大学物理_习题集(含答案)
大学物理试题及答案 13篇
大学物理试题及答案 1物理试题及答案1一、选择题1. 下列哪个物理量是标量?A. 加速度B. 动量C. 荷电量D. 质量答案:D2. 以下哪一项是描述物体向心加速度的?A. F = mV^2/RB. F = maC. F = GmM/R^2D. F = -kx答案:A3. 以下哪种基本力被用于原子核内?A. 弱相互作用力B. 强相互作用力C. 电磁力D. 万有引力答案:B4. 如果一个物体以匀速直线运动,哪些物理量会保持不变?A. 动量B. 加速度C. 动能D. 势能答案:A5. 加速度和质量都是矢量量,因为它们有什么共同之处?A. 它们都可以用标量表示B. 它们都受到相同的力C. 它们都有方向D. 它们都可以用向量表示答案:C二、填空题6. 一个物体从7m/s的速度以匀加速度减速到0m/s,它移动的距离为_____。
答案:(7^2)/2a7. 假设你跳下一个10米高的建筑物,你从地上跳起的速度至少要是_____。
答案:14m/s8. 当电荷增加_____倍,电场的力就增加了相同的倍数。
答案:两倍9. 加速度是速度的_____,速度是位移的_____。
答案:导数,导数10. 能量的单位是_____,它也等于1焦耳。
答案:耗三、解答题11. 题目:一个1000磅的汽车从初始速度60英里/小时匀加速度减速50英里/小时,它会相撞的距离有多远?解答:首先,将速度转换为英尺/秒,即60英里/小时=88英尺/秒,50英里/小时=73.3英尺/秒;通过减去初始速度和最终速度,可以算出减速度,即-5.1英尺/秒^2;将所得的值代入公式,S = (v_f^2 - v_i^2)/2a,算出S = 263英尺。
12. 题目:一颗飞船以7km/s的速度飞行,绕月球公转,它的圆周半径是6000公里。
求该飞船的向心加速度。
解答:首先,将速度转化为米/秒,即7 x 1000 = 7000米/秒;其次,将圆周半径转化为米,即6000 x 1000 = 6 x 10^6米;最后,应用公式a = v^2/r,将所得的值代入,得到a = 6.12 m/s^2。
大学普通物理复习题(10套)带答案
普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。
3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。
(选填:变大、变小、不变。
)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。
33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。
二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。
(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。
大学物理经典试题及答案
大学物理经典试题及答案一、选择题(每题2分,共10分)1. 光的波长为λ,频率为f,光速为c,则下列关系正确的是()。
A. c=λfB. c=1/(λf)C. c=λ/fD. c=f/λ答案:A2. 一个物体在水平面上以初速度v0开始做匀加速直线运动,加速度为a,经过时间t后,其速度变为()。
A. v0 + atB. v0 - atC. v0 + 2atD. v0 - 2at答案:A3. 根据牛顿第二定律,下列说法正确的是()。
A. 力是维持物体运动的原因B. 力是改变物体运动状态的原因C. 力的大小与物体的质量成正比D. 力的方向与物体运动的方向无关答案:B4. 一个质量为m的物体在水平面上受到一个大小为F的恒定力作用,若物体与水平面之间的动摩擦因数为μ,则物体的加速度为()。
A. F/mB. (F-μmg)/mC. (F+μmg)/mD. μg答案:B5. 根据能量守恒定律,下列说法正确的是()。
A. 能量可以被创造或消灭B. 能量在转化和转移过程中总量保持不变C. 能量的转化和转移具有方向性D. 能量的转化和转移不具有方向性答案:B二、填空题(每题2分,共10分)1. 根据麦克斯韦方程组,变化的磁场可以产生______电场。
答案:感应2. 一个物体在自由落体运动中,其加速度大小为______。
答案:g3. 根据热力学第一定律,系统内能的增加等于系统吸收的热量与外界对系统做的功之和,即△U = Q + W,其中W为______。
答案:正功4. 理想气体状态方程为PV = nRT,其中R为______常数。
答案:气体5. 根据开普勒第三定律,行星绕太阳公转的周期的平方与其轨道半长轴的立方成正比,比例常数为______。
答案:k三、简答题(每题10分,共20分)1. 简述牛顿第三定律的内容及其在日常生活中的应用。
答案:牛顿第三定律指出,对于任何两个相互作用的物体,它们之间的力是相互的,大小相等,方向相反。
《大学物理》各章练习题及答案解析
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理试题题库及答案
大学物理试题题库及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 299792458 m/sB. 300000000 m/sC. 299792458 km/sD. 300000000 km/s2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
那么,当作用力增加一倍时,物体的加速度()。
A. 增加一倍B. 减少一半C. 保持不变D. 无法确定3. 一个物体从静止开始自由下落,其下落过程中,重力做功的功率与时间的关系是()。
A. 线性增加B. 指数增加C. 先增加后减少D. 保持不变4. 根据热力学第一定律,一个封闭系统的内能变化等于系统与外界交换的热量与系统对外做的功之和。
如果一个系统既没有热量交换也没有做功,那么它的内能()。
A. 增加B. 减少C. 保持不变5. 电磁波谱中,波长最短的是()。
A. 无线电波B. 微波C. 红外线D. 伽马射线6. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 重力场D. 温度场7. 一个理想的弹簧振子,其振动周期与振幅无关,与()有关。
A. 弹簧的劲度系数B. 振子的质量C. 弹簧的劲度系数和振子的质量D. 振子的质量与重力加速度8. 根据量子力学,一个粒子的波函数可以描述粒子的()。
A. 位置B. 动量C. 能量D. 位置和动量的概率分布9. 根据狭义相对论,当一个物体以接近光速的速度运动时,其质量会()。
A. 增加B. 减少C. 保持不变10. 在理想气体状态方程PV=nRT中,R代表的是()。
A. 气体常数B. 温度C. 压力D. 体积二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量乘积成正比,与它们之间距离的平方成反比,其比例系数是______。
2. 欧姆定律表明,导体中的电流与两端电压成正比,与导体的电阻成反比,其数学表达式为______。
3. 一个物体在水平面上以恒定加速度运动,其位移与时间的关系可以表示为s = __________。
《大学物理习题集》(上)习题解答
)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
大学物理考试题库及答案
大学物理考试题库及答案一、选择题1. 下列关于经典力学的叙述,错误的是()A. 牛顿运动定律适用于所有物体B. 经典力学适用于低速、弱引力场的情况C. 经典力学无法解释原子内部的运动规律D. 经典力学可以描述物体的运动轨迹答案:A2. 下列哪个物理量是标量?()A. 力B. 速度C. 位移D. 动量答案:C3. 一个质点做直线运动,下列哪种情况下,其动能不变?()A. 加速度不变B. 力的方向不变C. 速度大小不变D. 速度方向不变答案:C4. 下列关于机械能守恒的叙述,正确的是()A. 机械能守恒意味着系统的总能量保持不变B. 机械能守恒只适用于重力做功的情况C. 机械能守恒只适用于弹性力做功的情况D. 机械能守恒适用于所有物理系统答案:A5. 一个物体在水平地面上做匀速直线运动,下列哪个因素会影响其运动状态?()A. 地面的粗糙程度B. 物体的质量C. 物体的形状D. 地面的倾斜程度答案:D二、填空题1. 牛顿第二定律的表达式为______。
答案:F=ma2. 动能的表达式为______。
答案:K=1/2mv²3. 势能的表达式为______。
答案:U=mgh4. 动量和冲量的关系为______。
答案:Ft=mv5. 简谐振动的周期与______有关。
答案:质量、弹性系数三、计算题1. 一辆质量为1000kg的汽车,以60km/h的速度行驶。
求汽车的动能。
答案:K=1/2mv²=1/2×1000×(60/3.6)²=250000J2. 一根长度为2m的轻质杆,两端分别悬挂重10kg和20kg的物体,求杆的平衡位置。
答案:设平衡位置距离10kg物体的距离为x,则有:10g×x=20g×(2-x)解得:x=1.33m3. 一质点做直线运动,其初速度为10m/s,加速度为2m/s²。
求3秒末的速度和位移。
答案:v=10+2×3=16m/ss=10×3+1/2×2×3²=39m4. 一质量为2kg的物体,在水平地面上受到一个恒力作用,从静止开始做匀加速直线运动。
大学物理上册课后习题集答案解析
习题解答 习题一1-1 |r D |与r D 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r D 是位移的模,D r 是位矢的模的增量,即r D 12r r -=,12r r r-=D ;(2)t d d r 是速度的模,即t d d r ==v t s d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rr r += 式中trd d 就是速度径向上的分量,∴trt d d d d 与r 不同如题1-1图所示. 题1-1图(3)t d d v 表示加速度的模,即t v a d d =,tv d d 是加速度a 在切向上的分量. ∵有t t(v =v 表轨道节线方向单位矢),所以t vt v t v d d d d d d tt += 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd t 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r而求得结果;又有人先计算速度和加速度的分v =22d d d d ÷øöçèæ+÷øöçèæt y t x 及a =222222d d d d ÷÷øöççèæ+÷÷øöççèæt y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=, jt y i t xt r a j t y i t x t r v222222d d d d d d dd d d d d +==+==\ 故它们的模即为22222222222222d d d d d d d d ÷øöçèæ+÷øöçèæ=+=÷øöçèæ+÷øöçèæ=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学物理试题讲解及答案
大学物理试题讲解及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^9 km/sD. 3×10^11 m/s答案:B2. 根据牛顿第二定律,力和加速度的方向()。
A. 总是相同B. 总是相反C. 有时相同,有时相反D. 无关答案:A3. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是()。
A. 5 m/s^2B. 10 m/s^2C. 20 m/s^2D. 无法确定答案:A4. 一个点电荷在电场中从静止开始运动,其电势能将()。
A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B5. 根据热力学第一定律,一个系统在绝热过程中()。
A. 内能增加B. 内能减少C. 内能不变D. 无法确定答案:D6. 光的折射定律表明,入射角和折射角的关系是()。
A. 入射角大,折射角小B. 入射角小,折射角大C. 入射角和折射角成正比D. 入射角和折射角成反比答案:C7. 一个物体在自由下落过程中,其动能和重力势能的关系是()。
A. 动能增加,重力势能减少B. 动能减少,重力势能增加C. 动能和重力势能之和保持不变D. 动能和重力势能之和增加答案:C8. 根据麦克斯韦方程组,电磁波的传播速度是()。
A. 光速的一半B. 光速C. 超过光速D. 低于光速答案:B9. 在理想气体定律中,气体的压强与体积成()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:B10. 根据欧姆定律,电阻两端的电压与通过电阻的电流之间的关系是()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:A二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反、作用在_________上。
答案:不同物体2. 在国际单位制中,力的单位是_________。
大学物理考试题库及答案
大学物理考试题库及答案一、选择题(每题2分,共20分)1. 在国际单位制中,下列哪个单位不是基本单位?A. 米(m)B. 千克(kg)C. 秒(s)D. 瓦特(W)答案:D2. 一个物体在平直道路上做匀速运动,下列哪个因素不会影响物体的运动状态?A. 道路摩擦力B. 道路坡度C. 物体质量D. 物体速度答案:C3. 下列哪个现象表明地球是圆的?A. 星星在夜空中闪烁B. 船只在海平面上逐渐消失C. 地平线D. 月亮的形状变化答案:B4. 关于牛顿第三定律,下列说法正确的是:A. 作用力与反作用力大小相等,方向相反B. 作用力与反作用力大小不等,方向相反C. 作用力与反作用力大小相等,方向相同D. 作用力与反作用力大小不等,方向相同答案:A5. 下列哪个物理量是标量?A. 速度B. 力C. 加速度D. 路程答案:D6. 一个物体从静止开始沿着光滑斜面下滑,下列哪个因素会影响物体的加速度?A. 物体质量B. 斜面角度C. 重力加速度D. 物体与斜面之间的摩擦力答案:B7. 下列哪个现象与电磁感应无关?A. 发电机B. 变压器C. 电动机D. 麦克斯韦方程组答案:D8. 光在真空中的传播速度约为:A. 1×10^5 km/sB. 3×10^5 km/sC. 1×10^8 m/sD. 3×10^8 m/s答案:D9. 下列哪个物理现象可以用光的波动理论解释?A. 光的直线传播B. 光的反射C. 光的折射D. 光的衍射答案:D10. 下列哪个物理学家提出了万有引力定律?A. 伽利略B. 牛顿C. 开普勒D. 卡文迪许答案:B二、填空题(每题2分,共20分)1. 国际单位制中的基本单位有:米(m)、千克(kg)、秒(s)、安培(A)、开尔文(K)、摩尔(mol)和坎德拉(cd)。
2. 牛顿第二定律的数学表达式为:F = ma。
3. 在真空中,光的速度为:3×10^8 m/s。
大学物理考试题及答案
大学物理考试题及答案一、选择题1. 下列关于力的描述,正确的是()。
A. 力是物体间的相互作用,具有大小和方向。
B. 力的作用是相互的,作用力和反作用力大小相等,方向相反。
C. 力的作用效果与力的作用点有关。
D. 以上选项均正确。
答案:D2. 物体做匀速直线运动时,下列说法正确的是()。
A. 物体的速度不变。
B. 物体的加速度为零。
C. 物体所受合力为零。
D. 以上选项均正确。
答案:D3. 关于功的定义,下列说法正确的是()。
A. 功是力和力的方向的乘积。
B. 功是力和力的方向的点积。
C. 功等于力的大小乘以物体在力的方向上的位移。
D. 功是力对物体所做的功。
答案:C4. 根据牛顿第二定律,下列说法正确的是()。
A. 物体的加速度与作用力成正比。
B. 物体的加速度与物体的质量成反比。
C. 加速度的方向与作用力的方向相同。
D. 以上选项均正确。
答案:D5. 波长为λ的光波在介质中的波速为v,那么在真空中该光波的波速为()。
A. vB. λ/vC. 3×10^8 m/sD. 2×10^8 m/s答案:C二、填空题1. 物体在水平面上受到的摩擦力与物体对水平面的压力成正比,比例系数为_________。
答案:摩擦系数2. 一个质量为2kg的物体,受到一个10N的水平力作用,加速度为_________。
答案:5 m/s^23. 一个电路中,电阻R1为10Ω,电阻R2为20Ω,当它们串联时,总电阻为_________。
答案:30Ω4. 一束光从空气射入水中,如果水的折射率为1.33,那么光线的传播方向将_________。
答案:改变5. 一个半径为R的圆形线圈,通以电流I,放在均匀磁场中,线圈所受的磁力矩大小为_________。
答案:μ = I * (πR^2)三、计算题1. 一个质量为0.5kg的物体,受到一个斜向上的力F,大小为20N,与水平方向成30度角,求物体的加速度。
解:首先分解力F为水平分量和垂直分量。
大学物理习题及答案
P R o
第 3 页 共 59 页
动的角速度 与时间 t 的函数关系为 =kt2(k 为常量)。已知 t=2s 时,质点 P 的速度值为 32m/s。试求 t=1s 时,质点 P 的速度与加速度的大小。
23.在半径为 R 的圆周上运动的质点,其速率与时间关系为 v=ct2(c 为常数),则从 t=0 到 t 时刻质点走过的路程 S(t)=
4.5 4
t(s)
7.有一质点沿 x 轴作直线运动,t 时刻的坐标为 x 4.5t2 2t3 (SI)。试求:
(1)第 2 秒内的平均速度;(2)第 2 秒末的瞬时速度;(3)第 2 秒内的路程。
8.一质点沿直线运动,其坐标 x 与时间 t 有如下关系: x Aet cost (SI)(A、 皆为常数)。(1)任意时刻 t 质点的加速度 a=
(2)导出速度 v 与加速度 a 的矢量表示式;
(3)试证加速度指向圆心。
20 . 一 质 点 从 静 止 出 发 , 沿 半 径 R=3m 的 圆 周 运 动 , 切 向 加 速 度
at =3m/ s 2 ,当总加速度与半径成 450 角时,所经过的时间 t=
时间内经过的路程 S 为
。
,在上述
y
r (x,y)
12.一物体悬挂在弹簧上 作竖直运动,其加速度 a= -ky ,式中 k 为常量,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标 y0 处的速度为 v0 , 试求速度 v 与坐标 y 的函数关系式。 13.质点作曲线运动, r 表示位置矢量,S 表示路程,at 表示 切向加速度,下列表达式中, (1) dv / dt a (2) dr / dt v (3) dS / dt v (4)| dv / dt | at
大学物理习题集加答案
大学物理习题集加答案大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9 练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11 练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17 练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18 练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30 练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量=×10-8W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0=×1012F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h=×1034J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A)试验电荷是电量极小的正电荷;(B)试验电荷是体积极小的正电荷;(C)试验电荷是体积和电量都极小的正电荷;(D)试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E=q r/(40r3),以下说法正确的是(A)r→0时,E→∞;(B)r→0时,q不能作为点电荷,公式不适用;(C)r→0时,q仍是点电荷,但公式无意义;(D)r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A)其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B)一个正点电荷和一个负点电荷组成的系统;(C)两个等量异号电荷组成的系统;(D)一个正电荷和一个负电荷组成的系统.(E)两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f,其电场强度的大小为f/q0,以下说法正确的是(A)E正比于f;(B)E反比于q0;(C)E正比于f且反比于q0;(D)电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A)f12的大小不变,但方向改变,q1所受的总电场力不变;(B)f12的大小改变了,但方向没变,q1受的总电场力不变;(C)f12的大小和方向都不会改变,但q1受的总电场力发生了变化;(D)f12的大小、方向均发生改变,q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP,则和Q的数量关系式为,且与Q为号电荷(填同号或异号).2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环,缺口宽度为d(d<<r)环上均匀带正电,总电量为q,如图所示,则圆心o处的场强大小< p=""> E=,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R,设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形,电荷线密度为=0sin,式中0为一常数,为半径R与X轴所成的夹角,如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1.以下说法错误的是(A)电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A)球面上的电场强度矢量E处处不等;(B)球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C)球面上的电场强度矢量E的方向一定指向球心;(D)球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A)电场线上各点的电场强度大小相等;(B)电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A)开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D)在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2.(B)R2E/2.(C)R2E.(D)R2E.5.真空中有AB两板,相距为d,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2).(B)q2/(0S).(C)2q2/(0S).(D)q2/(20S).二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则=,=.2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度,可将园盘分成无数个同心的细园环,园环宽度为d r,半径为r,此面元的面积d S=,带电量为d q=,此细园环在中心轴线上距圆心x的一点产生的电场强度E=.3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q的点电荷,O、P间距离为h, 试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A)S面上的E必定为零;(B)S面内的电荷必定为零;(C)空间电荷的代数和为零;(D)S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A)S面上所有点的E必定不为零;(B)S面上有些点的E可能为零;(C)空间电荷的代数和一定不为零;(D)空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A)如高斯面上E处处为零,则该面内必无电荷;(B)如高斯面内无电荷,则高斯面上E处处为零;(C)如高斯面上E处处不为零,则高斯面内必有电荷;(D)如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E)高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小,r表示离对称轴的距离)(A)“无限长”均匀带电直线;(B)半径为R的“无限长”均匀带电圆柱体;(C)半径为R的“无限长”均匀带电圆柱面;(D)半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q的点电荷位于立方体的A角上,则通过侧面abcd的电场强度通量等于:(A)q/240.(B)q/120.(C)q/60.(D)q/480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为(0)及2,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量=;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量=,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′,两球心间距离=d,如图所示,求:(1)在球形空腔内,球心O处的电场强度E0;(2)在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且=d.练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A)都是常量.(B)都不是常量.(C)E是常量,U不是常量.(D)U是常量,E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S,并把它移至无穷远处(如图, 若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].(B)i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].(C)i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].(D)-i QS/[(4R2)20];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A)沿着电力线移动负电荷,负电荷的电势能是增加的;(B)场强弱的地方电位一定低,电位高的地方场强一定强;(C)等势面上各点的场强大小一定相等;(D)初速度为零的点电荷,仅在电场力作用下,总是从高电位处向低电位运动;(E)场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A).(B).(C).(D).5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A)从A到B,电场力作功最大.(B)从A到各点,电场力作功相等.(C)从A到D,电场力作功最大.(D)从A到C,电场力作功最大.二.填空题1.电量分别为q1,q2,q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R,则b点处的电势U=.2.如图,在场强为E的均匀电场中,A、B两点距离为d,AB连线方向与E方向一致,从A点经任意路径到B点的场强线积分=.3.如图所示,BCD是以O点为圆心,以R为半径的半圆弧,在A点有一电量为+q的点电荷,O点有一电量为–q的点电荷,线段=R,现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2l的细杆上,求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点).2.一均匀带电的球层,其电荷体密度为,球层内表面半径为R1,外表面半径为R2,设无穷远处为电势零点,求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A)电场强度相等的地方电势一定相等;(B)电势梯度绝对值大的地方场强的绝对值也一定大;(C)带正电的导体上电势一定为正;(D)电势为零的导体一定不带电2.以下说法中正确的是(A)场强大的地方电位一定高;(B)带负电的物体电位一定为负;(C)场强相等处电势梯度不一定相等;(D)场强为零处电位不一定为零.3.如图,真空中有一点电荷Q及空心金属球壳A,A处于静电平衡,球内有一点M,球壳中有一点N,以下说法正确的是(A)E M≠0,E N=0,Q在M处产生电场,而在N处不产生电场;(B)E M=0,E N≠0,Q在M处不产生电场,而在N处产生电场;(C)E M=E N=0,Q在M、N处都不产生电场;(D)E M≠0,E N≠0,Q在M、N处都产生电场;(E)E M=E N=0,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1,球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3,q1受的总电场力为F,则(A)F1=F2=F3=F=0.(B)F1=q1q2/(40d2),F2=0,F3=0,F=F1.(C)F1=q1q2/(40d2),F2=0,F3=q1q2/(40d2)(即与F1反向),F=0.(D)F1=q1q2/(40d2),F2与F3的合力与F1等值反向,F=0.(E)F1=q1q2/(40d2),F2=q1q2/(40d2)(即与F1反向),F3=0,F=0.5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q,则B球(A)带正电.(B)带负电.(C)不带电.(D)上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中,P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A=.2.若静电场的某个立体区域电势等于恒量,则该区域的电场强度分布是;若电势随空间坐标作线性变化,则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q的质点以直线为轴线作匀速圆周运动,该质点的速率v=.三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度2之比值1/2.2.已知某静电场的电势函数U=-+ln x(SI),求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D,电势分别为U A、U C、U D,其附近的电场强度分别为E A、E C、E D,则:(A)A>D,C=0,E A>E D,E C=0,U A=U C=U D.(B)A>D,C=0,E A>E D,E C=0,U A>U C=U D.(C)A=C,D≠0,E A=E C=0,E D≠0,U A=U C=0,U D≠0.(D)D>0,C<0,A<0,E D沿法线向外,E C沿法线指向C,E A平行AB 指向外,U B>U C>U A.2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B)Q.(C)+Q/2.(D)–Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A)带正电.(B)带负电.(C)不带电.(D)左边带正电,右边带负电.4.半径不等的两金属球A、B,R A=2R B,A球带正电Q,B球带负电2Q,今用导线将两球联接起来,则(A)两球各自带电量不变.(B)两球的带电量相等.(C)两球的电位相等.(D)A球电位比B球高.5.如图,真空中有一点电荷q,旁边有一半径为R的球形带电导体,q距球心为d(d>R)球体旁附近有一点P,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A)(20)+q/[40(d-R)2];(B)(20)-q/[40(d-R)2];(C)0+q/[40(d-R)2];(D)0-q/[40(d-R)2];(E)0;(F)以上答案全不对.二.填空题1.如图,一平行板电容器,极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图,把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间,则导体薄板C的电势U C=.2.地球表面附近的电场强度约为100N/C,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度=,地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1=和r2=的两个球形导体,各带电量q=×108C,两球心相距很远,若用细导线将两球连接起来,并设无限远处为电势零点,求:(1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量,有一关系式为P=0(r1)E,电位移矢量公式为D=0E+P,则(A)二公式适用于任何介质.(B)二公式只适用于各向同性电介质.(C)二公式只适用于各向同性且均匀的电介质.(D)前者适用于各向同性电介质,后者适用于任何电介质.2.电极化强度P(A)只与外电场有关.(B)只与极化电荷产生的电场有关.(C)与外场和极化电荷产生的电场都有关.(D)只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R,带电量为Q的导体球,测得距中心O为r处的A点场强为E A=Q r/(40r3),现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A)A点的电场强度E A=E A/r;(B);(C)=Q/0;(D)导体球面上的电荷面密度=Q/(4R2).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C,极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A)C↓,U↑,W↑,E↑.(B)C↑,U↓,W↓,E不变.(C)C↑,U↑,W↑,E↑.(D)C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A)2倍.(B)1/2倍.(C)1/4倍.(D)4倍.二.填空题1.一平行板电容器,充电后断开电源,然后使两极板间充满相对介电常数为r的各向同性均匀电介质,此时两极板间的电场强度为原来的倍,电场能量是原来的倍.2.在相对介电常数r=4的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E=.3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d,则电介质中的电场能量密度w=.三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R1=2cm,R2=5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1)球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功?(2)使球上电荷从零开始加到Q的过程中,外力共作多少功?练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A)I1=I2J1=J2I1=I2J1=J2.(B)I1=I2J1>J2I1<I2J1=J2.(C)I1<I2J1=J2I1=I2J1>J2.(D)I1<I2J1>J2I1<I2J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A)I1<I2J1<J2I1=I2J1=J2.(B)I1=I2J1=J2I1=I2J1=J2.(C)I1=I2J1=J2I1<I2J1<J2.(D)I1<I2J1<J2I1<I2J1<J2.3.室温下,铜导线内自由电子数密度为n=×1028个/米3,电流密度的大小J=2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B)×10-2米/秒.(C)×102米/秒.(D)×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r的点的电场强度为:(A)2rI/(l2).(B)I/(2rl).(C)Il/(2r2).(D)I(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3,方向如图,则由A到B的电势增量U B-U A为:(A)2-1-I1R1+I2R2-I3R.(B)2+1-I1(R1+r1)+I2(R2+r2)-I3R.(C)2-1-I1(R1-r1)+I2(R2-r2).(D)2-1-I1(R1+r1)+I2(R2+r2).二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2=.(铜电阻率×106·cm,铝电阻率×106·cm,)2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成,设电子的电量为e,其平均漂移率为v,导体中单位体积内的自由电子数为n,则电流密度的大小J=,J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a,r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2=7V,内阻分别为r1=3和r2=1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A)=arccos(eBD/p).(B)=arcsin(eBD/p).(C)=arcsin[BD/(ep)].(D)=arccos[BD/(ep)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B)粒子的电荷可以同号也可以异号.(C)两粒子的动量大小必然不同.(D)两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B)其动能和动量都改变.(C)其动能不变,动量改变.(D)其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B)a、b都不会回到出发点.(C)a先回到出发点.(D)b先回到出发点.5.如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A)T1=T2,q1和q2都向顺时针方向旋转;(B)T1=T2,q1和q2都向逆时针方向旋转(C)T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D)T1=T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1.一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向,电子速度大小为.2.磁场中某点处的磁感应强度B=-(T),一电子以速度v=×106i+×106j(m/s)通过该点,则作用于该电子上的磁场力F=.3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B=.三.计算题1.如图所示,一平面塑料圆盘,半径为R,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
大学物理习题集(上,含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理试题题库及答案
大学物理试题题库及答案一、单项选择题(每题2分,共20分)1. 以下哪个选项是正确的?A. 光速在所有参考系中都是相同的。
B. 光速在不同参考系中是不同的。
C. 光速在真空中是最大的。
D. 光速在介质中是最大的。
答案:A2. 根据牛顿第二定律,以下哪个表达式是正确的?A. F=maB. F=mavC. F=matD. F=ma^2答案:A3. 以下哪个选项是正确的?A. 功是能量的转移。
B. 功是能量的转化。
C. 功是能量的守恒。
D. 功是能量的流动。
答案:B4. 以下哪个选项是正确的?A. 电场强度的方向是正电荷所受电场力的方向。
B. 电场强度的方向是负电荷所受电场力的方向。
C. 电场强度的方向与电荷所受电场力的方向无关。
D. 电场强度的方向与电荷所受电场力的方向相反。
答案:A5. 以下哪个选项是正确的?A. 磁感应强度的方向是磁场力的方向。
B. 磁感应强度的方向是磁场力的反方向。
C. 磁感应强度的方向与磁场力的方向无关。
D. 磁感应强度的方向与磁场力的方向相同。
答案:C6. 以下哪个选项是正确的?A. 温度是物体内部分子运动的平均动能的量度。
B. 温度是物体内部分子运动的平均动量的量度。
C. 温度是物体内部分子运动的总动能的量度。
D. 温度是物体内部分子运动的总动量的量度。
答案:A7. 以下哪个选项是正确的?A. 绝对零度是温度的下限。
B. 绝对零度是温度的上限。
C. 绝对零度是温度的中点。
D. 绝对零度是温度的起点。
答案:A8. 以下哪个选项是正确的?A. 热力学第一定律表明能量守恒。
B. 热力学第一定律表明能量不守恒。
C. 热力学第一定律表明能量可以创造。
D. 热力学第一定律表明能量可以消灭。
答案:A9. 以下哪个选项是正确的?A. 热力学第二定律表明熵总是增加的。
B. 热力学第二定律表明熵总是减少的。
C. 热力学第二定律表明熵可以增加也可以减少。
D. 热力学第二定律表明熵是恒定的。
答案:A10. 以下哪个选项是正确的?A. 麦克斯韦方程组描述了电场和磁场的相互作用。
大学物理练习题及答案
∙ -q OABCD关于点电荷以下说法正确的是 D(A) 点电荷是电量极小的电荷; (B) 点电荷是体积极小的电荷;(C) 点电荷是体积和电量都极小的电荷;(D) 带电体的线度与其它有关长度相比可忽略不计。
关于点电荷电场强度的计算公式E = q r / (4 π ε 0 r 3),以下说法正确的是 B(A) r →0时, E →∞;(B) r →0时, q 不能作为点电荷,公式不适用; (C) r →0时, q 仍是点电荷,但公式无意义;(D) r →0时, q 已成为球形电荷, 应用球对称电荷分布来计算电场. 如果对某一闭合曲面的电通量为S E d ⋅⎰S=0,以下说法正确的是 A(A) S 面内电荷的代数和为零; (B) S 面内的电荷必定为零; (C) 空间电荷的代数和为零; (D) S 面上的E 必定为零。
已知一高斯面所包围的空间内电荷代数和 ∑q =0 ,则可肯定: C(A). 高斯面上各点场强均为零. (B). 穿过高斯面上每一面元的电场强度通量均为零.(C). 穿过整个高斯面的电场强度通量为零. (D). 以上说法都不对.如图,在点电荷+q 的电场中,若取图中P 点处为 电势零点,则M 点的电势为 D(A) q /(4πε0a ) (B) −q /(4πε0a ) (C) q /(8πε0a ) (D) −q /(8πε0a )对于某一回路l ,积分l B d ⋅⎰l 等于零,则可以断定 D(A) 回路l 内一定有电流; (B) 回路l 内一定无电流;(C) 回路l 内可能有电流; (D) 回路l 内可能有电流,但代数和为零。
如图,一电量为-q 的点电荷位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 A(A) 从A 到各点,电场力做功相等; (B) 从A 到B ,电场力做功最大; (C) 从A 到D ,电场力做功最大;+q(D) 从A 到C ,电场力做功最大。
大学物理试题题库及答案
大学物理试题题库及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是:A. 300,000 km/sB. 299,792 km/sC. 299,792 km/hD. 3×10^8 m/s答案:D2. 根据牛顿第三定律,作用力和反作用力的关系是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力大小不等,方向相反C. 作用力和反作用力大小相等,方向相同D. 作用力和反作用力大小不等,方向相同答案:A3. 以下哪个是电磁波谱中波长最长的部分?A. 无线电波B. 微波C. 红外线D. 紫外线答案:A4. 热力学第一定律表明能量守恒,其数学表达式为:A. ΔQ = ΔU + WB. ΔQ = ΔU - WC. ΔQ = ΔH + WD. ΔQ = ΔH - W答案:A5. 以下哪个是描述电磁场的基本方程?A. 麦克斯韦方程组B. 牛顿运动定律C. 热力学第二定律D. 欧姆定律答案:A6. 根据量子力学,电子在原子中的运动状态由什么决定?A. 电子的质量B. 电子的电荷C. 电子的能级D. 电子的自旋答案:C7. 以下哪个是描述光的干涉现象的实验?A. 杨氏双缝实验B. 费马原理C. 牛顿环实验D. 光电效应实验答案:A8. 以下哪个是描述电磁波的传播速度的公式?A. c = λfB. c = 1/√(μ₀ε₀)C. c = E/BD. c = 3×10^8 m/s答案:B9. 以下哪个是描述电磁感应现象的定律?A. 法拉第电磁感应定律B. 欧姆定律C. 库仑定律D. 洛伦兹力定律答案:A10. 根据相对论,物体的质量会随着其速度的增加而增加,这个现象称为:A. 质量守恒B. 质量增加C. 质量不变D. 质量减少答案:B二、填空题(每题3分,共30分)1. 光速在真空中的速度是______ m/s。
答案:3×10^82. 牛顿第三定律表明,作用力和反作用力大小______,方向______。
(完整版)《大学物理》练习题及参考答案.doc
卡 循 是由两个平衡的 程和两个平衡的等 程 成的
11.如 所示,在E的匀 中,有一个半径
R的半
球面,若E的方向与半球面的 称 平行, 通 个半球面
的 通量大小 ⋯⋯⋯⋯⋯⋯⋯(
)
参看 本P172-173
A .
R2E
B .2 R2E
C.
2 R2E
D. 0
12.一点 荷,放在球形高斯面的中心 ,下列情况中通 高斯面
的速度为200m/s,则子弹受到的冲量为_____________.参看课本P55-56
41.将电荷量为2.0×10-8C的点电荷, 从电场中A点移到B点,电场力做功6.0×10-6J.
则A、B两点的电势差
UAB=__________ __ .
参看课本P181
42.
如图所示,图中
O点的磁感应强度大小
34.一人从10 m深的井中提水,起始 ,桶中装有10 kg的水,桶的 量1 kg,由
于水桶漏水,每升高1m要漏去0. 1 kg的水, 水桶匀速地从井中提到井口,人所作的功
____________.参看 本P70 (2-14)
35.量m、半径R、自 运 周期T的月球,若月球是密度均匀分布的 球体, 其 自 的 量是__________,做自 运 的 能是__________.参看 本
24.下列关于机械振 和机械波的 法正确的是⋯⋯⋯()参看 本P306
A.点做机械振 ,一定 生机械波
B.波是指波源 点在介 的 播 程
C.波的 播速度也就是波源的振 速度
D.波在介 中的 播 率与波源的振 率相同,而与介 无关
25.在以下矢量 中,属保守力 的是⋯⋯⋯⋯⋯⋯⋯()
A.静B.旋参看 本P180,212,258
大学物理习题集(下,含解答)
大学物理习题集(下册,含解答)单元一 简谐振动一、 选择题1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ](A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。
2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为43π,则t=0时,质点的位置在: [ D ](A) 过1x A 2=处,向负方向运动; (B) 过1x A 2=处,向正方向运动;(C) 过1x A 2=-处,向负方向运动;(D) 过1x A 2=-处,向正方向运动。
3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]x o A x ω(A) A/2 ω (B) (C)(D)o ooxxxA x ω ωAxAxA/2 -A/2 -A/2 (3)题4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ](A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:25. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ](A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动;(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。
(4)题(5)题6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ]2153(A),or ;A;(B),;A;3326623223(C),or ;A;(D),;A442332ππ±±π±±±π±ππ±±π±±±π±7. 一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 218. 图中所画的是两个简谐振动的振动曲线,这两个简谐振动叠加后合成的余弦振动的初相为[ C ]xtOx 1x 2(8)题(A) π23; (B) π; (C) π21 ; (D) 0二、 填空题9. 一简谐振动用余弦函数表示,振动曲线如图所示,则此简谐振动的三个特征量为: A=10cm , /6rad /s =ωπ,/3=φπ10. 用40N 的力拉一轻弹簧,可使其伸长20 cm 。
大学物理考试题目及答案
大学物理考试题目及答案一、选择题(每题3分,共30分)1. 光在真空中的传播速度是多少?A. 3×10^8 m/sB. 3×10^4 m/sC. 3×10^5 m/sD. 3×10^6 m/s答案:A2. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
这一定律的数学表达式是什么?A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是什么?A. h = gt^2B. h = 1/2 gt^2C. h = 2gtD. h = gt答案:B4. 电场强度的定义式是:A. E = F/qB. E = qFD. E = F/g答案:A5. 一个理想的气体经历等压变化时,其体积与温度的关系遵循什么定律?A. 查理定律B. 盖-吕萨克定律C. 阿伏加德罗定律D. 波义耳定律答案:B6. 根据能量守恒定律,一个封闭系统的总能量是:A. 增加的B. 减少的C. 不变的D. 无法确定的答案:C7. 波长为λ的光波在介质中的折射率为n,当光波从真空进入该介质时,其波速会:A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 一个电路中的电流I与电阻R之间的关系由欧姆定律描述,该定律的数学表达式是什么?A. I = V/RB. I = VRD. I = V + R答案:A9. 根据热力学第一定律,一个系统的内能变化等于它与外界交换的热量和它对外做的功之和。
如果一个系统吸收了热量并且对外做功,那么它的内能将会:A. 增加B. 减少C. 不变D. 无法确定答案:A10. 两个点电荷之间的相互作用力遵循:A. 库仑定律B. 牛顿定律C. 高斯定律D. 毕奥-萨伐尔定律答案:A二、填空题(每题4分,共20分)11. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,它的加速度是 _______ m/s²。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理》课程习题集一、单选题11.下列哪一种说法是正确的()(A)运动物体加速度越大,速度越快(B)作直线运动的物体,加速度越来越小,速度也越来越小(C)切向加速度为正值时,质点运动加快(D)法向加速度越大,质点运动的法向速度变化越快2.下列说法中哪一个是正确的()(A)加速度恒定不变时,质点运动方向也不变(B)平均速率等于平均速度的大小(C)当物体的速度为零时,其加速度必为零(D)质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速3.关于向心力,以下说法中正确的是(A)是除物体所受重力、弹力以及摩擦力以外的一种新的力(B)向心力就是做圆周运动的物体所受的合力(C)向心力是线速度变化的原因(D)只要物体受到向心力的作用,物体就做匀速圆周运动4.如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率V0收绳,绳长不变,湖水静止,则小船的运动是()(A)匀加速运动(B)匀减速运动(C)变加速运动(D)变减速运动5.一质点作竖直上抛运动,下列的V-t图中哪一幅基本上反映了该质点的速度变化情况。
()6. 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A ) 与速度成正比 (B )与速度平方成正比(C )与速度成反比 (D )与速度平方成反比7. 抛物体运动中,下列各量中不随时间变化的是 ( )(A )v (B )v (C )t v d (D )dt v d8. 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作 ( )(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动9. 一运动质点在某瞬时位于矢径r 的端点处,其速度大小的表达式为( )(A )t d dr ; (B )dtr d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 10. 一质点在平面上作一般曲线运动,其瞬时速度为V ,瞬时速率为V ,某一段时间内的平均速度为V ,平均速率为V ,它们之间的关系必定有( )(A )V V V V == , (B )V V V V =≠ ,(C )V V V V ≠≠ , (D )V V V V ≠= ,11. 一物体做斜抛运动(略去空气阻力),在由抛出到落地的过程中,( )(A )物体的加速度是不断变化的。
(B )物体在最高点处的速率为零。
(C )物体在任一点处的切向加速度均不为零。
(D )物体在最高点处的法向加速度最大。
12. 在相对地面静止的坐标系内,A 、B 两船以2m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向,今在A 船上设置与静止坐标系方向相同的坐标系,那么从A 船看B 船,它对A 船的速度(以m/s 为单位)为 ( )(A )j i 22+; (B )j i 22+-; (C )j i 22--; (D )j i 22-13. 某质点的运动方程为x=2t- 7t 3+3 (SI),则该质点作 ( )(A)、匀变速直线运动,加速度沿X 轴正方向(B)、匀变速直线运动,加速度沿X 轴负方向(C)、变加速直线运动,加速度沿X 轴正方向(D)、变加速直线运动,加速度沿X 轴负方向14. 质点作任意曲线运动时一定会改变的物理量是 ( )(A )速度v (B )速率v (C )加速度a (D )法向加速度的大小n a15. 下列说法中哪一个是正确的? ( )(A )合力一定大于分力(B )物体速率不变,所受合外力为零(C )速率很大的物体,运动状态不易改变(D )质量越大的物体,运动状态越不易改变16. 物体自高度相同的A 点沿不同长度的光滑斜面自由下滑,如图所示,斜面倾角多大时,物体滑到斜面底部的速率最大 ( )(A )30° (B)45°(C ) 60° (D )各倾角斜面的速率相等17. 下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是( )(A)物体除其他的力外还要受到—个向心力的作用(B)物体所受的合外力提供向心力(C)向心力是一个恒力(D)向心力的大小—直在变化18. 有两个物体,质量分别M1和M2,M1原来是静止的,M2以速度V 向右运动,它们同时受到一个向右的大小相等的恒力作用,它们能达到相同速度的条件是( )(A )M1<M2 (B )M1=M2 (C )M1>M2 (D )M1远远大于M219. 如图,用水平力F 把木块压在竖直墙面上并保持静止,当F 逐渐增大时,木块所受的摩擦力( )(A )恒为零(B )不为零,但保持不变(C )随F 成正比地增大(D )开始时随F 增大,达到某一最大值后,就保持不变20. 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,系统中()(A) 小球将受到重力,绳的拉力和向心力的作用(B) 小球将受到重力,绳的拉力和离心力的作用(C ) 绳子的拉力可能为零(D ) 小球可能处于受力平衡状态21. 关于下述说法,正确表述是: ( )(A )质点做直线运动,质点的动量一定为零。
(B )质点做直线运动,质点的角动量一定为零。
(C )若质点系的总动量为零,其总角动量一定为零。
(D )若质点系的总动量不为零,其总角动量一定不为零22. 有一种“蹦极跳”的运动中,质量为m 的游戏者身系一根长为L 的、弹性优良的轻质柔软的橡皮筋,从高处由静止开始下落1.5L 时达到最低点,若不计空气阻力,则在弹性绳从原长达到最低点的过程中,以下说法正确的是( )(A )速度先减小后增大 (B )加速度不变(C )速度先增大后减小 (D )加速度先增大后减小23. 如图所示,车在光滑的水平面上运动,已知物块A 与车的摩擦系数为μ,车与物块A 的质量分别为M 和m ,要使物块A 不落下,车的水平加速度至少应( )(A )、μg (B )、μg 21 (C )、g μ (D )、μg24. 物体在恒力F 作用下作直线运动,在时间1t ∆内速度由0增加到V ,在时间2t ∆内速度由V 增加到2V ,设F 在1t ∆内作的功是W 1,冲量是I 1,在2t ∆内作的功是W 2,冲量是I 2,那么( )(A )W 2=W 1,I 2>I 1; (B )W 2=W 1,I 2<I 1;(C )W 2>W 1,I 2=I 1; (D )W 2<W 1,I 2=I 125. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为a零,则此系统。
( )(A )动量、机械能以及对一轴的角动量都守恒;(B )动量、机械能守恒,但角动量是否守恒不能断定;(C )动量守恒,但机械能和角动量守恒与否不能断定;(D )动量和角动量守恒,但机械能是否守恒不能断定。
26. 两质量为m 1和m 2的小球,在一直线上作完全非弹性碰撞,碰撞前两小球的速度分别为V 1、V 2(同向),在碰撞过程中两球间的最大形变能( )(A )()2212121V V m m -; (B );()22212121V V m m - (C )()221212121V V m m m m -+⋅; (D )21212121V V m m m m +⋅ 27. 如图所示,物体在斜面上受到平行于斜面向下拉力F 作用,沿斜面向下运动,已知拉力F 大小等于物体所受的摩擦力,则物体在运动过程中( )(A )作匀速运动 (B )作匀减速运动(C )机械能保持不变 (D )机械能减小28. 根据功能原理判断下列哪种说法是正确的( )(A )机械能有两种形式,既动能和热能;(B ),机械能有两种形式,既热能和势能;(C )机械能有两种形式,既动能和势能;(D )机械能有两种形式,既电能和势能。
29. 下面说法中错误的是( )(A)一对力做功与参照系无关,且有绝对性;(B)作用力的冲量与反作用力的冲量总是等值反向;(C)内力不会改变系统的机械能;(D)系统的内力不会改变系统的总动量。
30. 下列说法中哪个或哪些是正确的( )(A )作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大(B )作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(C )作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零(D )作用在定轴转动刚体上合力矩越大,刚体转动的角加速度越大31. 一质点作匀速率圆周运动时( )(A ) 它的动量不变,对圆心的角动量也不变(B)它的动量不变,对圆心的角动量不断改变(C)它的动量不断改变,对圆心的角动量不变(D)它的动量不断改变,对圆心的角动量也不断改变32.有两个半径相同,质量相等的细圆环A和B,A环的质量分布均匀,B环的质量分布不均匀,它们对通过环心并与环面垂直的轴转动惯量分别为J A,J B,则()(A)J A>J B;(B)J A<J B;(C)J A=J B;(D)不能确定J A、J B哪个大33.一轻绳跨过具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图示,绳与轮之间无相对滑动,某时刻滑轮逆时针方向转动,则绳中的张力( )(A)处处相等(B)左边大于右边(C)右边大于左边(D)无法判断34.一轻绳经过两定滑轮,两端各挂一质量相同的小球m,如果左边小球在平衡位置来摆动,如图所示,那么右边的小球,将()(A)保持静止(B)向上运动(C)向下运动(D)上下来回运动35.关于刚体对轴的转动惯量,下列说法正确的是()(A)、只取决于刚体的质量,与质量的空间分布和轴的位置无关(B)、取决于刚体的质量和质量的空间分布,与轴的位置无关(C)、取决于刚体的质量、、质量的空间分布和轴的位置、(D)、只取决于转轴的位置,与刚体的质量和质量的空间分布无关36.均质细棒在光滑的平面上受到一对大小相等、方向相反的力作用,不管力作用在哪里,它的质心加速度总是()(A)、大于零 (B)、等于零(C)、小于零(D)、不能确定37.若理想气体的体积为V ,压强为P,温度为T,一个分子的质量为M ,K为玻尔兹曼常数,R为摩尔气体常数,则该理想气体的分子数为()(A)、PV/M (B)、PV/KT ( C)、 PV/RT (D)、PV/MT38.关于温度的意义,下列几种说法中错误的是:()(A)、气体的温度是分子平均平动动能的量度(B)、气体的温度是大量气体分子热运动的集体表现,具有统计意义(C)、温度的高低反映物质内部分子热运动剧烈程度的不同(D)、从微观上看,气体的温度表示每个气体分子的冷热程度39.一定量的理想气体,分别进行所示的两个卡诺循环abcda和a/b/c/d/a/,若在p-V图上这两个循环曲线所围的面积相等,则可以由此得知这两个循环()(A)效率相等(B)从高温热源吸收的热量相等(C)向低温热源放出的热量相等(D)在每次循环中对外作的净功相等40.质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍。