向量法求空间角(有答案)
向量法求空间角
C
D
A
B
3.如图四棱锥S-ABCD中,AB//CD,BC⊥CD, 侧面SAB为等边三角形,AB=BC=2,CD=SD=1 (1)求异面直线AB与SD所成角的大小; (2)求AB与平面SCB所成角的正弦值; (3)求平面SAD与平面SBC所成 锐二面角的余弦值;
向量法求空间角
1.异面直线所成角:
cos
C
a a
D
| cos a, b |
A
b
B
A
D1
2.直线与平面所成角:
n
O
sin
| cos n, AB |
B
n
B A
3.二面角:
D
cos cos AB, CD
AB CD AB CD
n1
l
n2
z
S
O C B
y
底面ABCD为平行四边形, 2.四棱锥 S ABCD 中, 侧面 SBC 底面ABCD,已知ABC 45
,
AB 2 BC 2 2
SA SB 3
Ⅰ)求直线SA与直线BC所成角的大小; Ⅱ)求直线SD与平面SBC所成角的大小. Ⅲ)求平面SAB与平面SBC所成角的大小. S
n2
n1
l
l
cos cos n1, n2
cos
cos n1, n2
cos
n1 n2 n1 n2
1.如图,已知:直角梯形OABC 中,OA∥BC,∠AOC=90°, SO⊥面OABC,且 OS=OC=BC=1,OA=2。 求: A (1)异面直线SA和OB x 所成的角的余弦值; (2)OS与面SAB所成角的余弦值; (3)二面角B-AS-O的余弦值;
专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)
专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。
(完整版)利用空间向量法证明与求空间角——解答题篇·解题技能(教师)
课题利用空间向量法证明与求空间角——解答题篇·解题技能一、空间向量(一)空间向量基本定理对于如果三个向量a r ,b r ,c r 不共面,那么对空间任一向量p u r存在唯一的有序实数组{,,}x y z ,使p xa yb zc =++u r r r r(二)空间向量的坐标表示(1)空间直角坐标系设123,,e e e u r u u r u r 为有公共起点O 的三个两两垂直的单位向量(称它们为正交基底),以123,,e e e u r u u r u r的公共起点O 为原点,分别以123,,e e e u r u u r u r 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz -。
建立空间直角坐标系要遵循“左手法则”。
(2)空间向量的坐标对于空间任一向量p u r ,一定可以把它平移,使它的起点与原点O 重合,得到向量OP p =u u u r u r 。
由空间向量基本定理可知,存在有序实数组{,,}x y z ,使p xa yb zc =++u r r r r。
我们把,,x y z 称作向量p u r 在单位正交基底123,,e e e u r u u r u r下的坐标,记作(,,)p x y x =u r 。
点的坐标:此时向量p u r 的坐标恰是点P 在空间直角坐标系O xyz -中的坐标(,,)x y x 。
(3)空间向量运算的坐标表示 ① 空间向量的坐标运算法则设123(,,)a a a a =r ,123(,,)b b b b =r,则112233(,,)a b a b a b a b +=+++r r112233(,,)a b a b a b a b -=--- 123(,,)()a a a a R λλλλλ=∈ 112233a b a b a b a b ⋅=++② 空间向量平行与垂直条件112233//,,()a b a b a b a b a b R λλλλλ⇔=⇔===∈r r r r1122330a b a b a b a b a b ⊥⇔⋅=++=③ 空间向量夹角公式r r④ 空间向量长度公式若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---u u u r即:一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
高考必考题—运用空间向量解决空间角(含解析)
运用空间向量解决空间角一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。
例1、【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.例2、(2019南京学情调研) 如图,在正四棱柱ABCDA 1B 1C 1D 1中,已知底面ABCD 的边长AB =3,侧棱AA 1=2,E 是棱CC 1的中点,点F 满足AF →=2FB →.(1) 求异面直线FE 和DB 1所成角的余弦值; (2) 记二面角EB 1FA 的大小为θ,求|cos θ|.题型二、直线与平面所成的角直线与平面所成的角是通过研究直线的方向向量和平面的法向量的所成的角,因此,要特别注意所求的角与已求的角之间的关系。
例3、【2020年高考浙江】如图,在三棱台ABC—DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC =2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.例4、【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.题型三、平面与平面所成的角利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据观察判断向量在图形中的方向,从而确定二面角与向量n1,n2的夹角是相等还是互补,这是利用向量求二面角的难点、易错点例5、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.例6、【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.例7、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABC A B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.二、达标训练1、【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.2、【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.3、【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4、(2020届山东省九校高三上学期联考)已知四棱柱1111ABCD A B C D -的底面为菱形,12AB AA ==,3BAD π∠=,ACBD O =,AO ⊥平面1A BD ,11A B A D =.(1)证明:1//B C 平面1A BD ; (2)求钝二面角1B AA D --的余弦值.5、(2020届山东省潍坊市高三上期末)在底面为正方形的四棱锥P ABCD -中,平面PAD ⊥平面,,,ABCD PA PD E F =分别为棱PC 和AB 的中点.(1)求证://EF 平面PAD ;(2)若直线PC 与AB ,求平面PAD 与平面PBC 所成锐二面角的大小.6、(2019南京、盐城一模)如图,四棱锥PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA =AB=2,点E是棱PB的中点.(1) 求异面直线EC与PD所成角的余弦值;(2) 求二面角BECD的余弦值.一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。
人教A版高中数学选修2-1课件【29】用向量方法求空间角(二)
解析: 设 CB=1, 则 A(2,0,0) , B1(0,2,1), C1(0,2,0), B(0,0,1), → → BC1=(0,2,-1),AB1=(-2,2,1). → → BC AB1 3 5 1· → → cos〈BC1,AB1〉= = =5. → → 5×3 |BC1|· |AB1|
a· b 解析:cos〈a,b〉=|a|· |b|= |1,-2,1· 2,-2,0| |2+4| 3 = . 2 2 2 2 2= 6· 8 2 1 +2 +1 · 2 +-2
答案:D
2.如图,在空间直角坐标系中有直三棱柱 ABCA1B1C1,CA =CC1=2CB,BC1 与直线 AB1 夹角的余弦值为( 5 5 2 5 3 A. 5 B. 3 C. 5 D.5 )
解析:如图,以 DA、DC、DD1 分别为 x 轴、y 轴、z 轴建立 空间直角坐标系,设正方体的棱长为 1,则 A(1,0,0),B(1,1,0), → C1(0,1,1),易证AC1是平面 A1BD 的一个法向量.
→ → AC1=(-1,1,1),BC1=(-1,0,1). 1+1 6 → → cos〈AC1,BC1〉= = . 3× 2 3 6 ∴BC1 与平面 A1BD 所成角的正弦值为 3 .
答案:A
4. 正方体 ABCDA1B1C1D1 中, BB1 与平面 ACD1 所成角的余 弦值为( )
2 3 2 6 A. B. C. D. 3 3 3 3
解析:建系如图,设正方体棱长为 1,D(0,0,0),B1(1,1,1), → B(1,1,0),则BB1=(0,0,1).
∵B1D⊥平面 ACD1, → ∴DB1=(1,1,1)为面 ACD1 的法向量. 设 BB1 与面 ACD1 所成的角为 θ, → → |BB1· DB1| 1 3 则 sinθ= = =3, → → 3 |BB1||B1D| 6 ∴cosθ= 3 .
人教A版高中数学选修2-1课件【28】用向量方法求空间角(一)
y=0, 得 x+z=0,
取 x=1,则 z=-1,
→ -2 BD · n 1 → ∵cos〈BD,n〉= = =-2, → 8· 2 |BD|· |n| 1 → ∴sinθ=|cos〈BD,n〉|=2. 又 0° ≤θ≤90° , ∴θ=30° .
12. 如图,矩形 ABCD 和梯形 BEFC 所在平面互相垂直,BE∥ CF,∠BCF=∠CEF=90° ,AD= 3,EF=2. (1)求证:AE∥平面 DCF; (2)当 AB 的长为何值时,二面角 AEFC 的大小为 60° ?
解析:∵l 的方向向量与平面的法向量的夹角为 120° .∴它们 所在直线的夹角为 60° , 则直线 l 与平面 α 所成的角为 90° -60° =30° .
答案:C
2.若平面 α 的法向量为 μ,直线 l 的方向向量为 v,直线 l 与平面 α 的夹角为 θ,则下列关系式成立的是( μ·v A.cosθ= |μ|· |v| μ·v C.sinθ=|μ|· |v| |μ·v| B.cosθ= |μ|· |v| |μ·v| D.sinθ=|μ|· |v| )
答案:D
二、填空题:每小题 5 分,共 15 分. 7.如图,在正方体 ABCDA1B1C1D1 中,M 是 C1C 的中点, O 是底面 ABCD 的中点,P 是 A1B1 上的任意点,则直线 BM 与 OP 所成的角为__________.
解析: 建立如图所示的空间直角坐标系, 设正方体棱长为 2, 则 O(1,1,0),P(2,x,2),B(2,2,0),M(0,2,1), → OP=(1,x-1,2), → BM=(-2,0,1). → → 所以OP· BM=0, π 所以直线 BM 与 OP 所成角为2.
第三章
向量法求空间的距离和角
所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
高考数学一轮复习向量法求空间角
可知 B(0,0,0),C(0,2,0),M(1,1,0).因为 BM= 2, MN= 6,
所以 BN= MN2-BM2= 6-2=2, 所以 PB=4,则 P(0,0,4).
设||― ―BB→ →QA ||=λ,且 0<λ<1,则 Q(2λ,0,0), 可知―PM→=(1,1,-4),―C→Q =(2λ,-2,0), 所以―PM→·―C→Q =1×2λ+1×(-2)+(-4)×0=2λ-2, |―PM→|= 12+12+-42=3 2,|―C→Q |= 2λ2+-22= 4λ2+4 因为异面直线 PM 与 CQ 所成的角的余弦值为 3344,
n 1·n 2
|n 1·n 2|
则 cos θ=|cos〈n 1,n 2〉|=___|n_1_||_n_2_|__=_教材经典小题的回顾拓展
1.(人教 B 版选择性必修①P36·T3 改编)已知直线 l1 的方向向量 s1=
(1,0,1)与直线 l2 的方向向量 s2=(-1,2,-2),则 l1 和 l2 夹角的余
在 Rt△BED 中,当 EF 的长度最小时,EF⊥BD,EF=DEB·DBE= 23. 又 DE⊥AC,BE⊥AC,所以 EA,EB,ED 两两垂直,以 E 为坐标 原点,EA,EB,ED 所在的直线分别为 x,y, z 轴建立如图所示空间直角坐标系 E-xyz,则 A(1,0,0),B(0, 3,0),D(0,0,1),C(-1,0,0), ―A→B =(-1, 3,0), ―D→B =(0, 3,-1).
()
A.41或 4
1 B.2
C.31
D.14
立体几何中的向量方法求空间角和距离
基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。
利用向量方法求空间角 知识点+例题+练习
教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。
利用向量法求空间角
的夹角n
与 和 的夹角
m
n
互补
相等
a
m
a
m
o
a´
•
o
a´
•
b´
b´
n
cos =
b
b
cos ,
n
cos =
−cos ,
用向量法求异面直线所成角
设两异面直线a、b的方向向量分别为 m 和 n ,
所以,异面直线a、b所成的角的余弦
值为
cos cos m, n
⋅ AB = 0, ⋅ SA = 0
− + = 0
∴ቊ
2 − = 0
取x=1,则y=1,z=2; 故
∴ sin =
(3)由(2)知面SAB的法向量1
又∵OC⊥平面AOS,
令
则有
=(1,1,2)
∴ OC
是平面AOS的法向量,
2 = OC = (0,1,0)
cos < 1 , 2 >=
于是我们有 SA=(2,0,-1);
OS=(0,0,1);
(1).cos < SA, OB>=
OB=(1,1,0);
y
O
AB=(-1,1,0);
SA ⋅ OB
=
SA ⋅ OB
=
A
2
5⋅
10
5
C
2
B
x
所以异面直线SA与OB所成的角的余弦值为
10
5
(2)设平面SAB的法向量
显然有
= (, , )
二、知识讲解与典例分析
例1:在Rt△AOB中,∠AOB=90°,现将△AOB沿着平面AOB的法
高中数学 3.2.3用向量方法求空间中的角课后习题 新人教A版高二选修2-1数学试题
第三课时用向量方法求空间中的角课时演练·促提升A组1.已知A(0,1,1),B(2,-1,0),C(3,5,7),D(1,2,4),则直线AB和直线CD所成角的余弦值为()A. B.-C. D.-解析:=(2,-2,-1),=(-2,-3,-3),而cos =,故直线AB和CD所成角的余弦值为.答案:A2.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于()A.120°B.60°C.30°D.以上均错解析:∵l的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l与平面α所成的角为90°-60°=30°.答案:C3.若二面角α-l-β的大小为120°,那么平面α与平面β的法向量的夹角为()A.120°B.60°C.120°或60°D.30°或150°解析:二面角为120°时,其法向量的夹角可能是60°,也可能是120°.答案:C4.在正方体ABCD-A1B1C1D1中,M是AB的中点,则sin<>的值为()A. B. C. D.解析:如图,以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系.设正方体的棱长为1,则D(0,0,0),B1(1,1,1),C(0,1,0),M,∴=(1,1,1),,∴cos<>==,∴sin<>=.答案:B5.如图,过边长为1的正方形ABCD的顶点A作线段EA⊥平面ABCD,若EA=1,则平面ADE与平面BCE所成的二面角的大小是()A.120°B.45°C.135°D.60°解析:以A为原点,分别以AB,AD,AE所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则E(0,0,1),B(1,0,0),C(1,1,0),则=(1,0,-1),=(1,1,-1).设平面BCE的法向量为n=(x,y,z).则有可取n=(1,0,1),又平面EAD的法向量为=(1,0,0),所以cos n, =,故平面ADE与平面BCE所成的二面角为45°.答案:B6.在正四棱锥P-ABCD中,高为1,底面边长为2,E为BC的中点,则异面直线PE与DB所成的角为. 解析:建立空间直角坐标系如图,则B(1,1,0),D(-1,-1,0),E(0,1,0),P(0,0,1), 故=(2,2,0),=(0,1,-1).从而cos<>=,即<>=.于是PE与DB所成的角为.答案:7.若空间直线l的方向向量为t,平面α的法向量为n,t与n的夹角θ>,则l与α所成角为. 解析:如图可知,l与α所成角为θ-.答案:θ-8.如图,已知ABC-A1B1C1是直三棱柱,∠ACB=90°,点D1,F1分别是A1B1,A1C1的中点,BC=CA=CC1,求BD1与AF1所成角的余弦值.解:如图,以C为原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系, 设CB=CA=CC1=1,则A(1,0,0),B(0,1,0),D1,F1,则.故||=,||=,则cos<>=.于是BD1与AF1所成角的余弦值为.9.在正方体ABCD-A1B1C1D1中,E,F分别为AA1,AB的中点,求EF和平面ACC1A1夹角的大小.解:建立如图的空间直角坐标系,设正方体棱长为2,则由E,F分别是AA1,AB的中点,得E(2,0,1),F(2,1,0).过F作FG⊥AC于G,则由正方体性质知FG⊥平面ACC1A1.连接EG,则的夹角即为所求,又因为F是AB的中点,所以AG=AC,所以G=(0,1,-1).cos<>=.∴<>=,即EF与平面ACC1A1的夹角为.10.在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F-BD-C的余弦值.(1)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,∴∠ADC=∠BCD=120°.又∵CB=CD,∴∠CDB=30°.∴∠ADB=90°,即AD⊥BD.又∵AE⊥BD,且AE∩AD=A,AE⊂平面AED,AD⊂平面AED,∴BD⊥平面AED.(2)解:由(1)知AD⊥BD,∴AC⊥BC.又FC⊥平面ABCD,因此CA,CB,CF两两垂直.以C为坐标原点,分别以CA,CB,CF所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.不妨设CB=1,则C(0,0,0),B(0,1,0),D,F(0,0,1),因此=(0,-1,1).设平面BDF的一个法向量为m=(x,y,z),则m·=0,m·=0,即x-y=0,-y+z=0,所以x=y=z.令z=1,得m=(,1,1).由于=(0,0,1)是平面BDC的一个法向量,则cos<m,>=,故二面角F-BD-C的余弦值为.B组1.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.则直线AE与平面A1ED1所成角的大小为()A.60°B.90°C.45°D.以上都不正确解析:以点D为原点,分别以DA,DC,DD1所在直线为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z),则令z=1,得y=1,x=0,所以n=(0,1,1),cos<n,>==-1.所以<n,>=180°.所以直线AE与平面A1ED1所成的角为90°.答案:B2.在空间中,已知平面α过点(3,0,0)和(0,4,0)及z轴上一点(0,0,a)(a>0),如果平面α与平面xOy的夹角为45°,则a=.解析:平面xOy的法向量为n=(0,0,1),设平面α的法向量为u=(x,y,z),则则3x=4y=az,取z=1,则u=,而cos<n,u>=.又a>0,故a=.答案:3.在四面体ABCD中,O是BD的中点,|CA|=|CB|=|CD|=|BD|=2,|AB|=|AD|=,则异面直线AB与CD所成的角的余弦值是.解析:以O为原点,建立如图所示的空间直角坐标系,则点B(1,0,0),D(-1,0,0),C(0,,0),A(0,0,1),=(-1,0,1),=(-1,-,0).所以cos<>=.故异面直线AB与CD所成的角的余弦值为.答案:4.在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,E是PD的中点,求二面角E-AC-D的大小.解:如图,以A为原点,分别以AC,AB,AP所在直线为x轴、y轴、z轴建立空间直角坐标系.设PA=AB=a,AC=b.连接BD与AC交于O,取AD中点F,连接OE,OF,EF,则C(b,0,0),B(0,a,0),.∴D(b,-a,0),P(0,0,a).∴E,O=(b,0,0),∵=0,∴=0.∴.∴∠EOF为二面角E-AC-D的平面角.cos =.∴二面角E-AC-D的大小为45°.5.如图,已知点P在正方体ABCD-A'B'C'D'的对角线BD'上,∠PDA=60°.(1)求DP与CC'所成角的大小;(2)求DP与平面AA'D'D所成角的大小.解:如图,以D为原点,DA为单位长度建立空间直角坐标系Dxyz.则=(1,0,0),=(0,0,1).连接BD,B'D'.在平面BB'D'D中,延长DP交B'D'于点H.设=(m,m,1)(m>0),由已知<>=60°,由=||||cos<>,可得2m=,解得m=,所以.(1)因为cos<>=,所以<>=45°,即DP与CC'所成的角为45°.(2)平面AA'D'D的一个法向量是=(0,1,0).因为cos<>=,所以<>=60°.故DP与平面AA'D'D所成的角为30°.6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)求证:PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)若E为棱PA上的点,且异面直线BE与CD所成的角为30°,求AE的长.解:如图,以点A为原点,AD,AC,AP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,由题意得A(0,0,0),D(2,0,0),C(0,1,0),B,P(0,0,2).(1)证明:易得=(0,1,-2),=(2,0,0),于是=0,所以PC⊥AD.(2)=(0,1,-2),=(2,-1,0).设平面PCD的法向量n=(x,y,z),则不妨令z=1,可得n=(1,2,1).可取平面PAC的法向量m=(1,0,0).于是cos<m,n>=,从而sin<m,n>=.所以二面角A-PC-D的正弦值为.(3)设点E的坐标为(0,0,h),其中h∈[0,2].由此得=(2,-1,0),故cos<>==.所以=cos 30°=,解得h=,即AE的长为.。
向量法求空间角(含解析)
高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。
2019版数学(理)一轮讲义:第45讲 立体几何中的向量方法(二)——求空间角和距离 含答案
第45讲立体几何中的向量方法(二)——求空间角和距离考纲要求考情分析命题趋势1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成角为θ,a 与n 的夹角为β,则sin θ=|cos β|=__错误!__。
3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ为__〈错误!,错误!〉__。
(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=__|cos <n 1,n 2>|__,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).4.利用空间向量求距离(供选用)(1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|错误!|=__错误!__.(2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|错误!|=错误!.1.思维辨析(在括号内打“√”或“×”).(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(3)两个平面的法向量所成的角是这两个平面所成的角.(×)(4)两异面直线夹角的范围是错误!,直线与平面所成角的范围是错误!,二面角的范围是[0,π].(√)2.已知向量m,n分别是直线l和平面α的方向向量和法向量,若cos〈m,n〉=-错误!,则l与α所成的角为(A)A.30°B.60°C.120°D.150°解析∵cos 〈m,n〉=-错误!,0°≤〈m,n〉≤180°,∴<m,n>=120°,∴l与α所成角为90°-(180°-120°)=30°,故选A.3.正三棱柱(如右图,底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为2错误!,则AC1与侧面ABB1A1所成的角为__30°__.解析取A1B1的中点E,连接C1E,AE,由正三棱柱性质得平面A1B1C1⊥平面A1B1BA,又∵C1E⊥A1B1,A1B1是平面A1B1C1与平面A1B1BA的交线,∴C1E⊥平面A1B1BA,则∠C1AE为所求.又∵A1B1=2,AA1=22,∴AE=3,C1E=错误!,∴tan ∠C1AE=错误!=错误!,∴∠C1AE=30°,∴AC1与平面ABB1A1所成角为30°.4.二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD =8,CD=2错误!,则该二面角的大小为__60°__。
专题3:空间向量法求角基础知识与典型例题(解析版)
专题3:空间向量法求角基础知识与典型例题(解析版)⑴求异面直线所成的角已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BDAC BD θ⋅=1.已知棱长为2的正方体1111ABCD A B C D -,点M 、N 分别是11A B 和1BB 的中点,建立如图所示的空间直角坐标系.(1)写出图中M 、N 的坐标;(2)求直线AM 与NC 所成角的余弦值.【答案】(1)M (2,1,2),N (2,2,1).(2)25. 【分析】(1)根据正方体的棱长,直接写出坐标; (2)利用向量夹角公式能求出直线AM 与CN 所成的角的余弦值.【详解】(1)由于正方体1111ABCD A B C D -的棱长为2.由题意知A (2,0,0),B (2,2,0),∴M (2,1,2), C (0,2,0),∴N (2,2,1).(2)由(1)可知()012AM =,,,CN =(2,0,1),设直线AM 与CN 所成的角为θ,则cosθ=|cos AM CN <,>|=55⋅|25=.∴直线AM 与CN 所成的角的余弦值是25.【点睛】 本题考查异面直线所成角的余弦值的求法,考查了空间向量法的应用,是基础题. 2.如图,三棱柱111OAB O A B -中,平面11OBB O ⊥平面OAB ,且160O OB ∠=︒,190,2,3AOB OB OO OA ∠=︒===,求异面直线1A B 与1O A 所成角的余弦值.【答案】17 【分析】 以O 为坐标原点,,OA OB 所在直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系, 利用向量法求异面直线1A B 与1O A 所成角的余弦值.【详解】以O 为坐标原点,,OA OB 所在直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则11(3,0,0),(0,2,0),(3,13),(0,13)A B A O , 所以11(3,1,3),(3,1,3)A B O A =--=--.设所求的角为α, 则1111|||313|1cos 7||||77A B O A A B O A α--+===⨯⋅, 即异面直线1A B 与1O A 所成角的余弦值为17. 【点睛】(1)本题主要考查求两异面直线所成的角,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形),方法二:(向量法)cos m n m n α⋅=,其中α是异面直线,m n所成的角,,m n 分别是直线,m n 的方向向量.⑵求直线和平面所成的角 求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅==3.如图,正方体1111ABCD A B C D -中,E 是1CC 的中点,求BE 与平面1B BD 所成角的正弦值.【答案】10. 【分析】 建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】如图,建立空间直角坐标系,设正方体的棱长为2,则11(0,0,0),(2,2,0),(2,2,2),(0,2,1),(2,2,0),(0,0,2),(2,0,1)D B B E BD BB BE =--==-.设平面1B BD 的法向量为1(,,),,n x y z n BD n BB =∴⊥⊥,1220,20,n BD x y nBB z ⎧⋅=--=⎪∴⎨⋅==⎪⎩,0.x y z =-⎧∴⎨=⎩ 令1y =,则(1,1,0)=-n ,10cos ,||||n BE n BE n BE ⋅∴〈〉==. 故BE 与平面1B BD 所成角的正弦值为10.【点睛】本题考查了利用空间向量线面夹角公式的应用,考查了数学运算能力.4.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22【分析】 (1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证.(2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m AD m AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD与平面BCD 所成角的正弦值.【详解】 解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC AE =.因为ABC 是等边三角形,则AC AB =,所以3AB AE =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =,因为BD =所以AD =又222BD AB AD =+,所以2AB =.则AE =,ED = 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -,则0,3D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫- ⎪ ⎪⎝⎭,向量3,133AD ⎛⎫=- ⎪ ⎪⎝⎭,平面BCD 的一个法向量为(0,0,1)m =, 设直线AD 与平面BCD所成的角为θ,则cos ,22m ADm AD m AD ⋅〈〉===-,2sin |cos ,|m AD θ=〈〉=所以直线AD 与平面BCD 所成角的正弦值为2. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.⑶求二面角二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l AO ⊥,β-l 的平面角.如图:求法:设二面角l αβ--的两个半平面的法向量分别为m n 、,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角:如果θ是锐角,则cos cos m n m n θϕ⋅==, 即arccos m nm n θ⋅=;如果θ是钝角,则cos cos m nm n θϕ⋅=-=-, 即arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭. 5.如图所示,AE ⊥平面ABCD ,四边形AEFB 为矩形,//BC AD ,BA AD ⊥,224AE AD AB BC ====.(1)求证://CF 平面ADE ;(2)求平面CDF 与平面AEFB 所成锐二面角的余弦值.【答案】(1)见解析(2)23【分析】(1)根据//BF AE ,//BC AD ,从而证明平面//BCF 平面ADE ,从而//CF 平面ADE 。
2014届高考数学一轮复习教学案空间向量与空间角(含解析)
空间向量与空间角[知识能否忆起]利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a||b |(其中φ为异面直线a ,b 所成的角).2.直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD〉.(2)如图2、3,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).[小题能否全取]1.(教材习题改编)已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°解析:选A 由于cos 〈m ,n 〉=-12,∴〈m ,n 〉=120°.所以直线l 与α所成的角为30°.2.(教材习题改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( )A .45°B .135°C .45°或135°D .90°解析:选C cos 〈m ,n 〉=m ·n |m ||n |=11×2=22, 即〈m ,n 〉=45°,其补角为135°, ∴两平面所成的二面角为45°或135°.3.在如图所示的正方体A1B 1C 1D 1-ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为( )A .-1010B .-120C.120D.1010解析:选D 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫0,12,1.则AC =(-1,1,0),DE =⎝⎛⎭⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC ,DE 〉|=1010.4.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.解析:如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0), E ⎝⎛⎭⎫1,1,13,F ⎝⎛⎭⎫0,1,23, AE =⎝⎛⎭⎫0,1,13,AF =⎝⎛⎭⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ),面AEF 与面ABC 所成的二面角为θ, 由⎩⎨⎧n ·AE =0,n ·AF =0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3). 设平面ABC 的法向量为m =(0,0,-1), 则cos θ=cos 〈n ,m 〉=311,tan θ=23.答案:235.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.解析:建立如图所示直角坐标系,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),1A B =(0,4,-3),1B C=(-4,0,-3).设异面直线A 1B 与B 1C 所成角为θ,则cos θ=|cos 〈1A B ,1B C 〉|=925.答案:925(1)利用向量求空间角,一定要注意将向量夹角与所求角区别开来,在将向量夹角转化为各空间角时注意空间各角的取值范围,异面直线所成角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π]. (2)利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点.典题导入[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35[自主解答] 不妨令CB =1,则CA =CC 1=2.可得 O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴1BC =(0,2,-1),1AB=(-2,2,1),∴cos 〈1BC ,1AB 〉=1BC ·1AB|1BC ||1AB |=4-15×9=15=55>0.∴1BC 与1AB的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. [答案] A本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13?若存在,求出M 点;不存在,说明理由.解:不妨令CB =1,CA =CC 1=2, 建系如本例题图,假设存在符合条件的点M ,设M (0,0,a ),则1C M =(0,-2,a ),又1AB=(-2,2,1), ∴|cos 〈1C M ,1AB 〉|=|a -4|4+a 2·9=13. ∴|a -4|=4+a 2,∴a 2-8a +16=a 2+4. ∴8a =12,∴a =32.又CB =1,∴a =32>1.故不存在符合条件的点M .由题悟法利用直线的方向向量的夹角求异面直线的夹角时,注意区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.以题试法1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD=(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD|1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:∵1BB=(-a ,-a ,a ),BC =(-2a,0,0), 1FB=(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC=0,∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.典题导入[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.[自主解答] (1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz ,则C (22,0,0).设D (2,b,0),其中b >0,则 P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0).于是PC=(22,0,-2), BE =⎝⎛⎭⎫23,b ,23,DE =⎝⎛⎭⎫23,-b ,23,从而PC ·BE=0,PC ·DE =0, 故PC ⊥BE ,PC ⊥DE . 又BE ∩DE =E , 所以PC ⊥平面BED .(2) AP =(0,0,2),AB=(2,-b,0).设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP =0,m ·AB=0,即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE=0, 即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2. 因为二面角A -PB -C 为90°,所以面P AB ⊥面PBC ,故m ·n =0, 即b -2b=0,故b =2,于是n =(1,-1,2),DP=(-2,-2,2),所以cos 〈n ,DP 〉=n ·DP|n ||DP |=12, 所以〈n ,DP〉=60°.因为PD 与平面PBC 所成角和〈n ,DP〉互余,故PD 与平面PBC 所成的角为30°.由题悟法利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角(如例2).以题试法2.(2012·宝鸡模拟)如图,已知P A ⊥平面ABC ,且P A =2,等腰直角三角形ABC 中,AB =BC =1,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E .(1)求证:PC ⊥平面ADE ;(2)求直线AB 与平面ADE 所成角的大小. 解:(1)证明:因为P A ⊥平面ABC , 所以P A ⊥BC ,又AB ⊥BC ,且P A ∩AB =A , 所以BC ⊥平面P AB ,从而BC ⊥AD . 又AD ⊥PB ,BC ∩PB =B , 所以AD ⊥平面PBC , 得PC ⊥AD ,又PC ⊥AE ,AE ∩AD =A , 所以PC ⊥平面ADE .(2)如图所示,建立空间直角坐标系B -xyz . 则A (1,0,0),C (0,1,0), P (1,0,2), 因为PC ⊥平面ADE ,所以PC=(-1,1,-2)是平面ADE 的一个法向量.设直线AB 与平面ADE 所成的角为θ,则sin θ=|PC ·AB||PC||AB |=(-1,1,-2)·(-1,0,0)2=12,则直线AB 与平面ADE 所成的角为30°.典题导入[例3] (2012·江西高考)在三棱柱ABC -A 1B 1C 1中,已知AB=AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.[自主解答] (1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,得OE ⊥BB 1,因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE , 所以OE ⊥平面BB 1C 1C .又AO =AB 2-BO 2=1,AA 1=5, 得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),B 1(-1,2,2),由AE =151AA 得点E 的坐标是⎝⎛⎭⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE =⎝⎛⎭⎫45,0,25, 设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·11A B=0,n ·1A C=0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0. 令y =1,得x =2,z =-1,即n =(2,1,-1),所以cos 〈OE ,n 〉=OE·n| OE |·|n |=3010, 即平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值是3010.由题悟法求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.以题试法3.(2012·山西模拟)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC ⊥BE ; (2)若二面角C -AE -D 的大小为60°,求λ的值.解:(1)证明:如图,建立空间直角坐标系D -xyz ,则A (a,0,0,),B (a ,a,0),C (0,a,0),D (0,0,0),E (0,0,λa ),∴AC =(-a ,a,0),BE=(-a ,-a ,λa ), ∴AC ·BE=0对任意λ∈(0,1]都成立,即对任意的λ∈(0,1],都有AC ⊥BE . (2)显然n =(0,1,0)是平面ADE 的一个法向量, 设平面ACE 的法向量为m =(x ,y ,z ),∵AC =(-a ,a,0),AE=(-a,0,λa ),∴⎩⎨⎧m ·AC=0,m ·AE=0.即⎩⎪⎨⎪⎧ -ax +ay =0,-ax +λaz =0,∴⎩⎪⎨⎪⎧x -y =0,x -λz =0. 取z =1,则x =y =λ,∴m =(λ,λ,1), ∵二面角C -AE -D 的大小为60°, ∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=λ1+2λ2=12, ∵λ∈(0,1], ∴λ=22.1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC=AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.解析:建立如图所示的空间直角坐标系. 设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1),则EF=(0,-1,1),1BC =(2,0,2),∴EF ·1BC=2, ∴cos 〈EF ,1BC〉=22×22=12,∴EF 和BC 1所成角为60°. 答案:60°2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2).设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB=(0,2,2),设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0, 令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=|m·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案: 23.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a2. 则CA =(2a,0,0),AP =⎝⎛⎭⎫-a ,-a 2,a 2,CB =(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB ,n 〉=CB·n | CB ||n |=a 2a 2·2=12. ∴〈CB,n 〉=60°,∴直线BC 与平面P AC 的夹角为90°-60°=30°. 答案:30°4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.解:(1)证明:由题可知,AP 、AD 、AB 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP =(0,0,3),AC =(23,6,0),BD=(-23,2,0),∴BD ·AP =0,BD ·AC=0.∴BD ⊥AP ,BD ⊥AC .又P A ∩AC =A ,∴BD ⊥平面P AC .(2)显然平面ABD 的一个法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD =0,n ·BP =0. 由(1)知,BP=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0,整理得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m ·n |m ||n |=12.∴结合图形可知二面角P -BD -A 的大小为60°.5.(2012·辽宁高考)如图,直三棱柱ABC -A ′B ′C ′,∠BAC=90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.解:(1)法一:证明:如图,连接AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点, 所以MN ∥AC ′. 又MN ⊄平面A ′ACC ′, A ′C ⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.法二:证明:取A ′B ′ 中点P ,连接MP ,NP ,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立空间直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1), B ′(λ,0,1),C ′(0,λ,1), 所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量, 由⎩⎨⎧m ·A M ' =0,m ·MN=0,得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量, 由⎩⎨⎧n ·NC =0,n ·MN=0,得⎩⎨⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0,可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m·n =0, 即-3+(-1)×(-1)+λ2=0,解得λ=2(负值舍去).6.如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C . 又因为A 1C ⊥CD . 所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·1A B =0,n ·BE =0.又1A B(3,0-= (-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3. 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.因为CM=所以sin θ=|cos 〈n , CM 〉|=|n ·CM|n ||CM ||=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP =0. 又1A D =(0,2,-23),DP=(p ,-2,0), 所以⎩⎨⎧2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p 3. 所以m =(2,p ,p 3). 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.1.(2013·湖北模拟)如图所示,四棱锥P -ABCD 中,底面ABCD为正方形,PD ⊥平面ABCD ,PD =AB =2,E 、F 、G 分别为PC 、PD 、BC 的中点.(1)求证:P A ⊥EF ;(2)求二面角D -FG -E 的余弦值.解:以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),A (0,2,0),C (-2,0,0),P (0,0,2),E (-1,0,1),F (0,0,1),G (-2,1,0).(1)证明:由于PA =(0,2,-2),EF =(1,0,0),则PA ·EF=1×0+0×2+(-2)×0=0,∴P A ⊥EF .(2)易知DF =(0,0,1),EF=(1,0,0),FG =(-2,1,-1),设平面DFG 的法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·DF =0,m ·FG=0,解得⎩⎪⎨⎪⎧z 1=0,-2x 1+y 1-z 1=0. 令x 1=1,得m =(1,2,0)是平面DFG 的一个法向量. 设平面EFG 的法向量n =(x 2,y 2,z 2), 同理可得n =(0,1,1)是平面EFG 的一个法向量. ∵cos 〈m ,n 〉=m ·n |m |·|n |=25·2=210=105,设二面角D -FG -E 的平面角为θ,由图可知θ=π-〈m ,n 〉, ∴cos θ=-105, ∴二面角D -FG -E 的余弦值为-105. 2.(2012·北京西城模拟)如图,在直三棱柱ABC -A1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.解:(1)证明:连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点.又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直.以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0),所以AD=(1,-2,0),1AC =(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD =0,n ·1AC =0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1). 所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2.所以AE=(0,λ-2,1),1DC =(1,0,1).因为AE 与DC 1成60°角,所以|cos 〈AE ,1DC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AE ·1DC|AE |·|1DC |=12. 即⎪⎪⎪⎪⎪⎪1(λ-2)2+1·2=12,解得λ=1或λ=3(舍去).所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.1.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为坐标原点,DA 、DP 、DC 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .设DA =1,则有D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0),所以DQ =(1,1,0),DC =(0,0,1),PQ=(1,-1,0),所以PQ ·DQ =0,PQ ·DC =0,即PQ ⊥DQ ,PQ ⊥DC .又DQ ⊂平面DCQ ,DC ⊂平面DCQ ,且DQ ∩DC =D , 所以PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)由(1)易知B (1,0,1),CB =(1,0,0),BP=(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎨⎧n ·CB =0,n ·BP=0, 即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,可取n =(0,-1,-2). 设m =(x 1,y 1,z 1)是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP=0,m ·PQ =0, 即⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,x 1-y 1=0,可取m =(1,1,1). 所以cos 〈m ,n 〉=-155, 故二面角Q -BP -C 的余弦值为-155. 2.(2012·天津高考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛-12,⎭⎫12,0,P (0,0,2).(1)证明:易得PC=(0,1,-2), AD=(2,0,0),于是PC ·AD=0,所以PC ⊥AD .(2) PC =(0,1,-2),CD=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·PC=0,n ·CD=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m·n|m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE =⎝⎛⎭⎫12,-12,h .由CD =(2,-1,0),故cos 〈BE ,CD 〉=BE ·CD|BE|·|CD |=3212+h 2×5=310+20h 2,所以310+20h 2=cos 30°=32,解得h =1010,即AE =1010. 3.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2.(1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ; (2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由.解:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,y 0,0)(0≤y 0≤2).(1)证明:∵1D E =(1,y 0,-1),1A D=(-1,0,-1), 则1D E ·1A D=(1,y 0,-1)·(-1,0,-1)=0, ∴1D E⊥1A D,即D 1E ⊥A 1D .(2)当AE =2-33时,二面角D 1-EC -D 的平面角为π6. ∵EC =(-1,2-y 0,0),1D C=(0,2,-1),设平面D 1EC 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·EC =0,n 1·1D C =0⇒⎩⎪⎨⎪⎧-x +y (2-y 0)=0,2y -z =0.取y =1,则n 1=(2-y 0,1,2)是平面D 1EC 的一个法向量.而平面ECD 的一个法向量为n 2=1DD =(0,0,1),要使二面角D 1-EC -D 的平面角为π6,则cos π6=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-y 0)2+12+22=32,解得y 0=2-33(0≤y 0≤2). ∴当AE =2-33时,二面角D 1-EC -D 的平面角为π6. 4.(2012·湖北模拟)在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC =90°.(1)若异面直线A 1B 与B 1C 1所成的角为60°,求棱柱的高; (2)设D 是BB 1的中点,DC 1与平面A 1BC 1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.解:建立如图所示的空间直角坐标系A -xyz ,设AA 1=h (h >0),则有B (1,0,0),B 1(1,0,h ),C 1(0,1,h ),A 1(0,0,h ),11B C =(-1,1,0),11A C =(0,1,0),1A B=(1,0,-h ). (1)因为异面直线A 1B 与B 1C 1所成的角为60°,所以cos60°=|11B C ·1A B ||11B C |·|1A B |, 即12·h 2+1=12,得1+h 2=2,解得h =1. (2)由D 是BB 1的中点,得D ⎝⎛⎭⎫1,0,h 2, 于是1DC =⎝⎛⎭⎫-1,1,h2. 设平面A 1BC 1的法向量为n =(x ,y ,z ),于是由n ⊥1A B ,n ⊥11A C可得⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C=0,即⎩⎪⎨⎪⎧x -hz =0,y =0,可取n =(h,0,1),故sin θ=|cos 〈1DC,n 〉|,而|cos 〈1DC ,n 〉|=|1DC·n ||1DC |·|n |=⎪⎪⎪⎪-h +h 214h 2+2·h 2+1=hh 4+9h 2+8.令f (h )=hh 4+9h 2+8=1h 2+8h2+9,因为h 2+8h 2+9≥28+9,当且仅当h 2=8h 2,即h =48时,等号成立.所以f (h )≤19+28=18+1=22-17,故当h =48时,sin θ的最大值为22-17.立 体 几 何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·重庆模拟)若两条直线和一个平面相交成等角,则这两条直线的位置关系是( )A .平行B .异面C .相交D .平行、异面或相交解析:选D 经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现.2.(2012·福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱解析:选D 球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同. 3.(2012·安徽模拟)在空间,下列命题正确的是( ) A .若三条直线两两相交,则这三条直线确定一个平面 B .若直线m 与平面α内的一条直线平行,则m ∥αC .若平面α⊥β,且α∩β=l ,则过α内一点P 与l 垂直的直线垂直于平面βD .若直线a ∥b ,且直线l ⊥a ,则l ⊥b解析:选D 三条直线两两相交,可确定一个平面或三个平面,故A 错;m 与平面α内一条直线平行,m 也可在α内,故B 错;若平面α⊥β,且α∩β=l ,当P ∈l 时,过P 点与l 垂直的直线可在β外,也可在β内,故C 错.由等角定理知D 正确.4.(2012·新课标全国卷)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A.6πB .43πC .46πD .63π解析:选B 设球的半径为R ,由球的截面性质得R =(2)2+12=3,所以球的体积V =43πR 3=43π.5.(2012·北京海淀二模)某几何体的正视图与俯视图如图所示,侧视图与正视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A.203 B.43 C .6D .4解析:选A 由三视图知,该几何体是正方体挖去一个以正方体的中心为顶点、以正方体的上底面为底面的四棱锥后的剩余部分,其体积是23-13×22×1=203.6.(2013·安徽模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 由三视图的相关知识易知选B.7.正方体ABCD -A 1B 1C 1D 1中,与体对角线AC 1异面的棱有( ) A .3条 B .4条 C .6条D .8条解析:选C 从定义出发,同时考虑到正方体的体对角线AC 1与正方体的6条棱有公共点A 和C 1,而正方体有12条棱,所以与AC 1异面的棱有6条.8.(2012·衡阳模拟)如图,一个空间几何体的正视图和侧视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积为( )A.π4B.π2C.2π2D.2π4 解析:选B 此几何体是底面半径为12,母线长为1的圆锥,其侧面积S =πrl =π×12×1=π2. 9.如图,在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直C .MN 与BD 平行D .MN 与A 1B 1平行解析:选D 由于C 1D 1与A 1B 1平行,MN 与C 1D 1是异面直线,所以MN 与A 1B 1是异面直线,故选项D 错误.10.(2012·皖南八校三联)某几何体的三视图如图所示(单位:cm),则此几何体的体积为( )A .18 cm 3B .15 cm 3C .12 cm 3D .9 cm 3解析:选B 由三视图可知,该几何体是一个上下均为长方体的组合体.如图所示,由图中数据可得该几何体体积为3×3×1+1×2×3=15(cm 3).11.在正四面体A -BCD 中,棱长为4,M 是BC 的中点,P 在线段AM 上运动(P 不与A 、M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题:①BC ⊥面AMD ;②Q 点一定在直线DM 上;③V C -AMD =4 2.其中正确的是( )A .①②B .①③C .②③D .①②③解析:选A ∵A -BCD 是正四面体,M 为BC 中点,∴AM ⊥BC ,DM ⊥BC ,且AM ∩DM =M ,∴BC ⊥面AMD .∴①正确.V C -AMD =13S △AMD ·CM (∵BC ⊥面AMD ,∴CM 为四面体C -AMD 的高). 如图,在△AMD 中,AM =DM =AB 2-BM 2=42-22=23,MN =AM 2-AN 2=12-22=22,∴S △AMD =12AD ·MN =12×4×22=42, ∴V C -AMD =13×42×2=823,故③不正确.由排除法知选A. 12.(2012·浙江高考)已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 解析:选B 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .二、填空题(本题共4小题,每小题5分,共20分)13.(2012·肇庆二模)已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为________,________.解析:由三视图可知,该几何体的下部是一底边长为2,高为4的长方体,上部为一球,球的直径等于正方形的边长.所以长方体的表面积为S 1=2×2×2+4×2×4=40,长方体的体积为V 1=2×2×4=16,球的表面积和体积分别为S 2=4×π×12=4π,V 2=43×π×13=4π3, 故该几何体的表面积为S =S 1+S 2=40+4π,该几何体的体积为V =V 1+V 2=16+4π3.答案:40+4π 16+4π314. (2012·北京怀柔模拟)P 为△ABC 所在平面外一点,且P A 、PB 、PC 两两垂直,则下列命题:①P A ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC .其中正确的个数是________.解析:如图所示.∵P A ⊥PC ,P A ⊥PB ,PC ∩PB =P ,∴P A ⊥平面PBC .又∵BC ⊂平面PBC ,∴P A ⊥BC .同理PB ⊥AC ,PC ⊥AB .但AB 不一定垂直于BC .共3个.答案:315.已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.解析:如图,三棱柱的外接球球心为O ,其中D 为上底面三角形外接圆的圆心,其中AD =33×6=23,又OD =3,故在Rt △OAD 中可得R =|OA |=(23)2+32=21,故球的表面积为4π(21)2=84π.答案:84π16.(2012·长春名校联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个命题:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确;过M 、N 分别作MR ⊥A 1B 1、NS ⊥B 1C 1于点R 、S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M 、N 分别是AB 1、BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③对.综上所述,其中正确命题的序号是①③.答案:①③三、解答题(本大题有6小题,共70分)17.(本小题满分10分)(2012·陕西高考)在直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2. (1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.解:(1)证明:如图所示,连接AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2, ∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形,∴BA 1⊥AB 1,又CA ∩AB 1=A ,∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1,由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23. 18.(本小题满分12分) (12分)如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD . 解:在平面PCD 内,过E 作EG ∥CD 交PD 于G ,连接AG ,在AB 上取点F ,使AF =EG ,则F 即为所求作的点.∵EG ∥CD ∥AF ,EG =AF ,∴四边形FEGA 为平行四边形,∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD ,∴EF ∥平面P AD .又在Rt △BCE 中, CE =BC 2-BE 2= a 2-23a 2=33a . 在Rt △PBC 中,BC 2=CE ·CP ,∴CP =a 23a3=3a , 又EG CD =PE PC, ∴EG =PE PC ·CD =23a ,∴AF =EG =23a . ∴点F 为AB 靠近点B 的一个三等分点.19.(本小题满分12分) (12分)(2012·新课标全国卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.(本小题满分12分) (12分)(2012·安徽高考)如图,长方体ABCD -A 1B 1C 1D 1中,底面A 1B 1C 1D 1是正方形,O 是BD 的中点,E 是棱AA 1上任意一点.(1)证明:BD ⊥EC 1;(2)如果AB =2,AE =2,OE ⊥EC 1,求AA 1的长.解:(1)证明:连接AC ,A 1C 1.由底面是正方形知,BD ⊥AC .因为AA 1⊥平面ABCD ,BD ⊂平面ABCD ,所以AA 1⊥BD .又AA 1∩AC =A ,所以BD ⊥平面AA 1C 1C .由EC 1⊂平面AA 1C 1C 知,BD ⊥EC 1.(2)法一:设AA 1的长为h ,连接OC 1.在Rt △OAE 中,AE =2,AO =2,故OE 2=(2)2+(2)2=4.故Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2. 因为OE⊥EC1,所以OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,所以AA1的长为3 2.法二:∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽△EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.21.(本小题满分12分) (12分)(2012·郑州一模)如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.解:(1)证明:∵平面SAD⊥平面ABCD且平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE⊥AD,∴SE⊥平面ABCD.∵BE⊂平面ABCD,∴SE⊥BE.∵AB⊥AD,AB∥CD,CD=3AB=3,AE=ED=3,∴∠AEB=30°,∠CED=60°.∴∠BEC=90°,即BE⊥CE.又SE∩CE=E,,∴BE⊥平面SEC,∵BE⊂平面SBE,∴平面SBE⊥平面SEC.(2)如图,过点E作EF⊥BC于点F,连接SF.由(1)知SE⊥平面ABCD,而BC ⊂平面ABCD ,∴BC ⊥SE ,又SE ∩EF =E ,∴BC ⊥平面SEF ,∵BC ⊂平面SBC ,∴平面SEF ⊥平面SBC .过点E 作EG ⊥SF 于点G ,则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由(1)易知,BE =2,CE =23,则BC =4,EF = 3.在Rt △SEF 中,SE =1,SF =SE 2+EF 2=2,则EG =ES ·EF SF =32,∴三棱锥E -SBC 的高为32.22.(本小题满分12分) (14分)(2012·北京昌平二模)在正四棱柱ABCD -A 1B 1C 1D 1中,E 为AD 的中点,F 为B 1C 1的中点.(1)求证:A 1F ∥平面ECC 1;(2)在CD 上是否存在一点G ,使BG ⊥平面ECC 1?若存在,请确定点G 的位置,并证明你的结论;若不存在,请说明理由.解:(1)证明:在正四棱柱ABCD -A 1B 1C 1D 1中,取BC 的中点M ,连接AM ,FM .∴B 1F ∥BM 且B 1F =BM .∴四边形B 1FMB 是平行四边形.∴FM ∥B 1B 且FM =B 1B .∴FM ∥A 1A 且FM =A 1A ,∴四边形AA 1FM 是平行四边形.∴F A 1∥AM .∵E 为AD 的中点,∴AE ∥MC 且AE =MC .∴四边形AMCE 是平行四边形.∴CE ∥AM .∴CE ∥A 1F .∵A 1F ⊄平面ECC 1,EC ⊂平面ECC 1,∴A 1F ∥平面ECC 1.(2)在CD上存在一点G,使BG⊥平面ECC1.取CD的中点G,连接BG.在正方形ABCD中,DE=GC,CD=BC,∠ADC=∠BCD,∴△CDE≌△BCG.∴∠ECD=∠GBC.∵∠CGB+∠GBC=90°,∴∠CGB+∠DCE=90°.∴BG⊥EC.∵CC1⊥平面ABCD,BG⊂平面ABCD,∴CC1⊥BG,又EC∩CC1=C,∴BG⊥平面ECC1.故在CD上存在中点G,使得BG⊥平面ECC1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓 名 年级 性 别 学 校 学 科 教师上课日期上课时间课题17向量法求空间角角的分类 向量求法 范围两异面直线l 1与l 2所成的角θ 设l 1与l 2的方向向量为a ,b ,则cos θ=___________=_______________ (0,π2]直线l 与平面α所成的角θ设l 的方向向量为a ,平面α的法向量为n ,则sin θ=___________=________[0,π2]二面角α-l-β的平面角θ 设平面α,β的法向量为n 1,n 2,则|cos θ|=___________=|n 1·n 2||n 1|·|n 2|[0,π]类型一 异面直线所成的角例1、如图,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x 轴、y 轴、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =θ. 当θ=π3时,求异面直线AC 与VD 所成角的余弦值【自主解答】 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0)当θ=π3时,在Rt △VCD 中,CD =2,∴V (0,0,6),∴AC →=(-2,0,0),VD →=(1,1,-6),∴cos 〈AC →,VD →〉=AC →·VD →|AC →||VD →|=-22×22=-24. ∴异面直线AC 与VD 所成角的余弦值为24.1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程只需对相应向量运算即可. 2.由于两异面直线夹角θ的范围是(0,π2],而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意.变式1、在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,求异面直线A 1B 与B 1C 所成角的余弦值.【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),得A 1B →=(0,4,-3),B 1C →=(-4,0,-3).设A 1B →与B 1C →的夹角为θ,则cos θ=A 1B →·B 1C →|A 1B →||B 1C →|=925,故A 1B →与B 1C →的夹角的余弦值为925, 即异面直线A 1B 与B 1C 所成角的余弦值为925.类型二 求线面角例2、三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥AC ,P A =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点. (1)证明:CM ⊥SN ; (2)求SN 与平面CMN 所成角的大小.【自主解答】 设P A =1,以A 为原点,射线AB ,AC ,AP 分别为x ,y ,z 轴正向建立空间直角坐标系(如图).则P (0,0,1),C (0,1,0),B (2,0,0),又AN =14AB ,M 、S 分别为PB 、BC 的中点,∴N (12,0,0),M (1,0,12),S (1,12,0),(1)CM →=(1,-1,12),SN →=(-12,-12,0),∴CM →·SN →=(1,-1,12)·(-12,-12,0)=0,因此CM ⊥SN .(2)NC →=(-12,1,0),设a =(x ,y ,z )为平面CMN 的一个法向量,∴CM →·a =0,NC →·a =0.则⎩⎨⎧x -y +12z =0,-12x +y =0.∴⎩⎪⎨⎪⎧x =2y ,z =-2y .取y =1,则得a =(2,1,-2). 因为cos a ,SN →=-1-123×22=-22.∴〈a ,SN →〉=34π.所以SN 与平面CMN 所成角为34π-π2=π4.1.题中直线的方向向量SN →与平面的法向量a 的夹角并不是所求线面角θ,它们的关系sin θ=|cos 〈SN →,a 〉|.2.若直线l 与平面α的夹角为θ,利用法向量计算θ的步骤如下:变式、正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,求BE 与平面B 1BDD 1所成角的余弦值.【解】 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).AC →=(-2,2,0)即平面B 1BDD 1的一个法向量,设n =(-1,1,0). cos 〈n ,BE →〉=n ·BE →|n ||BE →|=105. 设BE 与平面B 1BD 所成角为θ,cos θ=sin 〈n ,BE →〉=155, 即BE 与平面B 1BD 所成角的余弦值为155. 类型三 求二面角例3、若正方形ACDE 所在的平面与平面ABC 垂直,M 是CE 和AD 的交点,AC ⊥BC ,且AC =BC ,求二面角A -EB -C 的大小.【自主解答】 ∵四边形ACDE 是正方形,∴EA ⊥AC . 又∵平面ACDE ⊥平面ABC ,∴EA ⊥平面ABC .以点A 为坐标原点,以过A 点平行于BC 的直线为x 轴,分别以直线AC ,AE 为y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .设EA =AC =BC =2,则A (0,0,0),B (2,2,0),C (0,2,0),E (0,0,2). ∵M 是正方形ACDE 的对角线的交点,∴M (0,1,1).设平面EAB 的法向量为n =(x ,y ,z ),则n ⊥AE →且n ⊥AB →,从而有n ·AE →=0且n ·AB →=0.又∵AE →=(0,0,2),AB →=(2,2,0),∴⎩⎪⎨⎪⎧(x ,y ,z )·(0,0,2)=0,(x ,y ,z )·(2,2,0)=0,即⎩⎪⎨⎪⎧z =0,x +y =0.取y =-1,则x =1,则n =(1,-1,0).又∵AM →为平面EBC 的一个法向量,且AM →=(0,1,1),∴cos 〈n ,AM →〉=n ·AM →|n ||AM →|=-12. 设二面角A -EB -C 的平面角为θ,则cos θ=12,即θ=60°. 故二面角A -EB -C 为60°.用向量法求二面角的大小,可以避免作出二面角的平面角这一难点,转化为计算两半平面法向量的夹角问题,具体求解步骤如下:(1)建立空间直角坐标系;(2)分别求出二面角的两个半平面所在平面的法向量; (3)求两个法向量的夹角;(4)判断所求二面角的平面角是锐角还是钝角; (5)确定二面角的大小.变式、已知正三棱柱ABC -A 1B 1C 1的各条棱长均为a ,D 是侧棱CC 1的中点,求平面AB 1D 与平面ABC 所成二面角(锐角)的大小.【解】 以B 为原点,过点B 与BC 垂直的直线为x 轴,BC 所在的直线为y 轴,BB 1所在直线为z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),C (0,a,0),B 1(0,0,a ),C 1(0,a ,a ),A (-32a ,a 2,0),A 1(-32a ,a 2,a ),D (0,a ,a 2). 故AB 1→=(32a ,-a 2,a ),B 1D →=(0,a ,-a2).设平面AB 1D 的法向量为n =(x ,y ,z ), 则n ·AB 1→=0,n ·B 1D →=0,即⎩⎨⎧32ax -a 2y +az =0,ay -a2z =0.得x =-3y ,z =2y . 取y =1,则n =(-3,1,2).∵平面ABC 的法向量是AA 1→=(0,0,a ),∴二面角θ的余弦值为cos θ=AA 1→·n |AA 1→||n |=22. ∴θ=π4. ∴平面AB 1D 与平面ABC 所成二面角(锐角)的大小为π4.对所求角与向量夹角的关系不理解致误例4、正方体ABCD —A 1B 1C 1D 1中,求二面角A -BD 1-C 的大小.【正解】 以D 为坐标原点建立如图所示的空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),C 1(0,1,1). 由题意知DA 1→=(1,0,1)是平面ABD 1的一个法向量, DC 1→=(0,1,1)是平面BCD 1的一个法向量. 所以cos 〈DA 1→,DC 1→〉=DC 1→·DA 1→|DC 1→|·|DA 1→|=12,所以〈DA 1→,DC 1→〉=60°. 所以二面角A -BD 1-C 的大小为120°.练习:1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( )A .30°B .150°C .30°或150°D .以上均不对【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且异面直线所成角的范围为(0,π2].应选A.2.已知向量m ,n 分别是直线l 与平面α的方向向量、法向量,若cos 〈m ,n 〉=-32,则l 与α所成的角为( ) A .30°B .60°C .150°D .120°解析】 设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=32, ∴θ=60°,应选B. 3.已知平面α的法向量u =(1,0,-1),平面β的法向量v =(0,-1,1),则平面α与β所成的二面角的大小为________.【解析】 cos 〈u ,v 〉=-12·2=-12,∴〈u ,v 〉=23π,而所成的二面角可锐可钝,故也可以是π3.4.如图3-2-22直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =1,CC 1=2,求直线A 1B 与平面BB 1C 1C 所成角的正弦值.【解】 以CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (0,1,0),C 1(0,0,2),A 1(1,0,2).则A 1B →=(-1,1,-2),平面BB 1C 1C 的法向量n =(1,0,0).设直线A 1B 与平面BB 1C 1C 所成角为θ,A 1B →与n 的夹角为φ,则cos φ=A 1B →·n |A 1B →||n |=-66,∴sin θ=|cos φ|=66. ∴直线A 1B 与平面BB 1C 1C 所成角的正弦值为66.。