质是:等压面与质量力正交。

在连通器内做水平面,若连通的一侧只有同一种液体,该平面就是等压面,否则不是等压面。

由液体静力学基本方程得到的结论(推论):(1)静压强的大小与液体的体积无关;(2)两点的压强差等于两点之间单位面积垂直液柱的重量;(3)在平衡状态下,液体内任一点压强的变化等值地传递到其他各点。

压力体的概念、界定方法和分类:积分⎰=AzVhdAz表示的几何体积称为压力体。

界定方法:设想取铅垂线沿曲面边缘平行移动一周,割出以自由液面或延伸面为上底、曲面本身为下底的柱体就是压力体。

分类:实压力体(Pz↓)、虚压力体(Pz↑)和压力体叠加。

第三章流体动力学基础描述流体运动的两种方法:拉格朗日法和欧拉法。

除个别质点的运动问题外,都应用欧拉法。

拉格朗日法:是以个别质点为研究对象,观察该质点在空间的运动,然后将每个质点的运动情况汇总,得到整个流体的运动。

质点的运动参数是起始坐标和时间变量t的连续函数。

欧拉法:是以整个流动空间为研究对象,观察不同时刻各空间点上流体质点的运动,然后将每个时刻的情况汇总起来,描述整个运动。

空间点的物理量是空间坐标)和时间变量t的连续函数。

恒定流:各空间点上的运动参数都不随时间变化的流动。

非恒定流:各空间点上的运动参数随时间变化的流动。

一(二、三)元流:流体流动时各空间点上的运动参数是一(二、三)个空间坐标和时间变量的连续函数。

均匀流:流线是平行直线的流动。

非均匀流:流线不是平行直线的流动。

流线:表示某时刻流动方向的曲线,曲线上各质点的速度矢量都与该曲线相切。

迹线:流体质点在一段时间内的运动轨迹。

流管:某时刻,在流场内任意做一封闭曲线,过曲线上各点做流线,所构成的管状曲面。

流束:充满流体的流管。

过流断面:与所有流线正交的横断面。

元流:过流断面无限小的流束,断面上各点的运动参数均相同。

总流:过流断面为有限大小的流束,断面上各点的运动参数不相同。

流量:单位时间内通过某一过流断面的流体量。

以体积计为体积流量,简称流量;以质量计为质量流量;以重量计为重量流量非均匀渐变流:在非均匀流中流线近似于平行直线的流动。

水头线:总流或元流沿程能量变化的几何图示。

水力坡度:单位流程内的水头损失。

(简答)流线有哪些主要性质?流线和迹线有无重合的情况?答:流线性质:(1)在恒定流中,流线的形状和位置不随时间变化;(2)在同一时刻,一般情况下流线不能相交或转折。

在恒定流中流线与迹线重合,非恒定流中一般情况下两者不重合,但当速度方向不随时间变化只是速度大小随时间变化时,两者仍重合。

试述流动分类:(1)根据运动参数是否随时间变化,分为恒定流和非恒定流;(2)根据运动参数与空间坐标的关系,分为一元流、二元流和三元流;(3)根据流线是否平行,分为均匀流和非均匀流。

不可压缩流体的连续性微分方程:不可压缩流体运动必须满足该方程。

第四章流动阻力和水头损失流动阻力:粘性流体运动时,流体内部流层之间存在相互作用的摩擦力,在边界变化处存在集中阻力,这两类力做功使机械能减少,这两类力称为流动阻力。

沿程阻力:在边界无变化的均匀流段上产生的流动阻力。

局部阻力:在边界急剧变化处产生的流动阻力。

水头损失:单位重量流体平均的机械能损失。

沿程水头损失f h:由沿程阻力做功引起的水头损失。

局部水头损失j h:由局部阻力做功引起的水头损失。

层流:流速较小时,水一层套着一层呈层状流动,各层质点互不混掺的流态。

紊流(湍流):流速较大时,各层质点运动轨迹极不规则,相互混掺的流态。

水力半径R:过流断面面积与湿周的比值。

紊流脉动:紊流各层质点相互掺混,无规则运动,导致其物理量也随之无规则变化的现象。

瞬时流速u:某一空间点的实际流速,在紊流流态下随时间脉动,时均流速u:某一空间点的瞬时流速在时段T内的时间平均值,脉动流速u′:瞬时流速与时均流速的波动值。

断面平均流速ν:过流断面上各点流速的断面平均值,粘性底层:仅靠壁面存在一个粘性剪应力起控制作用的薄层。

紊流剪应力包括:粘性剪应力和附加剪应力紊流流速分布一般表达式:,该公式适用于除粘性底层以外的整个过流断面。

当量粗糙:是以工业管道紊流粗糙区实测的λ值代入尼古拉兹粗糙圆管公式反算得出的粗糙高度ks。

当量直径de:把水力半径相等的圆管直径定义为非圆管的当量直径边界层:考虑粘性影响的薄流层。

绕流阻力D:流体绕物体流动,平行于来流方向上的力,包括摩擦阻力和压差阻力,造成局部水头损失的原因:主流脱离边壁,漩涡区的形成。

边界层的特征:边界层内流速梯度很大,考虑粘性影响;以外流速梯度约为0,相当于无粘性流体的运动。

第五章孔口、管嘴出流和有压管流孔口出流:在容器壁上开孔,水经孔口流出的水力现象。

其水头损失只考虑局部水头损失j h。

薄壁孔口:孔口出流时,水流与孔壁仅在一条周线上接触,壁厚对水流无影响的孔口。

自由出流:水由孔口流入大气的水力现象。

淹没出流:水由孔口直接流入另一部分水体的水力现象。

管嘴出流:在孔口上对接3-4倍孔径的短管,水通过短管并在出口断面满管流动的水力现象。

有压管流:流体沿管道满管流动的水力现象。

短管:沿程水头损失和局部水头损失所占比重相当,两者都不能忽略的管道。

长管:以沿程水头损失为主,局部水头损失和流速水头所占比例很小,可以忽略或按沿程水头损失的某一百分比估算的管道。

简单管道:沿程直径和流量都不变化的管道。

串联管道:由直径不同的管段顺序连接起来的管道。

并联管道:在两节点之间并联两根或两根以上的管道。

水击(水锤):在有压管道中,由于某种原因,使水流速度突然发生变化,同时引起压强大幅度波动的现象。

直接水击:阀门关闭时间小于一个相长,最早发出的水击波的反射波回到阀门之前,阀门已全关闭,此时阀门处的水击压强与瞬时关闭相同。

间接水击:阀门关闭时间大于一个相长),最早发出的水击波的反射波回到阀门之时,阀门还未完全关闭,此时阀门处正负水击波相叠加,使阀门处的水击压强小于直接水击压强。

(简答)孔口、管嘴出流和有压管流各自的水力特点是:(1)孔口、管嘴出流只有局部水头损失,不计沿程水头损失,j w hh ;(2)短管的局部水头损失和沿程水头损失都要计入,;(3)长管的局部水头损失和流速水头的总和同沿程水头损失相比很小,按沿程水头损失的某一百分数估算过忽略不计。

管嘴出流收缩断面的真空高度:,相当于把孔口的作用水头增大75%,因此在相同的作用水头下,同样开口面积,管嘴的过流能力是孔口过流能力的1.32倍。

第六章明渠流动明渠流动:水流的部分周界与大气接触,具有自由表面的流动。

又称为无压流。

明渠流动的特点:重力作用、底坡影响、水深可变。

底坡:底线沿流程单位长度的降低值。

底坡类型:i>0,为正底坡或顺坡;i=0,为平底坡;i<0,为反底坡或逆坡。

渠道类型:棱柱形渠道和非棱柱形渠道。

棱柱形渠道:断面形状、尺寸沿程不变的长直渠道。

非棱柱形渠道:断面形状、尺寸沿程有变化的渠道。

明渠均匀流:流线为平行直线的明渠水流,是具有自由表面的等深、等速流。

正常水深h0:明渠均匀流的水深。

水力最优断面:当i、n和A一定,湿周最小而流量最大的断面。

无压圆管:圆形断面不满管流的长管道。

水力最优充满度:在满流之前,输水能力达到最大值时相应的充满度。

缓流:对于底坡平缓的渠道或河道,水流流动缓慢,遇到障碍物,障碍物前水面壅高,且壅高水位向上游传播。

急流:对于底坡较陡的渠道或河道,以及瀑布险滩,水流流动较快,遇到障碍物后,水面隆起越过,上游水面不壅高,障碍物对上游来流无影响。

弗劳德数:明渠流速与临界流速的比值,。

断面单位能量:相对于通过该断面最低点的基准面的机械能,临界水深hc:断面单位能量最小时对应的水深。

临界底坡ic:正常水深正好等于该流量下的临界水深时相应的渠道底坡。

正底坡或顺坡类型:i<ic,为缓坡;i=ic,为临界坡;i>ic,为急坡或陡坡。

水跃:明渠水流从急流状态过渡到缓流状态时水面骤然跃起的急变流现象。

水跃区包括水滚区和主流区。

相关文档
最新文档