轴对称_尺规作图

轴对称_尺规作图
轴对称_尺规作图

6.2 尺规作图导学案(教师版)

课型:复习课 执笔:李义庆 审核:许俊波 第周 第课时 总第课时

一、复习目标:

通过复习与训练,提高尺规作图的能力,掌握中考常用作图类型。

二、学习过程:

1.(2010台湾)如图(1),直线CP 是AB 的中垂线且交AB 于P ,其中AP =2CP 。甲、乙两人想在AB 上取两点D 、E ,使得AD =DC =CE =EB ,其作法如下:

(甲) 作∠ACP 、∠BCP 之角平分线,分别交AB 于D 、E , 则D 、E 即为所求

(乙) 作AC 、BC 之中垂线,分别交AB 于D 、E ,则D 、 E 即为所求对于甲、乙两人的作法,下列判断何者正确?

(A) 两人都正确 (B) 两人都错误 (C) 甲正确,乙错误 (D) 甲错误,乙正确。

2.(2010浙江绍兴)如图2,已知△ABC ,分别以A ,C 为圆心,BC ,AB 长为半径画弧,两弧在直线BC 上方交于点D ,连结AD ,CD .则有( )

A.∠ADC 与∠BAD 相等

B.∠ADC 与∠BAD 互补

C.∠ADC 与∠ABC 互补

D.∠ADC 与∠ABC 互余

3.(2010广东佛山)尺规作图是指

A .用直尺规范作图

B .用刻度尺和尺规作图

C .用没有刻度的直尺和圆规作图

D .直尺和圆规是作图工具

三、课堂练习:

1.(2010四川凉山)已知:AOB ∠,求作AOB ∠的平分线;根据下图所示,写出作法:

2.(2010江苏宿迁)数学活动课上,老师在黑板上画直线平行于射线AN (如图),让同学们在直线l 和射

线AN 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画个.

四、中考链接:

3.(2010 重庆)尺规作图:请在原图上作一个AOC ∠,使其是已知AOB ∠的32

倍. (要求:写出已知、求作,保留作图痕迹,在所作图中标上必要的字母,不写作法和结论)

已知: 求作:

B

O

第2题图 B A C A B

C

P 图(1)

5.(2010江苏泰州)已知△ABC ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),

并根据要求填空:

(1)作∠ABC 的平分线BD 交AC 于点D ;

(2)作线段BD 的垂直平分线交AB 于点E ,交BC 于点F .

由⑴、⑵可得:线段EF 与线段BD 的关系为

8.(2010 广西玉林、防城港)如图7,Rt△ABC 中,∠C =90 ,AC =4,BC =3,

(1)根据要求用尺规作图:作斜边AB 边上的高CD ,垂足为D ;(不写作法,只保留作图痕迹。)

(2)求CD 的长

9.(2010 重庆江津)如图,有分别过A 、B 两个加油站的公路1l 、2l 相交于点O ,现准备在∠AOB 内建一个油库,要求油库的位置点P 满足到A 、B 两个加油站的距离相等,而且P 到两条公路1l 、2l 的距离也相等。请用尺规作图作出点P (不写作法,保留作图痕迹).

中考数学方法的五种作图的基本概念及技巧梳理汇总

中考数学方法的五种作图的基本概念及技巧梳理汇总 一、基本概念 1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图。 2.基本作图:最基本、最常用的尺规作图,通常称基本作图。 3.五种常用的基本作图: (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)平分已知角; (4)作线段的垂直平分线. (5)经过一点作已知直线的垂线 4.掌握以下几何作图语句: (1)过点×、点×作直线××;或作直线××,或作射线××; (2)连结两点×、×;或连结××; (3)在××上截取××=××; (4)以点×为圆心,××为半径作圆(或弧); (5)以点×为圆心,××为半径作弧,交××于点×; (6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××; (7)延长××到点×,或延长××到点×,使××=××.

5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了,如: (1)作线段××=××; (2)作∠×××=∠×××; (3)作××(射线)平分∠×××; (4)过点×作××⊥××,垂足为×; (5)作线段××的垂直平分线××. 二、五种基本作图方法演示:

尺规作图的基本步骤和作图语言 一、作线段等于已知线段: 已知:线段a 求作:线段AB,使AB=a 作法: 1.作射线AC 2.在射线AC上截取AB=a ,则线段AB就是所要求作的线段 二、作角等于已知角: 已知:∠AOB 求作:∠A′O′B′,使∠A′O′B′=∠AOB. 作法: (1)作射线O′A′ (2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D (3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′ (4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′ (5)过点D′作射线O′B′,∠A′O′B′就是所求作的角 三、作角的平分线: 已知:∠AOB,

初中数学总复习尺规作图大全

中考总复习---尺规作图专项训练 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。题目二:作已知线段的中点。 已知:如图,线段a . 已知:如图,线段MN. 求作:线段AB,使AB = a . 求作:点O,使MO=NO(即O是MN的中点). 题目三:作已知角的角平分线。题目四:作一个角等于已知角。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 题目五:已知三边作三角形。题目六:已知两边及夹角作三角形。 已知:如图,线段a,b,c. 已知:如图,线段m,n, ∠α. 求作:△ABC,使AB = c,AC = b,BC = a. 求作:△ABC,使∠A=∠α,AB=m,AC=n.题目七:已知两角及夹边作三角形。 已知:如图,∠α,∠β ,线段m .求作:△ABC,使∠A=∠α,∠B=∠ β ,AB=m. 课堂测试

C B A C B A A C B C B 1.如图,有一破残的轮片,现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计一种方案,确定这个圆形零件的半径. 2.如图,107国道OA 和320国道OB 在某市相交于点O,在∠AOB 的内部有工厂C 和D,现要修建一个货站P,使P 到OA 、OB 的距离相等且PC=PD,用尺规作出货站P 的位置(不写作法,保留作图痕迹,写出结论) 三条公路两两相交,交点分别为A ,B ,C ,现计划建一个加油站,要求到三条公路的距离相等,问满足要求的加油站地址有几种情况? 3、过点C 作一条线平行于AB ; 4、过不在同一直线上的三点A 、B 、C 作圆O ; 5、过直线外一点A 作圆O 的切线。 6、小芸在班级办黑板报时遇到一个难题,在版面设计过程中需将一个半圆面三等分,请你帮助他设计一个合理的等分方案(要求用尺规作图,保留作图痕迹) 7、某公园有一个边长为4米的正三角形花坛,三角形的顶点A 、B 、C 上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限. (1 )按圆形设计,利用图1画出你所设计的圆形花坛示意图; (2)按平行四边形设计,利用图2画出你所设计的平行四边形花坛示意图; (3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由 . C B A

中考数学一轮复习第19课时轴对称和轴对称图形尺规作图无答案

第19课时轴对称和轴对称图形、尺规作图 一、考点说明(见中考指南P96) 二、典型例题 例1 (1)如图,正方形ABCD的边长为4,E是BC上一点,CE=1,点P在 BD上移动,则PC+PE的最小值是. (2)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是 AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C, 则A′C长度的最小值是. 例2如图,△ABC三个顶点的坐标分别是A(1,1)、B(4,2)、 C(3,4).(1)请画出△ABC向右平移5个单位长度后得到的 △A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2; (3)在x轴上求作一点P,使△PAB的周小最小,请画出 △PAB,并直接写出P的坐标. 例3有一块直角三角形的绿地,量得两直角三角边长分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长. 例4如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心、任意长为半径画弧分别交AB、AC于点M和点N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确 的个数是( ) ①AD是∠BAC的平分线;②∠ADC=60°; ③点D在AB的垂直平分线上;④ A.1 B.2 C.3 D.4

三、反馈检测(10分钟) 1. 下列图案中,不是轴对称图形的是() 2.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA; ③EB平分∠AED;④ED=AB中,一定正确的是() A.①②③B.①②④C.①③④D.②③④ 3. 如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为. 4. 如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED、EC为折痕将两个角(∠A,∠B)向内折起,点A、B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是 . (2)(3)(4)(5) 5. 如图,方格纸中每个小正方形的边长均为1.四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE. (1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B 是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积. 智者加速: 如图,在平面直角坐标系xOy中,点A(-2,0),点B(0,2),点C是线段OA的中点.(1)点P是直线AB上的一个动点,当PC+PO的值最小时,①画出符合要求的点P(保留作图痕迹);②求出点P的坐标及PC+PO的最小值;(2)当经过点O、C的抛物线y=ax2+bx+c与直线AB只有一个公共点时,求a的值并指出这个公共点所在象限.

新人教版九年级数学下册《尺规作图》教案_5

课题:《尺规作图》 课题:《尺规作图》教学设计 【备考策略】 中考基于“课标”而课标要求了六种基本作图,它们是作图的基础,是解决更为复杂的尺规作图的基础。作为一节复习课不但要注重基础的扎实,而且还应注重它的运用。尺规作图在近几年的中考试题中的考查形式是尺规作图,考查难度属于容易题。所以,在复习本节内容时,本着从基础入手的原则,让学生掌握六种基本作图,并能解决简单的计算和实际问题 【教学目标】 1.了解什么是尺规作图。 2.能够用尺规进行简单的基本作图。 3.简单尺规作图的应用。 【过程与方法】 经历六种基本作图的复习与巩固,感受尺规作图的几何意义,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。 【情感、态度与价值】 通过复习尺规作图,进一步加强学生的作图能力,使学生养成良好的动手操作、实践探索、合作交流的学习习惯。 【教学重点、难点】 (1)教学重点:六种基本作图的作法。

(2)教学难点:画图,尺规作图的应用。 【教学方法和手段】 (1)教学方法:练习导引复习法(在练习中导引学生复习,让学生在自主学习中掌握本节学习目标) (2)教学手段:多媒体课件。 【使用教材的构想】 以近六年的中考题为主要训练题型,充分调动学生的学习主动性,在动手实践、合作交流中对知识进行梳理,以达到本节复习目标。【教学流程设计】 本节课教学设计了六个环节:第一环节基本概念回顾,第二环节尺规作图,第三环节知识应用(中考检测),第四环节课时小结,第五环节课堂小结,第六环节课时强化检测(备选) 【学生课前准备】直尺与圆规; 【教师课前准备】直尺与圆规 【教学设计】 一.知识点复习 知识点1尺规作图: 在几何里,把只用直尺(没有刻度)和圆规画图的方法称为尺规作图.尺规作图必须保留作图痕迹. 知识点2 基本作图:最基本、最常用的尺规作图,通常称为基本作图。 二.六种基本作图

解读高斯正十七边形的作法(下)

解读高斯正十七边形的作法 正十七边形的尺规作法: 步骤1:在平面直角坐标系xOy 中作单位圆O 步骤2:在x 轴负半轴上取点N ,使|ON|= 41,易知|NB|=417,以N 为圆心,NB 为半径作弧,交x 轴于F 、F’,易知|OF|= 2a ,|OF’|=2b 步骤3:此时|FB|=122+?? ? ??a =242+a ,以F 为圆心,|FB|为半径作弧,交x 轴正半轴于G ,此时|OG|=2 422++a a =c 步骤4:.类似地,|F’B|=122 +?? ? ??b =242+b ,以F’为圆心,|F’B|为半径作弧,交x 轴正半轴于点G’,此时|OG’|=2422++b b =e 步骤5:以|CG’|为直径作圆,交y 轴正半轴于点H ,易知OH 2=1·e

步骤6:以H 为圆心, 21|OG|为半径作弧,交x 轴正半轴于点K ,则有|OK|=222OH OG -??? ??=222e c -?? ? ??=242e c -步骤7:以K 为圆心,|KH|=2 1|OG|为半径作弧,交x 轴正半轴于点L ,则|OL|=2 42e c c -+步骤8:取OL 的中点M ,则|OM|=4 42e c c -+=cos 172π步骤9:过点M 作y 轴的并行线交单位圆O 于两点A 2和A 17,则Α为正十七边形的第一个顶点,A 2为第二个顶点,A 17为第十七个顶点,从而作出正十七边形。 正十七边形边长的表达式 在上面得到的一系列等式: a =2171+-, b =2171--, c =242++a a ,e =2 42++b b ,cos 172π=4 42e c c -+中,依次求出c =4 17234171-++-,

全等三角形与轴对称图形练习题

全等三角形与轴对称图形测试题(1) 姓名:_____________ 1. 下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等 的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,其中正确的个数有()A 、3 个B 、2 个C 、1 个D 、0 个 2. 下列说法中:①如果两个三角形可以依据“AAS'来判定全等,那么一定也可以依据“ASA来判 定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要 判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( ) A.①和② B.②和③ C.①和③ D.①②③ 3. 已知:在厶ABC中,AD为/ BAC的角平分线,DE丄AB, F为AC上一点,且/ DFA=100°,贝U ( ) A.DE>DF B. DE

初中数学五种作图基本概念及技巧

初中数学五种作图基本概念及技巧 一、基本概念 1.尺规作图:在几何里,用没有刻度的直尺和圆规来画图,叫做尺规作图. 2.基本作图:最基本、最常用的尺规作图,通常称基本作图. 3.五种常用的基本作图: (1)作一条线段等于已知线段; (2)作一个角等于已知角; (3)平分已知角; (4)作线段的垂直平分线. (5)经过一点作已知直线的垂线 4.掌握以下几何作图语句: (1)过点×、点×作直线××;或作直线××,或作射线××; (2)连结两点×、×;或连结××; (3)在××上截取××=××; (4)以点×为圆心,××为半径作圆(或弧); (5)以点×为圆心,××为半径作弧,交××于点×; (6)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点××; (7)延长××到点×,或延长××到点×,使××=××. 5.学过基本作图后,在以后的作图中,遇到属于基本作图的地方,只须用一句话概括叙述就可以了。 如: (1)作线段××=××; (2)作∠×××=∠×××; (3)作××(射线)平分∠×××; (4)过点×作××⊥××,垂足为×; (5)作线段××的垂直平分线××. 二、尺规作图基本步骤和作图语言 1、作线段等于已知线段已知:线段a 求作:线段AB,使AB=a 作法:

(1)作射线AC (2)在射线AC上截取AB=a ,则线段AB就是所要求作的线段 2、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB 于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角. 3、作角的平分线已知:∠AOB, 求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法: (1)在OA和OB上,分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,大于1/2DE的长为半径作弧,在∠AOB内,两弧交于点C. (3)作射线OC.OC就是所求作的射线. 4、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点。(2)经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)。 5、过直线外一点作直线的垂线. 5-1、已知点在直线外已知:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点 B. (4)经过点A、B作直线AB.直线AB就是所画的垂线 b.(如图) 5-2、已知点在直线上已知:直线a、及直线a上一点A.求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点(2)点C为圆心,以大于CB一半的长为半径画弧;(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N(4)经过M、N,作直线MN直线MN就是所求作的垂线b 三、常用的作图语言

专题:五种基本作图的详细作图过程

尺规作图的基本步骤和作图语言 一、作线段等于已知线段 已知:线段a 求作:线段AB ,使AB =a 作法:1、作射线AC 2、在射线AC 上截取AB =a ,则线段AB 就是所要求作的线段 二、作角等于已知角 已知:∠AOB 求作:∠A ′O ′B ′,使∠A ′O ′B ′=∠AOB. 作法: (1)作射线O ′A ′. (2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D. (3)以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于点C ′. (4)以点C ′为圆心,以CD 长为半径画弧,交前面的弧于点D ′. (5)过点D ′作射线O ′B ′.∠A ′O ′B 三、作角的平分线 已知:∠AOB, 求作:∠AOB 内部射线OC,使:∠AOC=∠BOC, 作法:(1)在OA 和OB 上,分别截取OD 、OE ,使OD=OE . (2)分别以D 、E 为圆心,大于的 DE 2 1 长为半径作弧,在∠AOB 内,两弧交于点C . (3)作射线OC .OC 就是所求作的射线. 四、作线段的垂直平分线(中垂线)或中点 已知:线段AB 求作:线段AB 的垂直平分线 作法: (1)分别以A 、B 为圆心,以大于AB 的一半为半 径在AB 两侧画弧,分别相交于E 、F 两点 (2)经过E 、F ,作直线EF (作直线EF 交AB 于 点O )直线EF 就是所求作的垂直平分线 (点O 就是所求作的中点) A O

五、过直线外一点作直线的垂线. (1)已知点在直线外 已知:直线a 、及直线a 外一点A.(画出直线a 、点A) 求作:直线a 的垂线直线b ,使得直线b 经过点A. 作法: (1)以点A 为圆心,以适当长为半径画弧,交直线a 于点 C 、D. (2)以点C 为圆心,以AD 长为半径在直线另一侧画弧.(3)以点D 为圆心,以AD 长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A 、B 作直线AB. 直线AB 就是所画的垂线b.(如图) (2)已知点在直线上 已知:直线a 、及直线a 上一点A. 求作:直线a 的垂线直线b ,使得直线b 经过点作法: (1) 以A 为圆心,任一线段的长为半径画弧, 交a 于C 、B 两点 (2) 点C 为圆心,以大于CB (3) 以点B 为圆心,以同样的长为半径画弧, 两弧的交点分别记为M (4) 经过A 、M ,作直线AM 直线AM 常用的作图语言: (1)过点×、×作线段或射线、直线; (2)连结两点××; (3)在线段××或射线××上截取××=××; (4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×; (5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×; (6)延长××到点×,使××=××。 二:作图题说明 在作图中,有属于基本作图的地方,写作法时,不必重复作图的详细过程,只用一句话概括叙述就可以了。 (1)作线段××=××; (2)作∠×××=∠×××; (3)作××(射线)平分∠×××; (4)过点×作××⊥××,垂足为点×; (5)作线段××的垂直平分线××

轴对称图形重难点题型培优

轴对称图形解答题较难题 一、翻折变换题型 1 .( 1 )数学课上,老师出了一道题,如图①, Rt △ ABC 中,∠ C=90°,AC=?AB,求证:∠ B=30°,请你完成证明过程. ( 2 )如图②,四边形 ABCD 是一张边长为 2 的正方形纸片, E 、 F 分别为AB 、 CD 的中点,沿过点 D 的折痕将纸片翻折,使点 A 落在 EF 上的点 A′处,折痕交 AE 于点 G ,请运用( 1 )中的结论求∠ ADG 的度数和 AG 的长. ( 3 )若矩形纸片 ABCD 按如图③所示的方式折叠, B 、 D 两点恰好重合于一点 O (如图④),当 AB=6 ,求 EF 的长. 二、特异三角形 1.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.

( 1 )如图 1 ,△ ABC 中,∠ B=2 ∠ C ,线段 AC 的垂直平分线交 AC 于点 D ,交 BC 于点 E .求证: AE 是△ ABC 的一条特异线; ( 2 )如图 2 ,若△ ABC 是特异三角形,∠ A=30°,∠ B 为钝角,求出所有可能的∠ B 的度数. 5 .等腰△ ABC 中, CA=CB ,点 D 为边 AB 上一点,沿 CD 折叠△ CAD 得到 △ CFD ,边 CF 交边 AB 于点 E , CD=CE ,连接 BF . ( 1 )求证: FD=FB . ( 2 )连接 AF 交 CD 的延长线于点 M ,连接 ME 交线段 DF 于点 N ,若 EF=4EC , AB=22 ,求 MN 的长. 三、点的运动变化题型 8 .如图,△ ABC 是边长为 6 的等边三角形, P 是 AC 边上一动点,由 A 向 C 运动(与 A 、 C 不重合), Q 是 CB 延长线上一点,与点 P 同时以相同的速度

尺规作图方法大全(正式)

【知识回顾】 1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本些复杂的尺规作图都是由基本作图组成的。 2、五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。 已知:如图,线段 a . 求作:线段AB,使AB = a . 作法: (1)作射线AP (2)在射线AP上截取AB=a . a ! A rB-P 尺规作图 则线段AB就是所求作的图 形。 (2)题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点0,使M0=N Q即0是MN的中点). 作法: (1)分别以M N为圆心,大于 的相同线段为半径画弧,两弧相交于P, Q (2)连接PQ交MN于0. 则点0就是所求作的MN的中点。 (3)题目三:作已知角的角平分线。 已知:如图,/ A0B 求作:射线0P,使/ A0P=Z BOP(即卩0P平分/ A0B 。作法: (1)以0为圆心,任意长度为半径画弧,分别交0A 0B于 M, N; (2)分别以M N为圆 心,大于f的线I段长为半径画弧,两弧交/ A0B内于P; (3)作射线0P A M P 则射线0P就是/ A0B的角平分线。 (4)题目四:作一个角等于已知角。已知:如图,/ A0B 求作:/ A 0 B',使A' 0 B' =/A0B 作法: (1)作射线0' A'; ,最常用的尺规作图,通常称基本作图。

(2) (3) (4) (5) 以O 为圆心,任意长度为半径画弧,交 OA 于M 交OB 于N; 以O 为圆心,以 OM 的长为半径画弧,交 O A '于M ; 以M 为圆心,以 MN 的长为半径画弧,交前弧于 连接O N' 并延长到B 'o N'; 则/ A O' B '就是所求作的角。 (5)题目五:经过直线上一点做已知直线的垂线。 已知:如图,P 是直线 AB 上一点。 求作:直线 CD,是CD 经过点P,且CD 丄ABo 作法: (1) AB 于M N ; (2) 以P 为圆心,任意长为半径画弧,交 1 分别以M N 为圆心,大于-MN 的长为半径画弧, 2 两弧交于点 Q; (3) 则直线CD 是求作的直线。 (6)题目六:经过直线外一点作已知直线的垂线 已知: 求作: 过D Q 作直线CD 作法: (1) (2) 如图,直线 AB 及外一点P 。 直线CD,使CD 经过点P, 且 CDL ABo 以P 为圆心,任意长为半径画弧,交 AB 于M N; 1 分别以M N 圆心,大于丄MN 长度的一半为半径画弧,两弧交于点 2 (3) 则直线CD 就是所求作的直线。 (5) 已知 求作 作法 (1) (2) 过P 、Q 作直线CD 题目七:已知三边作三角形。 如图,线段 a , b , c. △ ABC 使 AB = c , AC = b , BC = a. 作线段AB = c ; 以A 为圆心,以b 为半径作弧, 以B 为圆心,以a 为半径作弧与 前弧相交于C; 连接AC, BC (3) 则厶ABC 就是所求作的三角形。 题目八:已知两边及夹角作三角形。 已知 求作 作法 (1) (2) (3) 如图,线段 m n, / . △ ABC 使/ A=z , AB=m AC=n. 作/ A=Z ; 在AB 上截取AB=m ,AC=n ; 连接BC, A Q 则厶ABC 就是所求作的三角 形。

高斯与正十七边形

高斯与正十七边形 数学就象一棵美丽的星球,他那博大精深、简明透彻的数学美就是他的引力场。许许多多人类的精英被他的引力所吸引,投入他的怀抱为他献出了自己毕生的精力。被誉为“数学王子”的伟大数学家高斯就是其中之一。 高斯是个数学天才,幼年时巧妙地计算1+2+3+…+100为101×50=5050的故事几乎尽人皆知。其实,学生日期的高斯不仅数学成绩优异,而且各科成绩都名列前茅。小学毕业后,高斯考了文科学校。由于他古典文学成绩突出,入学后直接上了二年级。两年以后高斯又升入了高中哲学班。 15岁时,高斯在一位公爵的资助下上了大学-卡罗琳学院。在那里,他掌握了希腊文、拉丁文、法文、英文有丹麦文,又学会了代数、几何、微积分。语言学和数学是他最喜爱的两门课程。 18岁时,高斯进入了哥廷根大学深造。这时,高斯面临着一个非常痛苦的选择:是把语言学作为自己的终生事业?还是把数学作为自己的终生事业?两棵下不了决心进行最后的选择。 后来,一次数学研究上的突破改变了两个引力场的均衡。高斯终于下定决心,飞向了数学之星。 事情是这样的,尺规作图是几何学的重要内容之一,从古希腊开始,人们一直认为正多边形是最美的图形,因此,用尺规作图法能够作出哪些正多边形,历来就是一个极具魅力的问 题。到高斯的时代,人们已经解决了边数是n 23?、n 24?、n 25?、n 253??(=n 0,1, 2,3……)的正多边形的尺规作图问题。但是,还没有人能作出正7边形、正11边形、正17边形等等。很多人认为,当边数是大于5的素数时,那样的正多边形是不可以用尺规作图完成的。 高斯一直对正多边形尺规作图问题非常着迷。经过持久地,如醉如痴的思考与画图,于1796年3月30日,19岁的高斯出人意料地作出了正17边形。并且,他把正多边形作图问题与高次方程联系起来,彻底解决了哪些正多边形能作出,哪些正多边形不能作出。他证明 了一切边数形如122+t (=t 0,1,2,3,……)的正多边形都只可以作出,而边数为7、11、14,……的正多边形是作不出的。 正17边形作图问题不仅震撼了数学界,也震撼了高斯自己的心灵。他再也无法控制自己,在数学美的巨大引力的作用下,飞向了自己理想的星球-他选择了数学。 从此,高斯的数学成就象喷泉一样涌了出来。他在几乎所有的数学学科中留下了自己的光辉成就,成为伟大的数学家。 高斯直到晚年还十分欣赏使自己走上数学之路的正17边形,对数学美的赞叹与追求伴高斯渡过了他的一生。高斯逝世后,人们按照他的遗嘱,在他的雕像下面建立了一座正17边枎的底座,用他非常欣赏的《李尔王》中的诗句赞美道:“你,自然,我的女神,我要为你的规律而献身”。

初中最基本的尺规作图总结

尺规作图 一、理解“尺规作图”的含义 1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的. 2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差. 二、熟练掌握尺规作图题的规范语言 1.用直尺作图的几何语言: ①过点×、点×作直线××;或作直线××;或作射线××; ②连结两点××;或连结××; ③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×; 2.用圆规作图的几何语言: ①在××上截取××=××; ②以点×为圆心,××的长为半径作圆(或弧); ③以点×为圆心,××的长为半径作弧,交××于点×; ④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤 尺规作图题的步骤: 1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件; 2.求作:能根据题目写出要求作出的图形及此图形应满足的条件; 3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法. 在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要. 尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线;

尺规作图方法大全

a M 七年级数学期末复习资料(七) 尺规作图 【知识回顾】 1、尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。最基本,最常用的尺规作图,通常称基本作图。一些复杂的尺规作图都是由基本作图组成的。 2、五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; (1)题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB ,使AB = a . 作法: (1) 作射线AP ; (2) 在射线AP 上截取AB=a . 则线段AB 就是所求作的图形。 (2)题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O ,使MO=NO (即O 是MN 的中点). 作法: (1)分别以M 、N 为圆心,大于 的相同线段为半径画弧, 两弧相交于P ,Q ; (2)连接PQ 交MN 于O . 则点O 就是所求作的MN的中点。 (3)题目三:作已知角的角平分线。 已知:如图,∠AOB , 求作:射线OP, 使∠AOP =∠BOP (即OP 平分∠AOB )。 作法: (1)以O 为圆心,任意长度为半径画弧, 分别交OA ,OB 于M ,N ; (2)分别以M 、N为圆心,大于 的线段长 为半径画弧,两弧交∠AOB 内于P; (3) 作射线OP 。 则射线OP 就是∠AOB 的角平分线。

③ ② ① P B A P (4)题目四:作一个角等于已知角。 已知:如图,∠AOB 。 求作:∠A ’O ’B ’,使A ’O ’B ’=∠AOB 作法: (1)作射线O ’A ’; (2)以O 为圆心,任意长度为半径画弧,交OA 于M ,交OB 于N ; (3)以O ’为圆心,以OM 的长为半径画弧,交O ’A ’于M ’; (4)以M ’为圆心,以MN 的长为半径画弧,交前弧于N ’; (5)连接O ’N ’并延长到B ’。 则∠A ’O ’B ’就是所求作的角。 (5)题目五:经过直线上一点做已知直线的垂线。 已知:如图,P 是直线AB 上一点。 求作:直线CD ,是CD 经过点P ,且CD ⊥AB 。 作法: (1)以P 为圆心,任意长为半径画弧,交AB 于M 、N ; (2)分别以M 、N 为圆心,大于 MN 2 1 的长为半径画弧,两弧交于点Q ; (3)过D 、Q 作直线CD 。 则直线CD 是求作的直线。 (6)题目六:经过直线外一点作已知直线的垂线 已知:如图,直线AB 及外一点P 。 求作:直线CD ,使CD 经过点P , 且CD ⊥AB 。

初中尺规作图详细讲解含图)

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习 惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图 有如下三条: ⑴经过两已知点可以画一条直线; ⑵已知圆心和半径可以作一圆; ⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴三等分角问题:三等分一个任意角; ⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、

正十七边形做法及证明.

步骤一: 给一圆O,作两垂直的直径OA、OB, 作C点使OC=1/4OB, 作D点使∠OCD=1/4∠OCA 作AO延长线上E点使得∠DCE=45度 步骤二: 作AE中点M,并以M为圆心作一圆过A点, 此圆交OB于F点,再以D为圆心,作一圆 过F点,此圆交直线OA于G4和G6两点。 步骤三: 过G4作OA垂直线交圆O于P4, 过G6作OA垂直线交圆O于P6, 则以圆O为基准圆,A为正十七边形之第一顶点P4为第四顶点,P6为第六顶点。以1/2弧P4P6为半径,即可在此圆上截出正十七边形的所有顶点。 正十七边形的尺规作图存在之证明:

设正17边形中心角为a,则17a=360度,即16a=360度-a 故sin16a=-sina,而 sin16a=2sin8acos8a=22sin4acos4acos8a=2 4 sinacosacos2acos4acos8a 因sina不等于0,两边除之有: 16cosacos2acos4acos8a=-1 又由2cosacos2a=cosa+cos3a等,有 2(cosa+cos2a+…+cos8a=-1 注意到 cos15a=cos2a,cos12a=cos5a,令 x=cosa+cos2a+cos4a+cos8№a y=cos3a+cos5a+cos6a+cos7a 有: x+y=-1/2 又xy=(cosa+cos2a+cos4a+cos8a(cos3a+cos5a+cos6a+cos7a =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a 经计算知xy=-1 又有 x=(-1+根号17/4,y=(-1-根号17/4 其次再设:x1=cosa+cos4a,x2=cos2a+cos8a y1=cos3a+cos5a,y2=cos6a+cos7a 故有x1+x2=(-1+根号17/4 y1+y2=(-1-根号17/4 最后,由cosa+cos4a=x1,cosacos4a=(y1/2 可求cosa之表达式,它是数的加减乘除平方根的组合, 故正17边形可用尺规作出

初中尺规作图详细讲解(含图)

初中数学尺规作图讲解 初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条: ⑴ 经过两已知点可以画一条直线; ⑵ 已知圆心和半径可以作一圆; ⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点; 以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题. 历史上,最著名的尺规作图不能问题是: ⑴ 三等分角问题:三等分一个任意角; ⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍; ⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积. 这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1 r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题. 若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书. 还有另外两个著名问题: ⑴ 正多边形作法 ·只使用直尺和圆规,作正五边形. ·只使用直尺和圆规,作正六边形. ·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的. ·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的. ·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解 决了两千年来悬而未决的难题. ⑵ 四等分圆周 只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战. 尺规作图的相关延伸: 用生锈圆规(即半径固定的圆规)作图 1.只用直尺及生锈圆规作正五边形 2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA ==. 3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点. 4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的 表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释

尺规作图的定义

尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。五种基本作图: 1、作一条线段等于已知线段; 2、作一个角等于已知角; 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线; 题目一:作一条线段等于已知线段。 已知:如图,线段a . 求作:线段AB,使AB = a . 作法: ①作射线AP; ②在射线AP上截取AB=a . 则线段AB就是所求作的图形。 题目二:作已知线段的中点。 已知:如图,线段MN. 求作:点O,使MO=NO(即O是MN的中点). 作法: ①分别以M、N为圆心,大于1/2MN的相同 线段为半径画弧,两弧相交于P,Q; ②连接PQ交MN于O. 则点O就是所求作的MN的中点。 (试问:PQ与MN有何关系?) 题目三:作已知角的角平分线。 已知:如图,∠AOB, 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 作法: ①以O为圆心,任意长度为半径画弧, 分别交OA,OB于M,N; ②分别以M、N为圆心,大于1/2MN 的相同线段为半径画弧,两弧交∠AOB内于P; ③作射线OP。则射线OP就是∠AOB的角平分线。 题目四:已知三边作三角形。 已知:如图,线段a,b,c. 求作:△ABC,使AB = c,AC = b,BC = a. 作法: ①作线段AB = c; ②以A为圆心b为半径作弧,以B为圆心 a为半径作弧与前弧相交于C; ③连接AC,BC。 则△ABC就是所求作的三角形。

题目五:已知两边及夹角作三角形。 已知:如图,线段m,n, ∠α. 求作:△ABC,使∠A=∠α,AB=m,AC=n. 作法: ①作∠A=∠α; ②在AB上截取AB=m ,AC=n; ③连接BC。 则△ABC就是所求作的三角形。 题目六:已知两角及夹边作三角形。 已知:如图,∠α,∠β,线段m . 求作:△ABC,使∠A=∠α,∠B=∠β,AB=m. 作法: ①作线段AB=m; ②在AB的同旁作∠A=∠α,作∠B=∠β, ∠A与∠B的另一边相交于C。 则△ABC就是所求作的图形(三角形)。

相关文档
最新文档