电力系统谐振原因及处理措施分析
电力系统谐振原因及处理措施分析
电力系统谐振原因及处理措施分析电力系统谐振是指在电力系统中,由于电感元件和电容元件之间的耦合作用,导致系统频率与其中一谐振频率非常接近或者相等,从而引发强烈的谐振现象。
电力系统谐振会导致系统的稳定性降低,甚至对设备造成损伤,因此需采取相应的处理措施。
1.线路参数不平衡:电力系统中,线路参数可能由于材料、施工等原因导致不平衡,使得电阻、电容、电感的数值存在差异,从而引发谐振问题。
2.寄生参数影响:由于电力系统中存在各种元件的寄生参数,如线路电容、变压器互感等,这些寄生参数也会产生谐振现象。
3.变压器的串联谐振:当变压器的电容和电抗连续串联时,会导致系统在谐振频率附近出现谐振现象。
4.电容补偿的谐振:电容补偿系统用来提高无功功率补偿能力,但若补偿容量选择不当,会形成与其他元件共振,引起谐振。
1.选择合适的线路参数:优化电力系统的线路参数,例如通过合理选择导线材料、提高线路间隙距离等措施,可以减小谐振的产生。
2.增加阻尼措施:在电力系统中增加合适的阻尼器,可以消耗谐振的能量,减轻谐振的影响,提高系统的稳定性。
3.采用合适的电容补偿:在进行电容补偿时,应合理选择补偿容量,避免与其他元件共振。
可以通过对电容器的串联电感进行合理设计,避免谐振的发生。
4.使用滤波器:适当地在系统中引入谐振滤波器,可以将谐振频率范围的干扰信号滤除,从而消除谐振现象。
5.加强监测与控制:对电力系统进行实时监测,发现谐振问题时及时采取控制措施,如调整电力系统的运行状态,避免谐振过程的加剧。
6.加强设备维护:定期检查和维护电力系统的设备,防止电容、电感元件损坏引发谐振。
总结起来,电力系统谐振的处理措施是多方面的,包括优化线路参数、增加阻尼措施、合理选择电容补偿、使用滤波器、加强监测与控制以及设备维护等。
通过采取这些措施,可以有效地预防和处理电力系统谐振问题,提高系统的稳定性和可靠性。
电力系统中的谐波问题与分析技术研究
电力系统中的谐波问题与分析技术研究引言:现代社会对电力的需求越来越大,电力系统的稳定运行对于社会经济的发展至关重要。
然而,电力系统在运行过程中会面临一些问题,如谐波问题。
谐波是电力系统中的一种普遍现象,它对系统的稳定性和设备的正常运行产生了不可忽视的影响。
因此,对电力系统中的谐波问题进行深入研究和分析,提出相应的解决方法和技术手段是非常必要的。
一、谐波问题的定义与影响1. 谐波的定义谐波是指电力系统中存在的频率是基波频率整数倍的谐振现象。
电力系统中产生谐波的主要原因包括非线性负载、发电机组的谐波励磁和谐波源的接入等。
谐波问题主要表现在电压和电流波形畸变、系统损耗增加以及设备寿命缩短等方面。
2. 谐波问题的影响谐波对电力系统的影响主要体现在以下几个方面:(1)设备损坏:谐波会导致电力设备的工作电流和温度升高,进而加速设备的老化和损坏;(2)电网损失:谐波会导致电网中的有功和无功损失增加,降低系统的效率;(3)通信干扰:谐波会对通信设备产生干扰,降低通信质量和可靠性。
二、谐波分析技术为了解决电力系统中的谐波问题,需要进行谐波分析,找出谐波源,并提出相应的处理措施。
目前,谐波分析技术主要包括频谱分析和时域分析两种方法。
1. 频谱分析频谱分析是通过观察电力系统中各频率成分的振幅和相位关系,以及谐波频率分布情况来分析谐波问题。
常用的频谱分析方法包括傅里叶变换和小波变换。
(1)傅里叶变换傅里叶变换能够将信号在频域中分解成各个频率成分,并得到各频率成分的幅度和相位信息。
通过对电压或电流波形进行傅里叶变换,可以得到具体的谐波频率及其振幅,从而判断谐波的产生原因。
(2)小波变换小波变换是一种时频分析方法,能够同时提供时间和频率信息。
它通过对信号进行连续的分解,得到各个频率成分在时域和频域上的分布情况,更能反映谐波在时间上的变化特性。
2. 时域分析时域分析是通过观察电力系统中各时刻的电压和电流波形来分析谐波问题。
常用的时域分析方法包括快速傅里叶变换和窗函数法。
谐振产生的原因、分类、危害及防范措施
谐振产生的原因、分类、危害及防范措施一、谐振的类型一般可认为电力系统中的电容和电阻元件是线性参数,电感元件是非线性参数。
由于振荡回路中包含不同特性的电感元件,谐振有三种不同的类型:1.线性谐振。
谐振回路由不带铁芯的电感元件(如输电线路的电感、变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈,其铁芯中有气隙)和系统中的电容元件所组成。
在正弦电源作用下,当系统自振频率与电源频率相等或接近时,可能产生线性谐振。
2.铁磁谐振。
谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统中的电容元件组成。
受铁芯饱和的影响,铁芯电感元件的电感参数是非线性的,这种含有非线性电感元件的回路,在满足一定谐振条件时,会产生铁磁谐振。
目前在我国的10kV 系统中,运行着大量的电磁式电压互感器(PT),当出现单相直接接地、单相弧光接地、母线空载时突然合闸等情况时,由于电压互感器铁心电感的非线性,很容易发生谐振。
当PT 一次电感与系统对地电容满足谐振条件时,将产生很高的过电压和过电流,从而引起PT一次熔断器烧毁,甚至爆炸,严重威胁电网的安全运行。
3.参数谐振。
谐振回路由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd-Xq间周期变化)和系统电容元件(如空载线路)组成。
当参数配合恰当时,通过电感的周期性变化,不断向谐振系统输送能量,将会造成参数谐振。
二、铁磁谐振的特点铁磁谐振是电力系统自激振荡的一种形式,其本质是一种LC振荡,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。
其主要特点为:1、铁磁谐振存在自保持现象。
激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;2、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。
3、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;4、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。
电力谐波的产生原因及抑制方法
电力谐波的产生原因及抑制方法电力谐波是指电力系统中产生的非正弦波形,它由于交流电系统中的非线性负载、电力线上的电容器和电感器等因素引起。
电力谐波在电力系统中的存在可能会导致设备的故障、能源浪费和电网负载能力的下降。
因此,对电力谐波的产生进行有效的抑制是非常重要的。
1.非线性负载:非线性负载是电力谐波的主要源头。
非线性负载通常包括电力电子设备,如电视、计算机、UPS电源、逆变器、风力发电机等。
这些设备的工作原理会产生非线性电流,进而导致电网中谐波的产生。
2.电容器和电感器:电容器和电感器也会对电力谐波的产生做出贡献。
在电力系统中,电容器和电感器常用于无功补偿和电能储存。
然而,由于电容器和电感器的等效电路具有谐振特性,它们会对电力谐波起到放大的作用。
3.电网接地方式:电网的接地方式也会影响电力谐波的产生。
当电网采用不完全中性接地时,地线电流会导致电子设备的谐波污染。
抑制电力谐波的方法有多种,下面将介绍几种常见的方法:1.优化电力系统设计:对于新建的电力系统,可以采用谐波抑制措施进行设计。
例如,将非线性负载远离主要的电源和敏感设备,减少非线性负载对谐波的干扰。
2.增加电力系统的容量:增加系统容量可以降低电力谐波对设备的影响。
通过增加设备的容量,可以减少设备的负载率,从而降低了负载谐波。
3.应用谐波滤波器:谐波滤波器是目前应用最广泛的抑制电力谐波的方法之一、谐波滤波器可将电力谐波从电网中滤除,从而减少对设备的影响。
4.提高设备的抗谐波能力:可以通过改善设备的设计或增加额外的抗谐波装置,使得设备能够更好地抵抗电力谐波的干扰。
5.加强监测和管理:及时监测电力谐波的产生和影响程度,对于谐波超标的情况进行调整和管理。
可以采用在线监测系统对电力谐波进行实时监测,并根据监测结果采取适当的措施。
综上所述,电力谐波的产生原因主要是非线性负载、电容器和电感器以及电网接地方式等因素的综合作用。
为了有效抑制电力谐波,需要采用适当的方法,包括优化电力系统设计、增加系统容量、应用谐波滤波器、提高设备的抗谐波能力以及加强监测和管理等。
浅谈电力系统中的铁磁谐振过电压及消除方法
浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。
关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。
这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。
2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。
铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。
铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。
当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。
电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。
在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。
35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。
据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。
铁磁谐振过电压导致故障的严重性可见一般。
铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。
电力电子技术中的电流谐振问题
电力电子技术中的电流谐振问题电力电子技术作为当代电力系统的核心内容之一,在工业生产和能源领域中起着至关重要的作用。
然而,电力电子设备中存在着一个常见的问题,即电流谐振。
本文将重点讨论电力电子技术中的电流谐振问题,并探讨其原因、影响以及解决方法。
1. 电流谐振问题的定义与产生原因电流谐振是指在电力电子设备中,电容和电感之间的互相作用引起的一种电流共振现象。
当电路中存在电容和电感时,由于它们的物理特性,电流在两者之间来回振荡,形成谐振。
电容和电感的参数选择不合理、电路布局不当、工作条件变化等都可能导致电流谐振现象的发生。
2. 电流谐振问题的影响电流谐振问题在电力电子设备中会带来一系列不良影响。
首先,谐振时电路中的电压和电流幅值会异常增大,导致元器件的过压和过流,甚至可能引发短路或烧毁元器件,损坏设备。
其次,电流谐振会带来额外的能量损耗,降低系统的能效。
此外,谐振频率与系统的工作频率相近时,会对系统的电磁兼容性产生不利影响,产生电磁干扰,影响其他设备的正常工作。
3. 电流谐振问题的解决方法为了解决电力电子技术中的电流谐振问题,需要采取一系列措施。
以下是几种常见的解决方法:(1)合理选择电容和电感的参数。
电容和电感是影响电流谐振的关键因素之一,通过合理选择它们的参数,可以有效降低电流谐振的发生概率。
例如,选择合适的电容和电感数值,使得它们的谐振频率远离系统的工作频率。
(2)增加阻尼措施。
通过在电路中增加合理的阻尼元件,如阻尼电阻或阻尼电容,可以消耗电流谐振时产生的能量,减小谐振幅值,降低电流谐振的风险。
(3)改进电路布局和连接方式。
电路的布局和连接方式直接影响电流谐振的发生概率。
因此,在设计电力电子系统时,需要合理规划电路布局,并采用合适的连接方式,减少电感和电容之间的互相影响。
(4)优化控制策略。
合理设计电力电子系统的控制策略,可以有效减小电流谐振的发生。
例如,采用谐振抑制技术,通过控制开关频率和占空比,在电路中引入有利于抑制谐振的频谱分布,降低谐振效应。
谐波、谐振的危害及防治措施
谐波、谐振的危害及防治措施前言随着电气自动化的迅速发展,工业生产中对电能质量的要求更高,但由于电能的复杂性和不稳定性,电力企业和电力用户都会面临许多问题。
其中一个关键问题就是谐波和谐振的危害,它们会对电力系统带来很多问题,同时也会对设备和工作人员的安全产生影响。
因此,谐波和谐振的危害需要引起我们的重视,有必要采取相应的措施进行防治。
谐波的危害谐波是指频率为整数倍基波频率的倍频波,当电网中出现谐波时,会对电力系统造成很多负面影响,主要表现在以下几个方面:1. 降低电网功率因数谐波会对电力系统的功率因数产生影响,使功率因数降低。
功率因数越低,电子设备就越难以正常工作,同时还会导致电能损失和电费增加。
因此,谐波应尽量减小。
2. 损害设备大量谐波会给设备带来很大的损害,造成设备寿命减少,安全储备降低和可靠性下降,这对生产带来很大的风险和影响。
谐波带来的损害主要包括:•电机过热损坏•物理变形•变压器局部过热•电容器和电感器损坏3. 干扰通信系统谐波会引起通信系统(尤其是无线电通信系统)的干扰,影响通信质量。
这种干扰会干扰射频通信的接收机、起伏机、响应器、发射机以及其他电子部件,使通信信号受到严重干扰,从而影响通信过程的稳定性和可靠性。
谐振的危害谐振是指电力系统在特定频率下的共振现象。
虽然谐振一般在正常运行条件下不会出现,但当出现谐振时,会对电力系统造成很大的威胁,主要表现在以下几个方面:1. 破坏电力设备谐振波能量巨大,一旦出现谐振,就会对电力设备造成破坏,严重时甚至会导致设备停产,影响生产。
因此,谐振的出现需要引起注意。
2. 对安全产生威胁谐振波会对人员和设备的安全产生威胁,严重时会导致设备火灾、电击事故等。
电力系统中所有的设备,不仅要承受电压和电流的冲击,还要承受谐振波的冲击,如果谐振波过大,会对设备造成严重威胁。
3. 影响电网稳定性谐振波的存在会破坏电力系统的稳定性,使电网不稳定,从而引起负荷不均衡、跳闸等故障,进一步危及电网的供电能力和稳定性。
电力系统谐振原因及处理措施分析
电力系统谐振原因及处理措施分析电力系统谐振是指电力系统中存在频率与系统其中一谐振频率相近的异常振动现象。
谐振会导致系统设备振幅增大、电流容量减小、电压稳定性下降,甚至会使系统设备损坏,严重时还会引发系统事故。
本文将详细分析电力系统谐振的原因,并给出相应的处理措施。
1.电抗器的并联谐振:电力系统中常见的电抗器有电动励磁容器、电抗器组等,在负载下和其中一种电抗器传输系统中,电源电抗器与传输线电感一起形成一个并联谐振回路。
当电抗器的谐振频率与线路电感谐振频率相近时,就会发生谐振。
2.传输线上的谐振:传输线上的谐振分为并列谐振和串联谐振两种。
并列谐振是指传输线电抗与负载电容并联形成的谐振回路,串联谐振则是指线路电感与负载电感串联形成的谐振回路。
这两种谐振都是传输线参数与负载特性相匹配时才会发生。
3.系统频率与负载谐振:电力系统的频率为50Hz,而一些设备的响应频率可能在50Hz附近,当系统频率正好与一些设备的谐振频率相符时,就会发生谐振。
常见的设备包括风电、光伏发电等新能源设备。
4.不平衡负荷引起的谐振:当电力系统中存在不平衡负荷时,系统各相之间的不均衡会导致谐振的发生。
针对以上原因,可以采取以下处理措施来避免和解决电力系统谐振问题:1.降低谐振频率:通过选择合适的电容、电感等元件参数,可以使谐振频率远离系统频率。
电容器、电抗器的接线和接地等方式可能会影响并联谐振频率的变化。
2.改变谐振回路的拓扑结构:对并联谐振回路来说,可以通过改变电源、电抗器、传输线等的连接方式来改变谐振回路的拓扑结构,从而避开谐振频率。
对串联谐振回路来说,可以通过改变传输线、负载之间的连接方式来改变谐振回路的拓扑结构。
3.使用谐振抑制装置:谐振抑制装置是一种专门用于抑制谐振的设备,可以通过在谐振回路中引入合适的电阻、电容、电感等元件来实现谐振的消除或抑制。
4.优化电力系统参数:通过优化电力系统的参数,如调整负荷分配、改变线路结构、提高系统稳定性等,来减小谐振的可能性。
电力系统谐振过电压产生的原因及防范措施
电力系统谐振过电压产生的原因及防范措施摘要电力系统中,厂站因过电压引起故障甚多,特别是谐振过电压,对设备甚至系统安全稳定运行影响大。
分析原因,找出问题,提出防治措施很有必要。
关键词谐振过电压;PT;铁芯饱和;防范措施0 引言我国电力系统分为不同电压等级,35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。
过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。
1 谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
2 铁磁谐振为满足电网测量、保护需要,电力系统中配置大量电感电容元件,如:互感器、电抗器等电感元件;电容器、线路对地电容等电容元件。
当进行设备操作或系统故障时,电感电容元件构成振荡回路,在一定条件下产生谐振,损坏设备影响系统。
2.1 原因分析图1某水厂单串接线图,采用接线,110kV系统中性点直接接地,变压器、PT等分相运行,变压器、PT高压绕组接成Y0,该厂多次发生铁磁谐振过电压。
原因:图1 某水电站单串接线图1)故障时产生谐振过电压。
当系统发生单相故障时,因整个电网系统中电感电容元件参数不匹配,两者共同作用,为谐振产生创造条件,最终导致铁磁谐振过电压发生;2)操作时产生谐振过电压。
110kV开关为双断口且并联均压电容,停送电操作时,先拉5012、5013,再拉50126,其他刀闸均接通。
110kV环网通过开关断口电容构成带电磁式PT空母线产生谐振。
2.2 等值电路图该厂输出线路发生单相接地故障,瞬时A相线路产生接地电流,因避雷器参数不匹配,构成谐振回路而产生谐振过电压。
图2 简化电路图如图2,L1是1B一次侧电感,L2是2B一次侧电感,Lm是PT一次侧电感,C0是空长线路对地电容,RL是电阻,k为故障点。
电力系统谐振原因及处理措施分析
一、概述铁磁谐振就是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等与与系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类就是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类就是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统就是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
电力系统中的谐振现象分析与抑制
电力系统中的谐振现象分析与抑制一、引言电力系统是现代社会中不可或缺的基础设施,它为各种用电设备提供稳定可靠的电能。
然而,在电力系统中常常会出现谐振现象,给系统运行带来了很多不利影响。
因此,对电力系统中的谐振现象进行分析与抑制具有重要的理论和实际意义。
二、谐振现象的产生机理谐振是指在外界作用力作用下,系统或器件在某一特定频率下出现的共振现象。
在电力系统中,谐振现象主要产生于电力设备与电力网络之间的相互作用过程中。
当电力设备的特定谐振频率与电力网络的特征频率相匹配时,谐振现象就会发生。
三、谐振现象的危害1. 降低系统的稳定性:谐振现象会导致电力系统的电压、电流的不稳定性,进而影响电力设备的正常工作。
2. 增大系统的损耗:谐振现象会引起电流的过大、频率的变化等问题,从而导致系统中的设备过载、电能损耗增加。
3. 破坏设备的安全性:谐振现象会引起设备内部的过电压现象,可能导致设备的烧毁、损坏。
四、谐振现象的分析方法1. 频率扫描方法:利用频率扫描仪和示波器等仪器,对电力系统的频率响应进行测试和分析,以确定谐振频率。
2. 波形分析方法:通过捕捉系统电压、电流的波形信息,进行波形分析,从中找出谐振的特征。
3. 参数计算方法:根据系统中的电感、电容等参数,利用计算公式计算出谐振频率和谐振峰值等。
五、谐振现象的抑制措施1. 调整电力设备参数:通过改变电力设备的电感、电容等参数,使其与电力网络的频率特性不再匹配,从而抑制谐振现象。
2. 增加阻尼:通过增加电力系统中的阻尼元件,如电阻、补偿电容等,来消耗能量,减小谐振幅值,达到抑制谐振现象的效果。
3. 采用滤波器:在电力系统中加入适当的滤波器,可以滤除谐振频率的分量,减小谐振现象的影响。
4. 加强系统的模型分析:通过建立合理的系统模型,利用计算机仿真软件进行仿真分析,可以预测和优化系统中的谐振现象。
六、实例分析以一个变电站为例,对其电力系统中的谐振现象进行分析。
首先采用频率扫描方法,测试得到系统的频率响应曲线。
谐波的处理方法
谐波的处理方法谐波是指频率为整数倍于基波频率的周期性波动。
在实际生活中,我们经常会遇到各种谐波现象,比如音乐中的和弦、电力系统中的谐波干扰等。
为了减少谐波对系统的影响,需要采取相应的处理方法。
一、谐波的产生原因谐波的产生主要有以下几个原因:1. 非线性负载:当电力系统中存在非线性负载时,比如电弧炉、变频器等设备,会引起电流和电压的非线性变化,从而产生谐波。
2. 不平衡负载:当三相负载的功率不平衡时,会引起电流和电压的不对称,进而产生谐波。
3. 电力系统的谐振:电力系统中的电感元件和电容元件会与电力系统的电容、电感相互作用,形成谐振回路,从而产生谐波。
二、谐波的危害谐波对电力系统和电子设备都有一定的危害,主要表现在以下几个方面:1. 降低电力设备的效率:谐波会增加电力设备的损耗,降低设备的效率。
2. 引起电力设备的过热:谐波会导致电力设备的温升过高,可能引起设备的过热,甚至损坏设备。
3. 造成电力系统的谐振:谐波会使电力系统中的电容、电感形成谐振回路,引起电力系统的谐振,导致设备的振动和噪声。
4. 干扰其他设备的正常工作:谐波会通过电力系统的互感耦合或电磁辐射干扰其他设备的正常工作,引起设备的误动作或故障。
三、谐波的处理方法为了减少谐波对系统的影响,需要采取以下几种处理方法:1. 使用谐波滤波器:谐波滤波器是一种特殊的电路,可以选择性地滤除谐波成分。
通过在电力系统中安装谐波滤波器,可以有效地降低谐波水平。
2. 优化电力系统的设计:在电力系统的设计中,应尽量避免使用非线性负载,并合理设计电力系统的电容、电感等参数,以减少谐波的产生。
3. 提高电力设备的抗谐波能力:对于一些重要的电力设备,可以采用具有较高抗谐波能力的设备,以减少谐波的影响。
4. 加强谐波监测和分析:定期对电力系统进行谐波监测,了解谐波的产生和分布情况,以便采取相应的处理措施。
谐波对电力系统和电子设备都具有一定的危害,需要采取相应的处理方法。
电力系统谐波问题分析及防治措施
电力系统谐波问题分析及防治措施摘要:电力谐波会增加电能损耗、降低设备寿命,威胁电力设备和用电设备安全可靠运行,并对周边的通讯等设施造成干扰。
分析电网谐波的产生和影响,并及时提出谐波的综合治理办法,对于防止谐波危害、提高电能质量是十分必要的。
本文概述了谐波及其产生、谐波的危害,以及谐波治理方法。
关键词:电力系统;谐波;来源;危害;治理方法谐波的定义与来源1、谐波的定义国际上对谐波公认的定义是:“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。
在电力系统中,谐波分为谐波电压和谐波电流,其对系统的影响通常用“谐波含有率”和“总谐波畸变率”两个参数来衡量。
具体定义如下:谐波含有率:第h次谐波分量方均根值与基波分量方均根值之比。
HRU(h次谐波电压含有率),HRI(h次谐波电流含有率);总谐波畸变率:除基波外的所有谐波分量在一个周期内的方均根值与基波分量方均根值之比。
U,I;THD(总谐波电压畸变率),THD(总谐波电流畸变率);谐波含有率仅反应单次谐波在总量中的比重,而总谐波畸变率则概括地反映了周期波形的非正弦畸变程度。
谐波按矢量相序又可分有正序谐波、负序谐波和零序谐波。
所谓正序是指,3个对称的非正弦周期相电流或电压在时间上依次滞后120°,而负序滞后240°,零序則是同相。
其特征如表1:表1 正序谐波=3h-2,负序谐波=3h-1,零序谐波=3h。
在平衡的三相系统中,由于对称关系,不会在供电电网中产生任何偶次谐波。
谐波的定义与来源具体来说谐波产生的原因有以下三个方面:(1) 发电源的质量不高而产生的谐波发电机的结构中,由于三相绕组在制作上无法做到绝对对称,铁心也很难做到绝对均匀一致,所以磁通密度沿空间的分布只能做到接近正弦分布,所以磁通中都有高次谐波,电势中也就有高次谐波,其中三次谐波占主要成分[2]。
(2) 输配电系统产生的谐波在输配电系统中则主要是变压器产生谐波,变压器饱和时的励磁电流只含有奇次谐波,以3次谐波最大,可达额定电流0.5%,对于三相变压器,3倍次谐波的磁通经由邮箱外壳构成闭合磁路,因而磁通中对应该次的谐波较小(单相铁芯的10%),绕组中有三角形接法时,零序性谐波电流在闭合的三角形接线中环流而不会注入电网。
浅析电力系统谐波的产生、危害及抑制措施
浅析电力系统谐波的产生、危害及抑制措施摘要:本文主要介绍了电力系统中产生谐波的主要原因,对电网系统的危害及抑制谐波的方法。
关键词:电力谐波;谐波产生;危害;抑制措施1 前言在理想的情况下,电力系统中三相交流发电机发出的电压,其波形基本是正弦波,但随着电力电子设备技术的发展、电弧炉、变压器等设备容量的加大、家用电器的增多等原因,向电网注入谐波,造成系统电压、电流波形畸变,电能质量下降,危害电力系统及用户的安全与经济运行。
2 电力谐波的产生2.1 发电源质量不高产生谐波发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来讲很小,可以忽略。
2.2 输配电系统产生谐波输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。
它的大小与磁路的结构形式、铁心的饱和程度有关。
铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
2.3 用电设备产生的谐波2.3.1 晶闸管整流设备由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。
经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
电力系统谐振
电力系统谐振原因及处理措施分析发布时间:2012-10-16 阅读次数:1883 次一、概述铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。
电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。
二、铁磁谐振的现象1、铁磁谐振的形式及象征1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动3)高次谐波:三相对地电压同时升高超过线电压2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V三、铁磁谐振产生的原因及其分析:1、铁磁谐振产生的原因:1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击2)、切、合空母线或系统扰动激发谐振3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
电力系统产生铁磁谐振过电压的原因及消除方法
电力系统产生铁磁谐振过电压的原因及消除方法目前,我国的经济发展十分迅速,在电力系统中容易出现铁磁谐振过电压事故,严重威胁着人们的生命财产安全,需要引起高度的重视,有针对性采取解决措施,避免出现铁磁谐振过电压现象。
本文将简述铁磁谐振的危害性,并分析了其产生的原因与条件,最后提出了具体可行的预防对策。
标签:电力系统;铁磁谐振;消除方法引言电力系统内设置有众多的储能元件,在系统操作与出现故障以后,变压器、互感器等含铁芯元件的非线性电感元件和系统内电容串联将造成铁磁谐振现象,将严重威胁着电力系统运行的安全性与稳定性。
在出现铁磁谐振过电压以后,会让电压互感器一次熔丝熔断,并将电压互感器烧毁,严重时还会炸毁瓷绝缘子和避雷器,从而以引起系统停运。
且受到电源的作用,还会引起串联谐振的情况,让系统内发生严重的谐振过电压。
对此我们需要引起高度重视,消除铁磁谐振过电压势在必行。
1 电压互感器发生铁磁谐振的机理谐振是交流电路当中独有的一种现象,通常情况下,交流电路当中出现了电感以及电容的串联现象,会出现感抗等于容抗,从而造成谐振。
一般来说,电力系统当中,受到电容、电感等元件故障影响或者误操作时,就会产生以谐振为代表的震荡回路。
谐振所具有的串谐特征,还会对某些系统元件产生不可逆的破坏性影响,其中电压互感器在谐振影响下的表现十分明显,这是由于电压互感器作为铁芯元件,而铁芯在参与到回路当中所形成的饱和电路会表现为非线性的电感参数,从而造成其严重破坏。
就目前的电力系统谐振问题影响特征来看,谐振问题一般可以依据电网结构分为并联谐振以及串联谐振两种谐振类型,前者表现在小接地单流系统内部,并联状态下的铁磁谐振会使得电容互感器与电压互感器在一次中性接地点的非线性电感之上,构成谐振回路;而后者则是在大接地电流系统当中产生。
电磁式电压互感器会通过非线性电感与断路器断口的电容共同构成谐振回路。
而在众多谐振回路当中,铁磁电压谐振出现最为频繁,同时影响力也最大。
电力系统谐振产生原理及消除措施分析
电力系统谐振产生原理及消除措施分析摘要:本文介绍了电力系统铁磁谐振产生的原理,分析了磁谐振的若干特点,我们指出将互感器高压侧中性点经高阻抗接地,并接一个电阻 R消耗能量限制谐振,将电源变压器中性点经过消弧线圈接地等电力系统谐振消除策略。
关键词:电力系统;谐振产生;原理;消除措施1前言众所周知,电力系统内部的网络结构是很复杂的,系统内有许多电感与电容等电子元器件,使用时间长,不断会产生过电压现象。
产生这过电压原因有好多方面,比如谐振过电压,使用过程中若操作不注意就会产生故障。
尤其到了雨雪等天气或者是雷雨季会导致电力系统出现过电压情况。
据统计,电力系统谐振过电压发生的概率较大,这类问题会影响电气设备与电网安全,还会提高维修成本,一不小心会影响着大面积的停电,极大地影响百姓的生活与工业企业的经营,极大地阻碍着电力系统的未来发展。
因此,电力系统中的谐振影响非常大,作为电力工作者我们要积极关注这一课题。
2 电力系统铁磁谐振产生的原理图1 铁磁谐振产生的原理示意图如上图所示,电源变压器中性点是不接地设置,要达到监视绝缘之目的,电压互感器设备的一次绕组中性点需要设计成直接接地。
我们把励磁电感计为:La、Lb、Lc,和它相关意义的电容C0则表示的是母线以及相导线引起的对地电容。
励磁电感跟前文所述的C0并联,会有导纳,我们标示为:Ea、Eb、EC。
一般条件下,励磁电感La=Lb=Lc,Ea=Eb=Ec,可以计算出三相对地负载为平衡状态,变压器中性点电位是0。
如果电网内有冲击的波动发生,比如电源合闸到空母线时,影响着互感器一相、两相形成了一定的涌流情况,要么是线路瞬间单相弧光接地,或者是熄弧发生了,则健全相,或者说是故障相的电压就会一下子升高起来,这样的情况也会出现特别大的涌流,会导致这相互感器磁路的饱和,这样会影响励磁电感L 的减小,时间过去了,会影响三相对地负荷的平衡状态,导致中性点有位移电压出现。
经研究,我们可以发现:为母线电容三相励磁电感和发生并联形成的导纳;为三相电源电压;为中性点位移(对地)电压。
电力系统中的谐波分析及消除方法
电力系统中的谐波分析及消除方法摘要:本文针对电力系统中普遍存在的谐波问题进行了分析研究,首先概述了谐波的危害,然后介绍了三种谐波检测的方法,最后从改造谐波源的角度提出了几种谐波抑制方法。
关键词:电力谐波检测治理0 引言目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。
1 电力系统谐波危害1.1 谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。
大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。
1.2 谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。
1.3 谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。
1.4 谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。
1.5 谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。
1.6 谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。
1.7 谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。
1.8 谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
2 谐波检测方法2.1 模拟电路消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。
但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控制在10%以内,严重影响了有源滤波器的控制性能。
电力系统谐振原因及处理措施分析
一、概述ﻫ铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压.ﻫ电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振.1、铁磁谐振的形式及象征二、铁磁谐振的现象ﻫ1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出2)分次谐波:三相对地电压同时升高、低频变动2、串联谐振的现象:线电3)高次谐波:三相对地电压同时升高超过线电压ﻫ压升高、表计摆动,电压互感器开口三角形电压超过100Vﻫ三、铁磁谐振产生的原因及其分析:1)、有线路接地、断线、断路器非同期合闸1、铁磁谐振产生的原因:ﻫ2)、切、合空母线或系统扰动激发谐振等引起的系统冲击ﻫ3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件ﻫ2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件3、电力系统铁磁谐振产生的原因分析电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。
谐波、谐振危害及防治措施
谐波、谐振危害及防治措施1. 谐波的概念在电气工程中,谐波是指频率为整数倍于基波频率的电压或电流信号。
谐波可以由非线性负载引起,如电力电子设备、电动机、电感器等。
谐波可能导致电力系统及设备的异常运行,并对系统产生危害。
2. 谐波的危害谐波对电力系统和相关设备产生许多危害,包括但不限于以下几个方面:2.1 电流和电压失真谐波会导致电流和电压的波形失真,使得波形变得不规则。
这可能导致直流电流负载故障、电感设备的过热、降低电力设备的工作效率等问题。
2.2 设备过热谐波引起的电流和电压失真会导致设备过热,进而影响设备的工作寿命。
长期以来,过热问题一直是电力系统中的主要关注点。
2.3 降低功率因素谐波造成的电流和电压失真会降低功率因素,增加功率损耗。
这不仅会增加电力消耗,还会导致供电系统的不稳定,并可能引发其他故障。
3. 谐振的危害除了谐波外,谐振也是电力系统中一个重要的问题。
谐振是指电力系统中特定频率的谐波与系统的固有频率相匹配时,会引发电力设备甚至电力传输线路的超过设计值的振动。
谐振的危害主要包括以下几个方面:3.1 设备振动谐振会导致设备发生振动,从而可能导致设备的机械故障、机械压力增加和增加设备的磨损程度。
3.2 噪音产生谐振还可能导致系统中的设备产生噪音,并可能扩散到周围环境。
噪音会对人体的健康产生负面影响,并且可能影响到附近居民的日常生活。
3.3 系统不稳定谐振会使得电力系统失去稳定性,进而导致系统的失效以及损坏。
这可能导致停电、电网故障和电力设备的破坏。
4. 谐波、谐振的防治措施为了避免或减少谐波和谐振的危害,采取以下防治措施非常重要:4.1 使用滤波器滤波器是减少谐波的有效手段,通过滤波器可以将谐波滤除或降低到可接受的水平。
滤波器可以根据谐波频率进行选择,并根据需要调整谐波的消除程度。
4.2 设备升级与更换对于电力设备来说,采取适当的升级和更换是减少谐波和谐振危害的重要措施之一。
使用新一代的设备可能具有更好的抑制谐波和防治谐振的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在母线上装设中性点接地的三相星形电容器组,增加对地电容这种方法,当增大各相对地电容Co,使XCo/XL<时(谐振区为小于或大于3)回路参数超出谐振的范围,可防止谐振。
通过对两种典型伏安特性的铁芯电感进行模拟试验。
试验结果表明,谐振区域与阻抗比XCo/XL有直接关系,对于1/2分频谐振区,阻XCo/XL约为~;基波谐振区,XCo/XL约为~;高频谐振区,XC0/XL约为~。
当改变电网零序电容时,XCo/XL 随之改变,回路中可能出现由一种谐振状态转变为另一种谐振状态。
如果零序电容过大或过小,就可以脱离谐振区域,谐振就不会发生。
电流互感器高压侧中性点经电阻接地,由于系统中性点不接地,Yo 接线的电磁式电压互感器的高压绕组,就成为系统三相对地的唯一金属通道。
系统单相接地有两个过渡过程,一是接地时;二是接地消失时。
接地时,当系统某相接地时,该相直接与地接通,另两相对地也有电源电路(如主变绕组)成为良好的金属通道。
因此在接地时的三相对地电容的充放电过程的通道,不会走电压互感器高压绕组,就是说发生接地时电压互感器高压绕组中不会产生涌流,因为已有某相固定在地电位,也就不会发生铁磁谐振。
但是当接地消失时,情况就不同了。
在接地消失的过程中,固定的地电位已消失,三相对地的金属通道已无其他路可走,只有走电压互感器高压绕组,即此时三相对地电容(零序电容)3Co中存储的电荷,对三相电压互感器高压绕组电感L/3放电,相当一个直流源作用在带有铁芯的电感线圈上,铁芯会深度饱和。
对于接地相来说,更是相当一个空载变压器突然合闸,叠加出更大的暂态涌流。
在高压绕组中性点安装电阻器Ro后,能够分担加在电压互感器两端的电压,从而能限制电压互感器中的电流,特别是限制断续弧光接地时流过电压互感器的高幅值电流,将高压绕组中的涌流抑制在很小的水平,相当于改善电压互感器的伏安特性,
电压互感器一次侧中性点经零序电压互感器接地,此类型接线方式的的电压互感器称为抗谐振电压互感器,这种措施在部分地区有成功经验,其原理是提高电压互感器的零序励磁特性,从而提高电压互感器的抗烧毁能力,已有很多厂家按此原理制造抗谐振电压互感器。
但是应注意到,电压互感器中性点仍承受较高电压,且电压互感器在谐振时虽可能不损坏,但谐振依然存在。
电压互感器二次侧开三角绕组接阻尼电阻,在三相电压互感器一次侧中性点串接单相电压互感器或在电压互感器二次开口三角处接入阻尼电阻,用于消耗电源供给谐振的能量,能够抑制铁磁谐振过电压,其电阻值越小,越能抑制谐振的发生。
若R=0,即将开口三角两端短接,相当于电网中性点直接接地,谐振就不会发生。
但在实际应用中,由于原理及装置的可靠性欠佳,这些装置的运行情况并不理想。
二次侧电子消谐装置仍有待从理论、制造上加以完善。
在单相持续接地时,开三角绕组也必须具备足够大的容量;这类消谐措施对非谐振区域内流过电压互感器的大电流不起限制作用中性点经消弧线圈接地,中性点经消弧线圈接地有以下优点:瞬间单
相接地故障可经消弧线圈动作消除,保证系统不断电;永久单相接地故障时消弧线圈动作可维持系统运行一定时间,可以使运行部门有足够的时间启动备用电源或转移负荷,不至于造成被动;系统单相接地时消弧线圈动作可有效避免电弧接地过电压,对全网电力设备起保护作用;由于接地电弧的时间缩短,使其危害受到限制,因此也减少维修工作量;由于瞬时接地故障等可由消弧线圈自动消除,因此减少了保护错误动作的概率;系统中性点经消弧线圈接地可有效抑制单相接地电流,因此可降低变电所和线路接地装置的要求,且可以减少人员伤亡,对电磁兼容性也有好处。
可见,中性点谐振接地是中压电网(包括电缆网络)乃至高压系统的比较理想的中性点接地方式。
但是由于不适当操作或某些倒闸过程会导致局部电网在中性点不接地方式下临时运行,所以这种系统也曾经发生过电压互感器谐振,同时安装消弧线圈自然会增加投资,此外,消弧线圈自身的维护和整定还需要不断的完善。
2、中性点直接接地系统谐振消除方法及优缺点
、尽量保证断路器三相同期、防止非全相运行。
、改用电容式电压互感器(CVT),从根本上消除了产生谐振的条件,但是电容式电压互感器价格高、带负载能力差、且仍带有电感,二次侧仍要采用消谐措施。
增加对地电容,操作时让母线带上一段空线路或耦合电容器。
、带空载线路可以很好地消谐,但有可能产生一个很大的冲击电流通过互感器线圈,对互感器不利,而耦合电容器十分昂贵,目前尚无高压电容器。
、与高压绕组串接或并接一个阻尼绕组,可消除基频谐振,在发生谐振的瞬间投入此阻尼电阻将会增加投切设备和复杂的控制机构。
、电容吸能消谐,对幅值较高的基频谐振比较有效,但对于幅值较低的分频谐振往往难以奏效。
、在开口三角形回路中接入消谐装置,能自动消除基频和分频谐振,需在压变开口三角绕阻回路中增加1根辅助边线,增大了投资。
、采用光纤电压互感器,可以有效地消除谐振。
价格较高,还需要在现场中进一步实验。
六、从运行操作方面去防止谐振的发生。
以上是从设备、技术方面考虑,我们还要从运行操作方面去防止谐振的发生。
1、控制XcE/XL的比值,尽量躲开谐振区。
当XCo/XL≤或XCo/XL≥3时不产生铁磁谐振
当运行相电压Up除以额定电压Un等于时极易发生分频或基波铁磁谐振。
改变运行方式,以改变网络参数,消除谐振
当电压互感器的XL一定时,增加对地电容Co,XCo将减小,XCo/XL
的比值也随之减小,是防止铁磁谐振发生的有效方法。
倒闸操作中增加Co的方法一般有:外接电容、介入空载线路或空载变压器、介入电缆线路、拉母联或分段断路器等。
2、控制电源电压、降低铁磁谐振的工作点,使Up/Ue≠。
3、注意倒闸操作中的操作步骤。
当参数处在串联谐振范围时,母线停电的操作顺序:先拉母线电压感器,以切断L,再拉母联断路器,送电时顺序相反;如220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电时,为防止合上两侧刀闸后因断开电容的耦合作用有可能与空母线电磁式电压互感器产生串联谐振,应先合上开关,后合电压互感器刀闸,如属新安装的电磁式电压互感器投产时应考虑带上互感器对母线充电。
电源向母线升压时,先合断路器,使C短接,再升压;
当母差保护动作跳闸时,是一条母线停电,也要及时拉开母联断路器的隔离开关或母线TV的隔离开关,以切断L-C回路。
运行中注意监视备用母线的情况,发现异常,及时进行处理。
热备用母线,如发现母线电压又指示时,应首先考虑是否发生了串联铁磁谐振,此时应尽快合上母联断路器将C短接或拉开TV隔离开关;如在系统运行方式和倒闸操作过程中出现了开关断口电容与空母线电磁式PT造成的串联谐振,不管是合开关时出现的谐振过电压,还是拉开关后出现的谐振过电压,最直接有效的办法是迅速拉开或合上主开关或母联开关。
如上述措施无法实现时,应迅速汇报调度,合上备用线路开关。
由于谐振时电压互感器一次绕组电流很大,应禁止用电压互感器或直接取下一次侧熔断器的方法来消除谐振。
当变压器向接有TV的空载母线合闸充电时,应将变压器中性点接地或经消弧线圈接地。
系统发生并联谐振时,应瞬间短接TV开口三角形绕组,有时也可以消除谐振,尤其是分频谐振特别有效。
为防止电力系统中发生铁磁谐振,杜绝铁磁谐振给电网带来的不安全影响,作为从事电网调度工作的我更是义不容辞的责任,这需要我们在工作中一点一滴地做起,确实为保证电网安全运行、共创和谐社会做出更多努力。