高一数学上册期中试题及答案

合集下载

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

深圳中学2023-2024学年度第一学期期中考试试题年级:高一科目:数学考试用时:120分钟 卷面总分:150分注意事项:答案写在答题卡指定的位置上,写在试题卷上无效.选择题作答必须用2B 铅笔. 参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以e(e 2.71828)= 为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{3P x x =∈≥N 或0}x ≤,{}2,4Q =,则()P Q =N ()A.{}1 B.{}2 C.{}1,2 D.{}1,2,4【答案】D 【解析】【分析】根据补集的定义和运算可得{}1,2P =N ,结合并集的定义和运算即可求解. 【详解】由题意知,{}1,2P =N ,{}2,4Q =,所以(){}1,2,4P Q =N ,故选:D .2.命题“()()31,,1,x x ∞∞∃∈+∈+”的否定是( )A.()1,x ∀∈+∞,都有()31,x ∞∉+B.()1,x ∀∉+∞,都有()31,x ∞∉+C.()1,x ∀∈+∞,都有()31,x ∞∈+D.()1,x ∀∉+∞,都有()31,x ∞∈+【答案】A 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题命题“()()31,,1,x x ∞∞∃∈+∈+ ”的否定是“()1,x ∀∈+∞,都有()31,x ∞∉+.故选:A. 3.函数()f x =的定义域是( ) A. (,1)(1,0)−∞−∪− B. [1,)−+∞ C. [1,0)− D. [1,0)(0,)−+∞【答案】D 【解析】【分析】根据根式与分式的定义域求解即可. 【详解】()f x =的定义域满足1020x x +≥ ≠ ,解得[1,0)(0,)x ∈−+∞ . 故选:D4. ()f x x 1x 2=−+−的值域是 A. ()0,∞+ B. [1,)+∞C. ()2,∞+D. [2,)+∞【答案】B 【解析】【分析】对x 的范围分类,把(f x 的表达式去绝对值分段来表示,转化成各段函数值域的并集求解.【详解】()32,1121,1223,2x x f x x x x x x −≤=−+−=<< −≥,作出函数()f x 的图像如图所以()12f x x x =−+−的值域为[)1,+∞, 故选B.【点睛】本题主要考查了绝对值知识,对x 的范围进行分类,可将含绝对值的函数转化成初等函数类型来解决5. 已知幂函数的图象经过点()8,4P ,则该幂函数在第一象限的大致图象是( )A. B. C. D.【答案】B 【解析】【分析】根据求出幂函数的解析式,再根据幂函数的性质即可得出答案. 【详解】设()af x x =,则328422a a =⇔=,所以32a =,所以23a =,所以()23f x x ==,因为2013<<, 因为函数()f x 在()0,∞+上递增,且增加的速度越来越缓慢, 故该幂函数在第一象限的大致图象是B 选项. 故选:B .6. 函数31()81ln 803x f x x -⎛⎫ ⎪=-- ⎪⎝⎭的零点位于区间( )A. (1,2)B. (2,3)C. (3,4)D. (4,5)【答案】B 【解析】【分析】根据函数的单调性及函数零点的存在性定理选择正确选项即可.【详解】因为函数81ln y x =与31803x y − =−−在()0,∞+上均为增函数,所以()f x 在()0,∞+上为增函数.因为()281ln 2830f =−<,()381ln 3810f =−>, 所以函数()f x 的零点位于区间()2,3内. 故选:B7. 已知不等式220ax bx ++>的解集为{}21x x −<<,则不等式220x bx a −+<的解集为( )A. 11,2 −B. 1,12−C. 1,12D. ()2,1−【答案】A 【解析】【分析】根据不等式解集,求得参数,a b ,再求不含参数的一元二次不等式即可.【详解】根据题意方程220ax bx ++=的两根为2,1−,则221,2b a a−+=−−=,解得1,1a b =−=−, 故220x bx a −+<,即2210x x +−<,()()2110x x −+<,解得11,2x ∈−. 即不等式220x bx a −+<的解集为11,2 −. 故选:A .8. 已知()f x 和()g x 分别是定义在R 上的奇函数和偶函数,且()()e x g x f x −=,则(1)(1)f g =( ) A. 22e 1e 1+− B. 22e 1e 1−+C. 221e 1e −+D. 221e 1e +−【答案】C 【解析】【分析】根据奇函数与偶函数的性质即可代入1x =和=1x −求解.【详解】因为()f x 为奇函数,()g x 为偶函数,所以由()()111e g f −−−−=有()()111e g f −+=, 又()()11e g f −=,所以()121e e g −=+,()121e ef −=−, 所以()()12121e e 1e 1e e 1e f g −−−−==++.故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列各组函数中,两个函数是同一函数的有( )A. ()1f x x =+与21()1x g x x −=−B. ()1f t t =−与()1g x x =−C. ()ln e x f x =与()g x =D. ln ()e x f x =与()g x =【答案】BC 【解析】【分析】根据题意,由同一函数的定义,对选项逐一判断,即可得到结果.【详解】对于A ,()f x 定义域为R ,()g x 定义域为{}|1x x ≠,定义域不相同,不是同一函数,A 错误; 对于B ,函数()f x 与()g x 的定义域相同,对应关系也相同,所以是同一函数,故正确;对于C ,函数()()f x x x =∈R ,函数()()g x x x =∈R ,两函数的定义域与对应关系都一致,所以是同一函数,故正确;对于D ,()()0f x x x =>,()g x x =,所以对应关系不相同,定义域也不同,不是同一函数,D 错误. 故选:BC10. 下列说法正确的是( ) A. 函数1y x x=+的最小值为2 B. 若a ,b ∈R ,则“220a b +≠”是“0a b +≠”充要条件 C. 若a ,b ,m 为正实数,a b >,则a m ab m b+<+ D. “11a b>”是“a b <”的充分不必要条件 【答案】BC 【解析】【详解】根据基本不等式满足的前提条件即可判定A ,根据绝对值和平方的性质可判定B ,根据不等式的性质可判断CD.【分析】对于A ,当x 取负值时显然不成立,故A 错误, 对于B ,若,a b ∈R ,由220a b +≠,可知a ,b 不同时为0, 由0a b +≠,可知a ,b 不同时为0,所以“220a b +≠”是“0a b +≠”的充要条件,故B 正确;对于C ,()()()()()0b a m a b m m b a a m a b m b b b m b b m +−+−+−==<+++,所以a m ab m b+<+,故C 正确, 对于D ,①若11a b>,则当0a >,0b >时,则0a b <<, 当0a <,0b <时,则0a b <<, 当a ,b 异号时,0a b >>.的②若a b <,则当a ,b 同号时,则11a b >, 当a ,b 异号时,0a b <<,则11a b<, 所以“11a b>”是“a b <”的既非充分也非必要条件,D 选项错误.故选:BC11. 下列命题正确的是( )A. 函数212log (23)y x x =−−在区间(1,)+∞上单调递减 B. 函数e 1e 1x xy −=+在R 上单调递增C. 函数lg y x =在区间(,0)−∞上单调递减D. 函数13xy =与3log y x =−的图像关于直线y x =对称【答案】BCD 【解析】【分析】A 项,由复合函数的定义域可知错误;B 项分离常数转化为()21e 1x f x =−+,逐层分析单调性可得;C 项由偶函数对称性可知;D 项,两函数互为反函数可知图象关于直线y x =对称.【详解】对于A ,由2230x x −−>,解得1x <−,或3x >, 故函数定义域为(,1)(3,)−∞−∪+∞,由复合函数的单调性可知该函数的减区间为()3,+∞,故A 错; 对于B ,()21e 1x f x =−+, 由于e 1x y =+在x ∈R 单调递增,且e 10x +>, 所以1e 1x y =+在R 上单调递减,2e 1xy =−+在R 上单调递增, 因此()f x 在R 上单调递增,B 正确;对于C ,当0x >时,lg y x =(即lg y x =)在区间()0,∞+上单调递增, 又因为lg y x =为偶函数,其图象关于y 轴对称, 所以在区间(),0∞−上单调递减,C 正确;对于D ,由于函数13xy =与13log y x =(即3log y x =−)互为反函数.所以两函数图象关于y x =对称,D 正确. 故选:BCD.12. 德国数学家狄里克雷在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵:只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图像、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是( ) A. ()D x 的解析式为()R 1,,0,.x Q D x x Q ∈ = ∈B. ()D x 的值域为[]0,1C. ()D x 的图像关于直线1x =对称D. (())1D D x = 【答案】ACD 【解析】【分析】根据题意,由狄里克雷函数的定义,对选项逐一判断,即可得到结果. 【详解】对于A ,用分段函数的形式表示狄里克雷函数,故A 正确. 对于B ,由解析式得()D x 的值域为{}0,1,故B 错误;过于C ,若x 为有理数,则2x −为有理数,则()()21D x D x =−=;若x 为无理数,则2x −为无理数.则()()20D x D x =−=;所以()D x 的图像关于直线1x =对称,即C 正确;对于D ,当x 为有理数,可得()1D x =,则()()1D D x =,当x 为无理数,可得()0D x =,则()()1D D x =,所以()()1D D x =,所以D 正确. 故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.110.752356416(4)−−−++++=________.【答案】414##1104【解析】【分析】根据题意,结合指数幂的运算法则和运算性质,准确化简、运算,即可求解. 【详解】根据指数幂的运算法则和运算性质,可得:11111430.752364353355426416(4)[()](2)(2)22233−−−−+=+−+++⋅ 221141821033444=−+++==. 故答案:414. 14. 已知a ,b 是方程22(ln )3ln 10x x −+=的两个实数根,则log log a b b a +=________. 【答案】52##2.5 【解析】【分析】方法一:利用韦达定理结合换底公式求解;方法二:解方程可得e a =,b =,代入运算求解即可.【详解】方法一:因为a ,b 是方程()22ln 3ln 10x x −+=的两个实数根, 由韦达定理得1ln ln 2a b ⋅=,3ln ln 2a b +=, 则()()()()2222ln ln ln ln 2ln ln ln ln ln ln 5log log 2ln ln ln ln ln ln ln ln 2a b a b a b a ba b b a b a a ba ba ba b++−⋅++=+===−=⋅⋅⋅,即5log log 2a b b a +=;方法二:因为22310t t −+=的根为1t =或12t =, 不妨设ln 1a =,1ln 2b =,则e a =,b =,所以e 15log log log 222e a b b a +==+=.故答案为:52.15. 已知0,0x y >>且2x y xy +=,则2x y +的最小值是__________. 【答案】8 【解析】【分析】运用“1”的代换及基本不等式即可求得结果.为【详解】因为2x y xy +=,所以211x y+=,所以()214222248x y x y x y x y y x +=++=+++≥+=,当且仅当4x y y x =,即4,2x y ==时取等号.所以2x y +的最小值为8. 故答案为:8.16. 记(12)(12)T x y =−−,其中221x y +=,则T 的取值范围是________.【答案】3,32 −+ . 【解析】【分析】根据基本不等式,结合换元法,将问题转化为213222T t =−− ,t ≤≤上的范围,由二次函数的性质即可求解.【详解】()124T x y xy =−++,设x y t +=,则212t xy −=, 所以221124212t T t t t −=−+⋅=−.因为22x y xy + ≤,所以22124t t −≤.所以t ≤≤又213222T t =−− ,所以当12t =时,T 有最小值32−,当t =T 有最大值3+.故答案为:3,32 −+ 四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}(,)|1Ax y y x ==−,{}2(,)|B x y y mx ax m ==++.(1)若1a =−,0m =,求A B ∩;(2)若1a =,且A B ∩≠∅,求实数m 的取值范围.【答案】(1)11,22A B=−(2)[]2,1−. 【解析】【分析】(1)联立两方程,求出交点坐标,得到交集;(2)联立后得到210mx m +++=,分0m =与0m ≠两种情况,,结合根的判别式得到不等式,求出答案. 【小问1详解】 若1a =,0m =,则(){},|Bx y y x ==. 由1y x y x =−=− ,得1212x y= =− . 所以11,22A B =−. 【小问2详解】由()211x y y mx x m −==+++消去y,得210mx m +++=①. 因为A B ∩≠∅,所以方程①有解.当0m =时,方程①可化为1=−,解得x =,所以1y , 所以0m =符合要求.当0m ≠时,要使方程①有解,必须(()2Δ410m m =−+≥,即220m m +−≤,解得21m −≤≤, 所以21m −≤≤,且0m ≠. 综上所述,m 的取值范围是[]2,1−. 18. 设不等式2514x x −≤−的解集为A ,关于x 的不等式2(2)20x a x a −++≤的解集为B . (1)求集合A ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1)[)1,4(2)[)1,4.【解析】【分析】(1)根据题意,结合分式不等式的解法,即可求解;(2)根据题意,转化为B A ,再结合一元二次不等式的解法,分类讨论,求得集合B ,进而求得a 取值范围.【小问1详解】 解:由不等式2514x x −≤−,可得2511044x x x x −−−=≤−−, 即()()140x x −−≤,且4x ≠,所以14x ≤<,所以[)1,4A =.【小问2详解】解:因为“x A ∈”是“x B ∈”的必要不充分条件,所以集合B 是A 的真子集,由不等式()2220x a x a −++≤,可得()()20x x a −−≤, 当2a <时,不等式的解集为2a x ≤≤,即[],2B a =,因为B A ,则12a ≤<;当2a =时,不等式为2(2)0x −≤,解得2x =,即{}2B =;B A 成立;当2a >时,不等式的解集为2x a ≤≤,即[]2,B a =,因为B A ,则24a <<,综上所述14≤<a ,即a 的取值范围是[)1,4.19. 已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示.(1)请将函数()f x 的图象补充完整,并求出()()f x x ∈R 的解析式;(2)求()f x 在区间[],0a 上的最大值.【答案】(1)作图见解析,()222,02,0x x x f x x x x +≤= −+>(2)答案见解析【解析】【分析】(1)根据函数奇函数的对称性,即可根据对称作出函数图象,进而可利用奇函数的定义求解解析式,(2)根据二次函数的性质,结合函数图象即可求解.【小问1详解】作出函数()f x 的图象,如图所示,当0x >时,0x −<,则()()22()22f x x x x x −=−+−=−, 因为()f x 为奇函数,所以()()22f x f x x x =−−=−+, 所以()222,02,0x x x f x x x x +≤= −+>. 【小问2详解】易如()()200f f −==,当2a <−时,()f x 在x a =处有最大值()22f a a a =+; 当20a −≤<时,()f x 在0x =处有最大值()00f =.20. 为了减少能源损耗,某建筑物在屋顶和外墙建造了隔热层,该建筑物每年节省的能源费用h (万元)与的隔热层厚度(cm)x 满足关系式:()()3232020h x x x k=−≤≤+.当隔热层厚度为1cm 时,每年节省费用为16万元,但是隔热层自身需要消耗能源,每年隔热层自身消耗的能源费用g (万元)与隔热层厚度(cm)x 满足关系:()2g x x =.(1)求k 的值;(2)在建造厚度为(cm)x 的隔热层后,每年建筑物真正节省的能源费用为()()()=−f x h x g x ,求每年该建筑物真正节省的能源费用的最大值.【答案】(1)1k =(2)18万元.【解析】【分析】(1)根据()116h =求解出k 值即可;(2)根据条件先表示出()f x ,然后利用基本不等式求解出最大值,注意取等条件.【小问1详解】由题知()116h =,所以3232161k −=+, 解得1k =;【小问2详解】由(1)知,()()32320201h x x x =−≤≤+, 所以()()323220201f x x x x =−−≤≤+, 所以()()()323232212342111f x x x x x −−++=−++= ++, 因为()3221161x x ++≥=+,当且仅当()32211x x =++,即3x =时取等号, 所以()341618f x ≤−=, 所以每年该建筑物真正节省的能源费用的最大值为18万元.21. 已知23()21x x a f x −−=+, (1)若定义在R 上的函数()ln ()g x f x =是奇函数,求a 的值;(2)若函数()()h x f x a =+在(1,)−+∞上有两个零点,求a 的取值范围.的【答案】(1)13− (2)41,3【解析】【分析】(1)根据题意,结合()()0g x g x −+=,得出方程,进而求得实数a 的值; (2)令()0h x =,得到()23210x x a a −−++=,得到()222210x x a a −⋅+=,令2x t =,转化方程可化为2210at at −+=1,2 +∞上有两个不相等的根, 方法一:设()221p t at at =−+,结合二次函数的性质,列出不等式组,即可求解;方法二:把方程化为()211a t a −−=,求得1t =±,结合11,2 +∞,即可求解. 【小问1详解】 解:因为()g x 是奇函数,所以()()2323ln ln 02121x x x x a a g x g x −−−−−+=+=++, 可得232312121x x x x a a −−−−⋅=++,即()()2312291x x a a −++=−恒成立, 因为220x x −+≠,所以310a +=且2910a −=,所以13a =−. 【小问2详解】 解:由232()()1x x h a x f a a x −=+−=++,令()0h x =,可得23021x x a a −−+=+, 所以()23210x x a a −−++=, 两边同乘以2x 并整理,得()222210x x a a −⋅+=. 令2x t =,因为1x >−,所以12t >, 于是方程可化为2210at at −+=,(*) 问题转化为关于t 的方程(*)在1,2 +∞上有两个不相等的根,显然0a ≠, 方法一:设()221p t at at =−+,抛物线的对称轴为1t =,()01p =.若a<0,由()00p >知,()p t 必有一个零点为负数,不合题意; 若0a >,要使()p t 在1,2 +∞ 上有两个零点,由于对数轴112t =>, 故只需2102Δ440p a a > =−> ,即31044(1)0a a a −> −> ,解得413a <<. 综上可得,实数a 的取值范围是41,3. 方法二:方程(*)可化为()211a t a −=−,若0a =,则01=−,矛盾,故0a ≠,故()211a t a −−=, 所以10a a−>,即a<0或1a >,①此时,1t −=,即1t =±,其中11,2 +∞ ,则112−>12<,即114a a −<,可得340a a −<,解得403a << ② 由①②得a 的取值范围是41,3. 22. 定义在R 上函数()f x 满足如下条件:①()()()4f x y f x f y +=+−;②(2)6f =;③当0x >时,()4f x >.(1)求(0)f ,判断函数()f x 的单调性,并证明你的结论; (2)当[)0,x ∈+∞时,不等式()()()ln 3e 122ln 310x f a f x a −++−−≤ 恒成立,求实数a 的取值范围.【答案】(1)()04f =,函数()f x 在R 上为增函数,证明见解析 (2)[]1,3【解析】的【分析】(1)令2,0x y ==,求得()04f =,再根据函数单调性的定义和判定方法,证得函数()f x 在R 上为增函数;(2)根据题意,转化为不等式()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立,由对数函数的性质,求得03a <≤,再由不等式()23e 3e 10x x a a +−−≥成立,转化为max 1e x a ≥ 对于任意[)0,x ∈+∞成立,求得1a ≥,即可求得实数a 的取值范围.【小问1详解】解:令2x =,0y =,可得()04f =.函数()f x 在R 上为增函数,证明如下:设12x x <,因为()()()4f x y f x f y +−=−,令1x y x +=,2x x =,则21y x x =−,可得()()()21214f x f x f x x −=−−, 因为210x x −>,所以()214f x x −>,所以()2140f x x −−>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 在R【小问2详解】解:由条件有()()()4f x f y f x y +=++,则不等式可化为()()ln 3e 122ln 3410x f a x a −++−−+≤ ,即()()ln 3e 122ln 36x f a x a −++−−≤ , 又由()26f =,所以()()()ln 3e 122ln 32xf a x a f −++−−≤ , 因为函数()f x 在R 上为增函数,可得()ln 3e 122ln 32x a x a −++−−≤即()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立, 根据对数函数的性质,可得()3e 10x a −+>,30a >对于任意[)0,x ∈+∞成立,则13e 0x a a <+ >,因为0x ≥,则e 1x ≥,所以101e x <≤, 可得1334ex <+≤,所以03a <≤ ①, 又由(*)式可化为()()2ln 3e 12ln 3ln 3e x x a x a a −+≤+= , 即对于任意[)0,x ∈+∞,()23e 13e x xa a −+≤成立,即()23e 3e 10x x a a +−−≥成立, 即对于任意[)0,x ∈+∞,()()3e 1e 10x x a +−≥成立, 因为3e 10x +>,所以e 10x a −≥对于任意[)0,x ∈+∞成立, 即max1e x a ≥ 对于任意[)0,x ∈+∞成立,所以1a ≥ ②. 由①②,可得13a ≤≤,所以实数a 的取值范围为[]1,3.。

四川省2023-2024学年高一上学期期中数学试题含解析

四川省2023-2024学年高一上学期期中数学试题含解析

高2023级高一上期期中考试数学试题(答案在最后)本试卷共4页,22小题,满分150分.考试用时120分钟.第I 卷选择题(60分)一.选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“0x ∀>,210x x ++>”的否定是()A.0x ∀≤,210x x ++>B.0x ∃>,210x x ++≤C.0x ∃≤,210x x ++>D.0x ∀>,210x x ++≤【答案】B 【解析】【分析】根据全称命题的否定是特称命题即可求解.【详解】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是“0x ∃>,210x x ++≤”.故选:B .2.已知集合{}1,2,3A =,{},B a b a A b A =-∈∈,则集合B 中元素个数为()A.5B.6C.8D.9【答案】A 【解析】【分析】根据给定条件分析a ,b 取值即可判断作答.【详解】集合{}1,2,3A =,{},B a b a A b A =-∈∈,则当a b =时,有0a b -=,当a b >时,1a b -=或2a b -=,当a b <时,1a b -=-或2a b -=-,所以{2,1,0,1,2}B =--,集合B 有中5个元素.故选:A3.已知集合{{},2,1,0,1,2A xy B ===--∣,则A B = ()A.{}0,1,2 B.{}2,1,0,1-- C.{}1,2 D.{}2,1,0--【答案】B【解析】【分析】求出集合A ,计算与集合B 的交集即可.【详解】由题意可得{}{}101A xx x x =-≥=≤∣∣,则{}2,1,0,1A B ⋂=--.故选:B.4.已知集合{}{}|21,Z ,|21,Z A x x k k B x x k k ==+∈==-∈,则()A.A B ⊆ B.B A⊆ C.A B= D.AB【答案】C 【解析】【分析】由{}{}|21,Z ,|21,Z A x x k k B x x k k ==+∈==-∈,知集合A 与集合B 都是奇数集,利用集合与集合间的关系,即可求出结果.【详解】因为集合{}|21,Z A x x k k ==+∈,集合{}|21,Z B x x k k ==-∈,所以集合A 与集合B 都是奇数集,所以A B =,故选:C.5.13x -<<成立的必要不充分条件可以是()A.24-<<xB.12x -<< C.02x << D.04x <<【答案】A 【解析】【分析】根据必要不充分条件的定义判断求解.【详解】因为{}|13x x -<<是{}|24x x -<<的真子集,所以24-<<x 是13x -<<成立的一个必要不充分条件,A 正确;因为{}|12x x -<<是{}|13x x -<<的真子集,所以12x -<<是13x -<<成立的一个充分不必要条件,B 错误;因为{}|02x x <<是{}|13x x -<<的真子集,所以02x <<是13x -<<成立的一个充分不必要条件,C 错误;因为{}|04x x <<与{}|13x x -<<不存在包含关系,所以04x <<是13x -<<成立的既不充分也不必要条件,D 错误;故选:A.6.已知01x <<,则1441x x+-的最小值为()A.252B.254C.9D.12【答案】B 【解析】【分析】将代数式1441x x +-与()1x x +-相乘,展开后利用基本不等式可求出1441x x+-的最小值.【详解】因为01x <<,则011x <-<,所以,()1117141414144144x x x x x x x x x x -⎛⎫+=+-+=++⎡⎤ ⎪⎣⎦---⎝⎭172544≥+,当且仅当144101xx x x x -⎧=⎪-⎨⎪<<⎩时,即当15x =时,等号成立,故1441x x +-的最小值为254.故选:B.7.若关于x 的不等式20ax bx c ++<的解集是()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭,则关于x 的不等式20cx bx a -+>的解集是()A.()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭B.12,2⎛⎫--⎪⎝⎭C.1,22⎛⎫⎪⎝⎭D.()1,2,2⎛⎫-∞+∞ ⎪⎝⎭【答案】C 【解析】【分析】由题意知12,2--是20ax bx c ++=的两根,得到5,2b a c a ==,代入到20cx bx a -+>中解不等式即可.【详解】解:由不等式20ax bx c ++<的解是<2x -或12x >-,12,2--是20ax bx c ++=的两根,则a<0,且()112,2122b c a a ⎛⎫-=--=-⨯-= ⎪⎝⎭,即5,2b ac a ==,∴不等式20cx bx a -+>可化为:2502ax ax a -+>,即25102x x -+<,化简得()()2120x x --<,解得122x <<,故选:C.【点睛】考查一元二次不等式的解集与相应方程的根之间的关系以及解法,基础题.8.已知定义域为R 的偶函数()f x 在(],0-∞上单调递减,且()20f =,则满足()0xf x ≥的x 取值范围是()A.(][),22,-∞-+∞U B.[]22-,C.[)(]2,00,2-U D.[][)2,02,-⋃+∞【答案】D 【解析】【分析】由函数的单调性与奇偶性直接求解.【详解】∵定义域为R 的偶函数()f x 在(],0-∞上单调递减,且()20f =,(2)0f ∴-=,且在[0,)+∞上单调递增,()0xf x ∴≥,可得0()0x f x >⎧⎨≥⎩或0()0x f x <⎧⎨≤⎩或0x =,即2x ≥或20x -≤<或0x =,即[][)2,02,x ∈-⋃+∞.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各组函数中是同一个函数的是()A.()f x =与()g x = B.()f x x =与()g x =C.()2f x x =与()g x = D.()221f x x x =--与()221g t t t =--【答案】CD【解析】【分析】利用函数相等的概念逐项判断,可得出合适的选项.【详解】对于A 选项,对于函数()f x =,则320x -≥,可得0x ≤,对于函数()g x =20x -≥,可得0x ≤,所以,函数()f x 、()g x 的定义域均为(]0-∞,,()f x ==-A 选项中的两个函数不相等;对于B 选项,函数()f x x =与()g x =R ,但(),0,0x x g x x x x ≥⎧===⎨-<⎩,两个函数的对应关系不相同,所以,B 选项中的两个函数不相等;对于C 选项,函数()2f x x =与()g x =R ,()()2g x x f x ===,C 选项中的两个函数相等;对于D 选项,函数()221f x x x =--与()221g t t t =--的定义域均为R ,且这两个函数的对应关系也相同,D 选项中的两个函数相等.故选:CD.10.关于函数()11f x x =--的性质描述,正确的是()A.()f x 的定义域为[)(]1,00,1-B.()f x 的值域为()1,1-C.()f x 在定义域上是增函数D.()f x 的图象关于原点对称【答案】ABD 【解析】【分析】由被开方式非负和分母不为0,解不等式可得()f x 的定义域,可判断A ;化简()f x ,讨论01x <≤,10x -≤<,分别求得()f x 的范围,求并集可得()f x 的值域,可判断B ;由()()110f f -==,可判断C ;由奇偶性的定义可判断()f x 为奇函数,可判断D ;【详解】对于A ,由240110x x x ⎧-≥⎪⎨--≠⎪⎩,解得11x -≤≤且0x ≠,可得函数()11f x x =--的定义域为[)(]1,00,1- ,故A 正确;对于B ,由A 可得()f x x =-,即()f x =当01x <≤可得()(]1,0f x =-,当10x -≤<可得()[)0,1f x =,可得函数的值域为()1,1-,故B 正确;对于C ,由()()110f f -==,则()f x 在定义域上不是增函数,故C 错误;对于D ,由()f x =的定义域为[)(]1,00,1- ,关于原点对称,()()f x f x -==-,则()f x 为奇函数,故D 正确;故选:ABD【点睛】本题考查了求函数的定义域、值域、奇偶性、单调性,属于中档题.11.已知二次函数2y ax bx c =++,且不等式2y x >-的解集为()1,3,则()A.a<0B.方程20ax bx c ++=的两个根是1,3C.42b a =-- D.若方程60y a +=有两个相等的根,则实数15a =-【答案】ACD 【解析】【分析】根据一元二次不等式与一元二次方程的关系得1,3为关于x 的二次方程()220ax b x c +++=的两根,进而得a<0,42b a =--,3c a =,再根据于x 的方程60y a +=有两相等的根即可得15a =-.,进而得答案.【详解】解:由于不等式2y x >-的解集为()1,3,即关于x 的二次不等式()220ax b x c +++>的解集为()1,3,则a<0.由题意可知,1,3为关于x 的二次方程()220ax b x c +++=的两根,由根与系数的关系得2134b a +-=+=,133ca=⨯=,所以42b a =--,3c a =,所以()2423y ax a x a =-++.由题意知,关于x 的方程60y a +=有两相等的根,即关于x 的二次方程()24290ax a x a -++=有两相等的根,则()224236aa ∆=-+-⎡⎤⎣⎦()()102220a a =+-=,因为a<0,解得15a =-.故选:ACD .【点睛】本题考查一元二次不等式与一元二次方程的关系,考查运算能力,是中档题12.设正实数x ,y 满足2x +y =1,则()A.xy 的最大值是14B.21x y+的最小值为9C.4x 2+y 2最小值为12D.+最大值为2【答案】BC 【解析】【分析】利用基本不等式求xy 的最大值可判断A ;将()21212x y x y x y ⎛⎫+=++ ⎪⎝⎭展开,再利用基本不等式求最值可判断B ;由()222424x y x y xy +=+-结合xy 的最大值可判断C;由22x y +=++结合xy的最大值可求出2的最大值可判断D ,进而可得正确选项.【详解】对于A,21x y +=≥Q ,18xy ∴≤,当且仅当212x y x y+=⎧⎨=⎩即14x =,12y =时等号成立,故A 错误;对于B ,()2121222559y x x y x y x y x y ⎛⎫+=++=+++= ⎪⎝⎭,当且仅当2221y x x y x y ⎧=⎪⎨⎪+=⎩即13x y ==时等号成立,故B 正确;对于C ,由A 可得18xy ≤,又21x y +=,()222424x y x y xy +=+-11141482xy =-≥-⨯=,当且仅当14x =,12y =时等号成立,故C 正确;对于D ,2212x y +=++≤+=,当且仅当14x =,12y =时等号成立,故D 错误;故选:BC.第II 卷非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知集合{}2450A x x x =--=,集合{}210B x x =-=,则A B ⋃=________.【答案】{}1,1,5-【解析】【分析】求出集合A 、B ,利用并集的定义可求出集合A B ⋃.【详解】因为{}{}24501,5A x x x =--==-,{}{}2101,1B x x =-==-,因此,{}1,1,5A B =- .故答案为:{}1,1,5-.14.某年级先后举办了数学、历史、音乐讲座,其中有75人听了数学讲座,68人听了历史讲座,61人听了音乐讲座,17人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有6人听了全部讲座,则听讲座人数为__________.【答案】172【解析】【分析】画出韦恩图求解即可.【详解】687561(17129)6++-+++204386=-+,172=(人).故答案为:17215.函数()2224x f x x =+的值域为__________.【答案】[)0,2【解析】【分析】令2224x y x =+,可得出242y x y =--,由20x ≥可得出关于y 的不等式,解出y 的取值范围,即可得出函数()f x 的值域.【详解】令2224x y x =+,可得2242yx y x +=,可得()224x y y -=-,即242y x y =--,由2402y x y =-≥-,可得02yy ≤-,解得02y ≤<,所以,函数()2224x f x x =+的值域为[)0,2.故答案为:[)0,2.16.已知()()()223f x x xxax b =+++,若对一切实数x ,均有()()2f x f x =-,则()3f =_____.【答案】36-【解析】【分析】分析可得()()2050f f ⎧=⎪⎨=⎪⎩,可得出关于a 、b 的方程组,解出这两个量的值,可得出函数()f x 的解析式,代值计算可得出()3f 的值.【详解】由230x x +=,可得3x =-或0x =,则()()300f f -==,对一切实数x ,均有()()2f x f x =-,则函数()f x 的图象关于直线1x =对称,所以,()()200f f ==,()()530f f =-=,所以,()()()()2104205402550f a b f a b ⎧=++=⎪⎨=++=⎪⎩,解得710a b =-⎧⎨=⎩,所以,()()()()()()223710325f x x xxx x x x x =+-+=+--,则()()()()()()()()()22232225253f x x x x x x x x x f x -=--+----=--+=,合乎题意,因此,()()3312636f =⨯⨯-⨯=-.故答案为:36-.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设集合{}{}25,|1|21A x x B x m x m =-≤≤=+≤≤-,(1)若4m =,求A B ⋃;(2)若B A B =I ,求实数m 的取值范围.【答案】(1){}|27A B x x ⋃=-≤≤;(2)(],3-∞.【解析】【分析】(1)根据并集的定义运算即得;(2)由题可得B A ⊆,分类讨论进而可得不等式即得.【小问1详解】当4m =时,{}|57B x x =≤≤,{}{}|25,|27A x x A B x x =-≤≤∴=-≤≤ ;【小问2详解】,B A B B A =∴⊆ ,当B =∅时,满足题意,此时121m m +->,解得2m <;当B ≠∅时,21215121m m m m -≤+⎧⎪-≤⎨⎪+≤-⎩解得23m ≤≤,∴实数m 的取值范围为(],3-∞.18.(1)对任意R x ∈,关于x 的不等式23x ax a ++≥恒成立,求实数a 的取值范围;(2)存在1x <,关于x 的不等式23x ax a ++≤有实数解,求实数a 的取值范围.【答案】(1){}62a a -≤≤(2){}2a a ≥【解析】【分析】(1)根据给定条件借助0∆≤即可求得实数a 的取值范围.(2)根据给定条件分离参数,再利用均值不等式计算即得.【小问1详解】因对任意R x ∈,不等式23x ax a ++≥恒成立,则230x ax a ++-≥对任意R x ∈恒成立,于是得:()2430a a ∆=--≤,解得62a -≤≤,所以实数a 的取值范围是{}62a a -≤≤.【小问2详解】当1x <时,222(1)2(1)443(1)3(1)211x x x ax a a x x a x x x ---+++≤⇔-≥+⇔≥=-+---,因存在1x <,不等式23x ax a ++≤有实数解,则存在1x <,不等式4(1)21a x x ≥-+--成立,当1x <时,10x ->,则4(1)2221x x -+-≥=-,当且仅当411x x -=-,即=1x -时取“=”,于是得2a ≥,所以实数a 的取值范围是{}2a a ≥.19.已知x>0,y>0,且x+4y-2xy=0,求:(1)xy 的最小值;(2)x+y 的最小值.【答案】(1)4;(2)92【解析】【分析】(1)由x+4y-2xy=0,得412x y+=又x>0,y>0,再利用基本不等式求xy 的最小值.(2)由题得x+y=12(41x y+)·(x+y),再利用基本不等式求x+y 的最小值.【详解】(1)由x+4y-2xy=0,得412x y +=又x>0,y>0,则2=41x y +≥2xy≥4,当且仅当x=4,y=1时,等号成立.所以xy 的最小值为4.(2)由(1)知412x y+=则x+y=12(41x y+)·(x+y)=1452x y y x ⎛⎫++ ⎪⎝⎭≥19522⎛+≥ ⎝当且仅当x=4且y=1时等号成立,∴x+y 的最小值为92.【点睛】(1)本题主要考查基本不等式求函数的最值,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是常量代换,即把x y +化成x+y=12(41x y+)·(x+y),再利用基本不等式求函数的最小值.利用基本不等式求最值时,要注意“一正二定三相等”,三个条件缺一不可.20.已知函数()24ax b f x x +=+是定义在()2,2-上的奇函数,且12217f ⎛⎫= ⎪⎝⎭.(1)求函数()f x 的解析式;(2)证明:函数()f x 在区间()2,2-上单调递增;(3)若()()1120f a f a ++->,求实数a 的取值范围.【答案】(1)()24xf x x =+(2)证明见解析(3)1,12⎛⎫- ⎪⎝⎭【解析】【分析】(1)利用奇函数的性质()()f x f x -=-求得b ,再由12217f ⎛⎫=⎪⎝⎭求得a ,由此可得()f x 的解析式;(2)利用单调性的定义,结合作差法即可证明;(3)利用奇函数的性质得到()()121f a f a +>-,再利用(2)中结论去掉f 即可求解;特别强调,去掉f 时要注意定义域的范围.【小问1详解】由题意可知()()f x f x -=-,2244ax b ax b x x -++∴=-++,即ax b ax b -+=--,0b ∴=,()24ax f x x ∴=+,又12217f ⎛⎫= ⎪⎝⎭ ,即212217142a =⎛⎫+ ⎪⎝⎭,1a ∴=,()24x f x x ∴=+.【小问2详解】()12,2,2x x ∀∈-,且12x x <,有()()()()()()()()()()22122121121212222222121212444444444x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++,1222x x -<<<Q ,21120,40x x x x ∴->-<,()()120f x f x ∴-<,即()()12f x f x <,所以函数()f x 在区间()2,2-上单调递增.【小问3详解】因为()f x 为奇函数,所以由()()1120f a f a ++->,得()()()11221f a f a f a +>--=-,又因为函数()f x 在区间()2,2-上单调递增,所以2122212121a a a a -<+<⎧⎪-<-<⎨⎪+>-⎩,解得3113222a a a -<<⎧⎪⎪-<<⎨⎪<⎪⎩,故112a -<<,所以实数a 的取值范围是1,12⎛⎫- ⎪⎝⎭21.某书商为提高某套丛书的销量,准备举办一场展销会,据某市场调查,当每套丛书的售价定为x 元时,销售量可达到()150.1x -万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分为固定价格和浮动价格两部分.其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.求:(1)每套丛书的售价定为100元时,书商所获得的总利润.(2)每套丛书的售价定为多少元时,单套丛书的利润最大.【答案】(1)340万元;(2)每套丛书售价定为140元时,单套丛书的利润最大,为100元.【解析】【分析】(1)根据给定条件,依次列式计算作答.(2)求出售价x 的范围,再列出单套丛书利润的函数关系,借助均值不等式求解作答.【小问1详解】每套丛书售价定为100元时,销售量为150.11005(-⨯=万套),于是得每套丛书的供货价格为103032(5+=元),所以书商所获得的总利润为()510032340(⨯-=万元).【小问2详解】每套丛书售价定为x 元,由150.100x x ->⎧⎨>⎩得0150x <<,设单套丛书的利润为P 元,则10100100(30)30[(150)]120150.1150150P x x x x x x=-+=--=--++---,120100≤-=,当且仅当100150150x x -=-,即140x =时等号成立,即当140x =时,max 100P =,所以每套丛书售价定为140元时,单套丛书的利润最大,为100元.22.已知函数.(1)求函数f(x)的定义域和值域;(2)设F(x)的最大值的表达式g(m).【答案】,2];(2)g(m)=12,211,22222m mm mmm⎧+>-⎪⎪⎪---<≤-⎨⎪≤-.【解析】【分析】(1)由1010xx+≥⎧⎨-≥⎩解不等式可得函数的定义域,先求得()22f x=+⎡⎤⎣⎦,结合01≤≤,可得()224f x≤≤⎡⎤⎣⎦,结合()0f x≥即可得到函数()f x的值域;(2)令()f x t=,可得()21,22F x mt t m t⎤=+-∈⎦,根据二次函数的图象和性质,利用分类讨论思想即可得到结论.【详解】(1)要使函数f(x)有意义,需满足1010xx+≥⎧⎨-≥⎩得-1≤x≤1.故函数f(x)的定义域是{x|-1≤x≤1}.∵[f(x)]2,且∴2≤[f(x)]2≤4,又∵f(x)≥0,即函数,2].(2)令f(x)=t,则t2t2-1,故F(x)=m(12t2-1)+t=12mt2,2],令h(t)=12mt2+t-m,则函数h(t)的图像的对称轴方程为t=-1m.①当m>0时,-1m<0,函数,2]上递增,∴g(m)=h(2)=m+2.②当m=0时,h(t)=t,g(m)=2;③当m<0时,-1m>0,若0<-1m,即m≤-2时,函数,1m≤2,即-2<m≤-时,g(m)=h(-1m)=-m-12m;若-1m>2,即-12<m<0时,函数,2]上递增,∴g(m)=h(2)=m+2.综上,g(m)=12,211,2222m mm mmm⎧+>-⎪⎪⎪---<≤-⎨⎪⎪≤-⎪⎩【点睛】分类讨论思想的常见类型⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;⑵问题中的条件是分类给出的;⑶解题过程不能统一叙述,必须分类讨论的;⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.。

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省部分学校2024-2025学年高一上学期11月期中考试数学试题(含解析)

江西省2024—2025学年上学期第一次模拟选科联考高一数学试卷共4页,19小题,满分150分。

考试用时120分钟。

注意事项:1.考查范围:必修第一册第一章至第三章第二节。

2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A.{2,3,4,5}B.{1,3,4}C.{3,4}D.{3}2.已知命题,,则为A., B.,C., D.,3.已知为定义在R 上的奇函数,当时,,则A. B.C. D.4.已知是幂函数,若,则a =A.B.2C.4D.65.若A. B. C. D.6.已知定义在R 上的函数满足,且,且,,则A. B.C. D.7.若关于x 的不等式的解集为,且,则实数m 的值为}{1,2,3,4,5U =2}{1,M =}2,{3,4N =()U M N = ð:1p x ∃>320x ->p ⌝1x ∀…320x ->1x ∀…320x -…1x ∀>320x -<1x ∀>320x -…()f x 0x >31()1f x x x =-+(1)f -=12-1232-3292()(4)m f x m x -=-()2f a =121a <-=5(1)a -+5(1)a +6(1)a -+6(1)a +()f x (5)(5)f x f x +=-12,(5,)x x ∀∈+∞12x x ≠121[(()()x x x f --2]()0f x >(5.5)(4.5)f f >(2.7)(3.2)f f <(7.3)(7.9)f f >(2.7)(5.2)f f >220()21x m x m m +-+-<12(,)x x 12112x x +=A.-4B.-1C.1D.48.已知函数若存在实数x ,使,则实数a 的取值围为A. B.C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列计算中正确的是A.C. D.10.使成立的一个充分条件可以是A.且 B.且C.且 D.且11.已知函数的定义域为R ,且的图象关于原点对称,的图象关于y 轴对称,则A. B.C.函数是增函数D.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数,则________.13.已知幂函数的图象过点,则________.14.对于任意实数x ,表示不小于x 的最小整数,例如(1.2)=2,,表示不大于x 的最大整数,例如[1.2]=1,.已知定义在R 上的函数,若集合,则集合A 中所有元素的和为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数在上单调递减,其中,且.(1)求的解析式;(2)求函数,的值域.16.(15分)已知集合,,且.23,2,(),2,x ax a x f x a x ⎧-++>⎪=…()0f x <(,1)-∞-(,2)(6,)-∞-+∞(,6)(1,)-∞--+∞(,1)(6,)-∞-+∞ 1144-=2=±23(8)4-=23184-=3a b c ->a c >2b c >-2a c >b c >-2a c >b c>-3a c >2b c>()f x (2)4y f x =+-(4)4y f x x =++(2)4f =(6)12f =-()f x (8)(4)824f x f x x -+-=-30,()()1,0,x f x g x x x x ==-<⎪⎩…((1))g f -=()m f x x =3(3,33[(2)]f =()x (0.2)0-=[]x 0.21[]-=-()(2)[3]f x x x =⋅4|(),23A y y f x x ⎧⎫==-<-⎨⎬⎩⎭…()af x b x=+(0,)+∞24a =(1)1f =()f x 2()2()[()]g x f x f x =+[1,4]x ∈(4,29]A m =+{|2233}B x m x m =-+……12B ∈(1)当时,求实数m 的取值范围;(2)设;,若p 是q 的必要不充分条件,求实数m 的取值范围.17.(15分)已知定义在R 上的奇函数与偶函数满足,若.(1)求的解析式;(2)求关于x 的不等式的解集.18.(17分)某糕点连锁店现有五家分店,出售A ,B 两款糕点,A 为特价糕点,为吸引顾客,按进价销售.已知用16000元购进A 糕点与用22000元购进B 糕点的重量相同,且B 糕点每斤的进价比A 糕点每斤的进价多6元.(1)求A ,B 两种糕点每斤的进价;(2)经市场调查发现,B 糕点每斤售价30元时,每月可售出3120斤,售价每提高1元,则每月少售出120斤,售价每降低1元,则每月多售出120斤,糕点店不会低于进价销售.则B 糕点每斤定价为多少元时,糕点店通过卖B 糕点获得的月利润最大?最大是多少?(3)因为使用进价销售的A 糕点物美价廉,所以深受顾客青睐,五个分店每月的总销量为10000斤.今年年初该连锁店用50万购进一批设备,用于生产A 糕点.已知每斤糕点的原材料价格为8元,若生产A 糕点n 个月()所用的原材料之外的各种费用总计为万元,若只考虑A 糕点,记该连锁店前n 个月的月平均利润为z 万元,求z 的最大值.19.(17分)对非空数集A 及实数k ,定义,,已知.(1)当时,若集合A 为单元素集,求A ;(2)当时,若集合,求ab 的所有取值构成的集合;(3)若A 中有3个元素,求实数k 的取值范围.16A ∉:p t A ∈:q t B ∈()f x ()g x ()()2||2f x g x x x +=++()()()h x f x g x =⋅()h x 2(3)(3)0h x tx h x t -+-<*n ∈N 211324n n +2{|,}A k x x a k a A ==-∈ {|,}A k x x k a a A ⊗==-∈A k A k =⊗ 1k =3k ={,}A a b =江西省2024—2025学年上学期第一次模拟选科联考高一数学参考答案及评分细则1.【答案】A【解析】,故选A.2.【答案】D【解析】根据存在量词命题的否定是全称量词命题,得,.故选D.3.【答案】B【解析】因为为定义在R 上的奇函数,所以.故选B.4.【答案】C【解析】因为是幂函数,所以,得,故时,.故选C.5.【答案】C【解析】当时,.故选C.6.【答案】D【解析】由题意得函数在上单调递减,在上单调递增.对选项A ,,A 错误;对选项B ,因为函数在上单调递减,所以,B 错误;对选项C ,因为函数在上单调递增,所以,C 错误;对选项D ,因为,函数在上单调递减,故,D 正确.故选D.7.【答案】B【解析】因为关于x 的不等式的解集为,所以关于x 的方程有两个不相等的实数根,所以,解得,且,,所以,解得.故选B.8.【答案】D【解析】当时,,即,因为,所以,故有解,{3,4,5}{2,3,4}{2,3,4,5}()U M N == ð:1p x ⌝∀>320x -…()f x 311(1)(1)1112f f ⎛⎫-=-=--= ⎪+⎝⎭92()(4)m f x m x-=-41m -=5m =12()f x x ==2=4a =1a <-10a +<3(1)a =--3(1)a =+=336(1)(1)(1)a a a --+=-+()f x (,5)-∞(5,)+∞(5.5)(50.5)f f =+=(50.5)(4.5)f f -=()f x (,5)-∞(2.7)(3.2)f f <()f x (5,)+∞(7.3)(7.9)f f >(5.2)(5f f =+0.2)(50.2)(4.8)f f =-=()f x (,5)-∞(2.7)(4.8)(5.2)f f f >=220()21x m x m m +-+-<12(,)x x 220()21x m x m m +-+-=12,x x 22[2(1)]41()440m m m m ∆=--⨯⋅-=-+>1m <122(1)x x m +=--212x x m m =-1221212112(1)2x x m x x x x m m+--+===-1m =-2x >230x ax a -++<23(1)x a x +<-2x >11x ->231x a x +>-即,因为,当且仅当,即时等号成立,故;当时,有解,即有解,也即,因为单调递增,故时,取最大值-1,故.综上,实数a的取值范围为.故选D.9.【答案】ACD (每选对1个得2分)【解析】对于A ,,A 正确;对于B,B 错误;对于C ,,C 正确;对于D ,,D 正确.故选ACD.10.【答案】AC (每选对1个得3分)【解析】充分性成立,即选项能推出,对于A ,,又,同向不等式相加得,A 成立;对于B ,令,,,满足且,但,B 不成立;对于C ,,又,同向不等式相加得,,C 成立;对于D ,令,,,满足且,但,D 不成立.故选AC.11.【答案】ABD (每选对1个得2分)【解析】A 选项,的定义域为R ,因为的图象关于原点对称,所以为奇函数,所以,故,令,得,A 正确;B 选项,由的图象关于y 轴对称,得为偶函数,所以,即,令,得,得,B 正确;C 选项,因为,C 错误;D 选项,因为,所以,因为,令,得,即,故,,D 正确.故选ABD.12.【答案】-8【解析】,.13.【答案】64【解析】由,所以.14.【答案】67【解析】当时,;当时,,,2min31x ax ⎛⎫+>⎪-⎝⎭223(11)341226111x x x x x x +-++==-+++=--- (4)11x x -=-3x =6a >2x …0a +<a <max (a <y =2x =y =1a <-(,1)(6,)-∞-+∞ 1144-=2=23(8)4-==232311848-===3a b c ->22b c b c <-⇒->a c >3a b c ->3a =7b =1c =-2a c >b c >-433a b c -=-<-=b c b c <-⇒->2a c >3a b c ->5a =8b =1c =-3a c >2b c >33a b c -=-=()f x (2)4y f x =+-(2)4y f x =+-(2)4(2)40f x f x --++-=(2)(2)8f x f x -++=0x =(2)4f =(4)4y f x x =++(4)4y f x x =++(4)4(4)4f x x f x x --=++(4)(4)8f x f x x -=++2x =4(2)(6)16f f ==+(6)12f =-(2)(6)f f >(2)(2)8f x f x -++=()8(4)f x f x =--(4)(4)8f x f x x -=++4x t -=()(8)328f t f t t =-+-()(8)328f x f x x =-+-8(4)(8)328f x f x x --=-+-(8)(4)824f x f x x -+-=-(1)112f -=--=-3((1))(2)(2)8g f g -=-=-=-333m =3m =-3()f x x =333(3(36[(2)](22264f ⨯====2x =-()(4)[6](4)(6)24f x =-⋅-=-⨯-=523x -<<-10423x -<<-(2)3x =-,,;当时,,,,,;当时,,,,,.综上,,集合A 中所有元素的和为67.15.解:(1)由得,(2分)因为函数在上单调递减,所以,故.(5分)由得,所以.(7分)(2),(10分)当时,,,,所以函数,的值域为.(13分)【评分细则】值域写成集合或区间形式均给分.16.解:(1)因为,所以,得,(2分)又因为,所以,即,(5分)故当时,m 的取值范围是.(7分)(2)因为,所以,,若p 是q 的必要不充分条件,则B 是A 的真子集,(10分)故(12分)解得.故实数m 的取值范围是.(15分)【评分细则】结果写成集合或区间或不等式形式均给分.17.解:(1)因为,即,又,得,,(4分)635x -<<-[3]6x =-()(2)[3](3)(6)18f x x x =⋅=-⨯-=5332x -- (10)233x --……(2)3x =-9532x --……[3]5x =-()(2)[3](3)(5)15f x x x =⋅=-⨯-=3423x -<<-8323x -<<-(2)2x =-9342x -<<-[3]5x =-()(2)[3](2)(5)10f x x x =⋅=-⨯-={24,18,15,10}A =24a =2a =±()af x b x=+(0,)+∞0a >2a =(1)21f b =+=1b =-2()1f x x=-222424()2()[()]211g x f x f x x x x ⎛⎫=+=-+-=- ⎪⎝⎭[1,4]x ∈2[1,16]x ∈241,44x ⎡⎤∈⎢⎥⎣⎦2131,34x ⎡⎤-∈-⎢⎥⎣⎦2()2()[()]g x f x f x =+[1,4]x ∈3,34⎡⎤-⎢⎥⎣⎦12B ∈221233m m -+……37m ……16A ∉2916m +<72m <16A ∉73,2⎡⎫⎪⎢⎣⎭37m ……A O ≠B O ≠224,3329,m m m ->⎧⎨++⎩…36m <…(3,6]()()2||2f x g x x x -+-=-+-+()()2||2f x g x x x -+=-++()()2||2f x g x x x +=++()2f x x =()||2g x x =+所以.(5分)(2)因为,所以为奇函数,(7分)又当时,单调递增,故函数在R 上单调递增.(9分)则不等式,可化为,即,即,(11分)①若,即时,;②若,即时,不等式无解;③若,即时,,综上,当时,解集为,当时,解集为,当时,解集为.(15分)【评分细则】1.第一问求出和的解析式分别给2分;2.第一问结果写成分段函数形式不扣分;3.第二间结果不写成集合或区间形式扣1分,未总结,但结果正确均给满分,三种情况每少一种情况扣1分.18.解:(1)设A 糕点每斤的进价为a 元,B 糕点每斤的进价为元,所以,解得,所以A 糕点每斤的进价为16元,B 糕点每斤的进价为22元.(4分)(2)设B 糕点每斤涨价元,蛋糕店通过B 糕点获得的月利润为y 元.由题意,(6分)当时,y 有最大值.(8分)所以B 糕点每斤定价为39元时,月利润最大,最大为34680元.(9分)(3)设前n 个月的总利润为w ,因为A 糕点每斤售价为16元,每月可售出10000斤,故每月可收入16万元,其中原材料为8万元,则,(12分)月平均利润万元,(15分)()()()2(||2)h x f x g x x x =⋅=+()2()(||2)2(||2)()h x x x x x h x -=--+=-+=-()h x 0x …2()24h x x x =+()h x 2(3)(3)0h x tx h x t -+-<2(3)(3)(3)h x tx h x t h t x -<--=-23(3)0x t x t +--<(3)(1)0x t x -+<13t <-3t <-13tx <<-13t=-3t =-13t >-3t >-13t x -<<3t <-|13t x x ⎧⎫<<-⎨⎬⎩⎭3t =-∅3t >-|13t x x ⎧⎫-<<⎨⎬⎩⎭()f x ()g x (6)a +16000220006a a =+16a =(8)x x -…22(3022)(3120120)120216024960120(9)34680y x x x x x =+--=-++=--+9x =22*111311685050()324324w n n n n n n n ⎛⎫=--+-=-+-∈ ⎪⎝⎭N 503131215.2532444w n z n n ==--+-+==…当且仅当,即时等号成立,(16分)所以z 的最大值为5.25.(17分)【评分细则】1.第二问未配方,只要结果正确,就给分;2.第三问未说明等号成立条件扣1分.19.解:(1)时,设,由,得,所以,即,得或1,故或.(4分)(2)时,,由,得,得或即或(5分)当时,是方程的两根,故,(6分)当时,两式相减得,由集合中元素的互异性得,所以,故,即,同理,故是方程的两根,所以,(7分)故ab 的所有取值构成的集合为.(8分)(3)设,由,得,①若故是方程的三个不等的实数根,而此方程最多有两个实数根,不可能有三个实数根,故不成立;(11分)②若,当时,,令,得,(12分)对,,两式相减得,因为,所以,代入,得,同理,5032n n=40n =1k ={}A a =11A A =⊗ 2{1}{1}a a -=-211a a -=-220a a +-=2a =-{2}A =-1}{A =3k ={,}A a b =33A A =⊗ 22{3,3}{3,3}a b a b --=--2233,33a a b b ⎧-=-⎨-=-⎩2233,33,a b b a ⎧-=-⎨-=-⎩2260,60a a b b ⎧+-=⎨+-=⎩226,6,a b b a ⎧=-⎨=-⎩2260,60a ab b ⎧+-=⎨+-=⎩,a b 260x x +-=6ab =-226,6a b b a⎧=-⎨=-⎩22a b a b -=-a b ≠1a b +=266(1)5a b a a =-=--=+250a a --=250b b --=,a b 250x x --=5ab =-{6,5}--{,,}A a b c =A k A k =⊗ 222{,,}{,,}a k b k c k k a k b k c ---=---222,,,a k k a b k k b c k k c ⎧-=-⎪-=-⎨⎪-=-⎩,,a b c 220x x k +-=222,,,a k kb b k k ac k k c ⎧-=-⎪-=-⎨⎪-=-⎩2c k k c -=-220c c k +-=180k ∆=+ (1)8k -…2a k k b -=-2b k k a -=-22a b a b -=-a b ≠1a b +=2a k k b -=-2120a a k -+-=2120b b k -+-=故为方程的两个不相等的实根,令,得,(13分)当时,与均有两个不相等的实根,且这两个方程的根不完全相同,故符合题意;(14分)③若则,根据集合中元素的互异性,两两不相等,不妨设,(ⅰ)当时,,又,所以,这与矛盾,故不成立;(ⅱ)当时,,又,所以,这与矛盾,故不成立;(ⅲ)当时,,又,所以,这与矛盾,故不成立;(ⅳ)当时,,又,所以,这与矛盾,故不成立.(16分)综上,实数k 的取值范围是.(17分)【评分细则】1.第一问只得出一种情况,扣2分;结果不写成集合形式,扣1分;2.第二问求出ab 的一个值,给2分,最后结果不写成集合形式,扣1分;3.第三问结果写成不等式、集合或区间形式,结果正确即给满分.,a b 2120x x k -+-=14(12)0k '∆=-->38k >38k >2120x x k -+-=220x x k +-=222,,,a k k b b k k c c k k a ⎧-=-⎪-=-⎨⎪-=-⎩2222a b b c c a k +=+=+=,,a b c a b c >>0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22a b >b c >22c a b b ++>22c a b b ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=0a b c >>>22b c <c a <22b c a c ++<22b c a c ++=3,8⎛⎫+∞ ⎪⎝⎭。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。

2023~2024学年第一学期高一期中考试数学试题[含答案]

2023~2024学年第一学期高一期中考试数学试题[含答案]


上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2

0(舍去),
f x

的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )

2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0

2023-2024学年江苏省苏州市高一(上)期中数学试卷【答案版】

2023-2024学年江苏省苏州市高一(上)期中数学试卷【答案版】

2023-2024学年江苏省苏州市高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,集合A ={0,1,2,3},B ={x |x >1},则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{2,3}D .{0,1,2}2.函数f(x)=x−11+x的定义域为( )A .(1,+∞)B .(﹣1,1)C .(﹣1,+∞)D .(﹣∞,﹣1)∪(1,+∞)3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >24.19世纪德国数学家狄利克雷提出了一个有趣的函数D (x )={1,x 是有理数,0,x 是无理数.若函数f (x )=D (x )﹣x 2,则下列实数中不属于函数f (x )值域的是( ) A .0B .﹣1C .﹣2D .﹣35.若f (x )是定义在[﹣6,6]上的偶函数,且f (5)>f (2),下列各式中一定成立的是( ) A .f (﹣2)<f (5) B .f (0)<f (6) C .f (4)<f (5)D .f (0)<f (4)6.已知函数f (x )=x 4+x 2﹣2,x ∈R ,则满足f (2x )<f (x +2)的x 的取值范围为( ) A .(0,2)B .(−23,2)C .(﹣∞,0)∪(2,+∞)D .(−∞,−23)∪(2,+∞)7.给定函数f (x )=x 2﹣2,g (x )=−12x +1,用M (x )表示函数f (x ),g (x )中的较大者,即M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .0B .7−√178C .14D .28.已知f (x )={x 2+4x +3,x ≤0,|3−2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4的取值范围是( )A.(−∞,53)B.(﹣∞,2)C.(−∞,133)D.(53,133)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a,b为正数,且a>b,下列不等式中一定成立的是()A.ba4>ab4B.ba <b+1a+1C.a+1a>b+1b D.b−a b<a−b a10.将某几何图形置于坐标系xOy中,直线l:x=t从左向右扫过,将该几何图形分成两部分,其中位于直线l左侧部分的面积为S,若函数S=f(t)的大致图象如图所示,则该几何图形可以是()A.B.C.D.11.定义在R上的函数f(x)满足:对任意的x,y∈R,f(x+y)=f(x)+f(y),则下列结论一定正确的有()A.f(0)=0B.f(x﹣y)=f(x)﹣f(y)C.f(x)为R上的增函数D.f(x)为奇函数12.某数学兴趣小组对函数f(x)=1−x|x|+1进行研究,得出如下结论,其中正确的有()A.f(﹣2023)+f(2023)=2B.∃x1≠x2,都有f(x1)=f(x2)C.f(x)的值域为(0,2)D.∀x1,x2∈(0,+∞),都有f(x1+x22)≤f(x1)+f(x2)2三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数f(x)=xα(α∈R)是奇函数,且在(﹣∞,0)上单调递减,则α的值可以是.(只要写一个即可)14.命题“∃x >1,x 2<1”的否定为 .15.函数f (x )=[x ]的函数值表示不超过x 的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2,若集合A ={y |y =[2x 2−3x 2+1],x ∈R },则A 中元素的个数是 . 16.已知函数f (x )=﹣x +2,g (x )=x 2+5x+10x+3+m ,若对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2),则实数m 的取值范围 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集为U =R ,集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}. (1)求(∁U A )∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围. 18.(12分)若正数a ,b 满足ab =4a +b +t ,t ∈R . (1)当t =0时,求a +4b 的最小值; (2)当t =5时,求ab 的取值范围.19.(12分)已知二次函数f (x )=ax 2+bx +c 的图象与直线y =﹣4有且仅有一个公共点,且不等式f (x )<0的解集为[﹣1,3]. (1)求f (x )的解析式;(2)关于x 的不等式f (x )<(m ﹣1)x ﹣3﹣m 的解集中恰有两个整数,求实数m 的取值范围. 20.(12分)立德中学学生在社会实践活动中,通过对某商店一种换季商品销售情况的调查发现:该商品在过去的两个月内(以60天计)的日销售价格P (x )(元)与时间x (天)的函数关系近似满足P (x )=1+2x.该商品的日销售量 Q (x )(个)与时间x (天)部分数据如下表所示:给出以下两种函数模型:①Q (x )=a (x ﹣25)2+b ,②Q (x )=a |x ﹣30|+b .(1)请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述该商品的日销售量Q (x )与时间x 的关系,并求出该函数的解析式;(2)求该商品的日销售收入f (x )(1≤x ≤60,x ∈N *)的最小值.21.(12分)定义:对于函数f 1(x ),f 2(x ),h (x ),如果存在实数a ,b ,使得af 1(x )+bf 2(x )=h (x ),那么称h (x )为f 1(x )和f 2(x )的生成函数.(1)给出函数f 1(x )=−14x 2−12x +154,f 2(x )=x 2﹣4x ﹣5,h (x )=x 2﹣10x +5,请判断h (x )是否为f(x)和f2(x)的生成函数?并说明理由;(2)设f1(x)=x(x>0),f2(x)=1x(x>0),当a=2,b=8时,f1(x)和f2(x)的生成函数为h (x).若对于任意正实数x1,x2且x1+x2=2,是否存在实数m,使得h(x1)h(x2)>m恒成立?若存在,求出m的最大值;若不存在,请说明理由.22.(12分)已知f(x)=x(|x﹣4a|+2),a∈R.(1)若f(1)=3,判断f(x)的奇偶性;(2)若f(x)在[1,3]上的最小值是3,求正数a的值.2023-2024学年江苏省苏州市高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U =R ,集合A ={0,1,2,3},B ={x |x >1},则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{2,3}D .{0,1,2}解:由Venn 图可知,阴影部分所表示的集合为A ∩(∁U B )={0,1,2,3}∩{x |x ≤1}={0,1}. 故选:B . 2.函数f(x)=2x√x−1√1+x的定义域为( )A .(1,+∞)B .(﹣1,1)C .(﹣1,+∞)D .(﹣∞,﹣1)∪(1,+∞)解:要使原函数有意义,则{x −1>01+x >0,解得x >1.∴函数f(x)=2x√x−1√1+x的定义域为(1,+∞).故选:A .3.“|x |>2”的一个充分不必要条件是 ( ) A .﹣2<x <2B .﹣4<x ≤﹣2C .x >﹣2D .x >2解:由|x |>2解得:x <﹣2或x >2,找“|x |>2”的一个充分不必要条件,即找集合{x |x <﹣2或x >2}的真子集, ∵{x |x >2}⫋{x |x <﹣2或x >2},∴“|x |>2”的一个充分不必要条件是{x |x >2}. 故选:D .4.19世纪德国数学家狄利克雷提出了一个有趣的函数D (x )={1,x 是有理数,0,x 是无理数.若函数f (x )=D (x )﹣x 2,则下列实数中不属于函数f (x )值域的是( ) A .0B .﹣1C .﹣2D .﹣3解:由题意得f(x)={1−x2,x是有理数−x2,x是无理数,A:由于f(1)=0,A正确;B:由f(x)=﹣1,当x是有理数时,1﹣x2=﹣1,则x=±√2,不合题意;当x是无理数时,﹣x2=﹣1,则x=±1,不合题意;C:因为f(√2)=﹣2,故﹣2为函数的一个函数值;D:由f(√3)=﹣3,故﹣3为函数的一个函数值.故选:B.5.若f(x)是定义在[﹣6,6]上的偶函数,且f(5)>f(2),下列各式中一定成立的是()A.f(﹣2)<f(5)B.f(0)<f(6)C.f(4)<f(5)D.f(0)<f(4)解:因为f(x)是定义在[﹣6,6]上的偶函数,所以f(﹣5)=f(5),f(﹣2)=f(2),因为f(5)>f(2),所以f(5)>f(﹣2),故A正确,因为无法判断函数的单调性,故其余选项不能判断.故选:A.6.已知函数f(x)=x4+x2﹣2,x∈R,则满足f(2x)<f(x+2)的x的取值范围为()A.(0,2)B.(−23,2)C.(﹣∞,0)∪(2,+∞)D.(−∞,−23)∪(2,+∞)解:因为f(﹣x)=x4+x2﹣2,所以f(﹣x)=f(x),所以f(x)为偶函数,当x>0时,y=x4,y=x2单调递增,所以函数f(x)=x4+x2﹣2在(0,+∞)上单调递增,在(﹣∞,0)上单调递减,因为f(2x)<f(x+2),所以|2x|<|x+2|,所以(2x)2<(x+2)2,整理得3x2﹣4x﹣4<0,解得−23<x<2,所以x的取值范围为(−23,2).故选:B.7.给定函数f (x )=x 2﹣2,g (x )=−12x +1,用M (x )表示函数f (x ),g (x )中的较大者,即M (x )=max {f (x ),g (x )},则M (x )的最小值为( ) A .0B .7−√178C .14D .2解:令x 2﹣2=−12x +1,解得x =﹣2或x =32, 作出函数M (x )的图象如图所示:由图象可知,当x =32时,M (x )取得最小值为M (32)=14.故选:C .8.已知f (x )={x 2+4x +3,x ≤0,|3−2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则1x 1+1x 2+1x 3+1x 4的取值范围是( )A .(−∞,53) B .(﹣∞,2)C .(−∞,133)D .(53,133)解:画出f (x )={x 2+4x +3,x ≤0|3−2x |,x >0的图象,如图所示:设f(x1)=f(x2)=f(x3)=f(x4)=a,则a∈(0,3),令x2+4x+3=3,解得x=﹣4或0,因为y=x2+4x+3的对称轴为x=﹣2,由对称性可得x1+x2=﹣4,且x1∈(﹣4,﹣3),x2∈(﹣1,0),其中1x1+1x2=x1+x2x1x2=−4x1x2=−4(−4−x2)x2=4(x2+2)2−4,因为x2∈(﹣1,0),所以(x2+2)2﹣4∈(﹣3,0),故1x1+1x2=4(x2+2)2−4∈(﹣∞,−43),又2x3−3=3−2x4,故1x3+1x4=3,所以1x1+1x2+1x3+1x4∈(﹣∞,53).故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设a,b为正数,且a>b,下列不等式中一定成立的是()A.ba4>ab4B.ba <b+1a+1C.a+1a>b+1b D.b−a b<a−b a解:对于A,因为a,b为正数,且a>b,则ba4﹣ab4=ab(a3﹣b3)>0,故A正确;对于B,b(a+1)﹣a(b+1)=b﹣a<0,则B正确;对于C,(a+1a)﹣(b+1b)=(a﹣b)−a−bab=(a﹣b)(1−1ab),由于1−1ab的符号不确定,故C错误;对于D,(b−ab)﹣(a−ba)=(b﹣a)−a2−b2ab=(b﹣a)(1+a+bab),由于b﹣a<0,ab>0,a+b>0,则(b﹣a)(1+a+bab)<0,则D正确.故选:ABD.10.将某几何图形置于坐标系xOy中,直线l:x=t从左向右扫过,将该几何图形分成两部分,其中位于直线l左侧部分的面积为S,若函数S=f(t)的大致图象如图所示,则该几何图形可以是()A.B.C.D.解:由已知图像可知面积S的增速经历三种变化,首先面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,A选项:由圆的性质可知,面积S的增速先越来越大,后越来越小,A选项不符合;B选项:面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,B选项符合;C选项:面积S增速越来越大,之后面积S匀速增加,最后面积S增速越来越小,C选项符合;D选项:面积S增速越来越小,之后面积S匀速增加,最后面积S增速越来越大,D选项不符合.故选:BC.11.定义在R上的函数f(x)满足:对任意的x,y∈R,f(x+y)=f(x)+f(y),则下列结论一定正确的有()A.f(0)=0B.f(x﹣y)=f(x)﹣f(y)C.f(x)为R上的增函数D.f(x)为奇函数解:令x=y=0,可得f(0)=2f(0),即f(0)=0,故A正确;令y=﹣x,可得f(0)=f(x)+f(﹣x)=0,即f(﹣x)=﹣f(x),且定义域为R,则f(x)为奇函数,故D正确;由f(x)为奇函数,可得f(x﹣y)=f(x)+f(﹣y)=f(x)﹣f(y),故B正确;设f(x)=﹣x,满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y),但f(x)=﹣x为递减函数,故C错误.故选:ABD.12.某数学兴趣小组对函数f(x)=1−x进行研究,得出如下结论,其中正确的有()|x|+1A.f(﹣2023)+f(2023)=2B.∃x1≠x2,都有f(x1)=f(x2)C.f(x)的值域为(0,2)D .∀x 1,x 2∈(0,+∞),都有f(x 1+x 22)≤f(x 1)+f(x 2)2 解:根据题意,可得f(x)=1−x|x|+1的定义域为R , 对于A ,因为f(−x)=1−−x |−x|+1=1+x |x|+1,所以f (﹣x )+f (x )=2,对任意x ∈R 成立,故f (﹣2023)+f (2023)=2成立,A 正确;对于B ,化简得f(x)={1x+1,x ≥02+1x−1,x <0,可知f (x )在(﹣∞,0)上与在[0,+∞)上都是减函数,所以f (x )在R 上为减函数,不存在x 1≠x 2,使f (x 1)=f (x 2)成立,故B 错误;对于C ,由f(x)={1x+1,x ≥02+1x−1,x <0,可知当x ∈(﹣∞,0)时,−1<1x−1<0,f (x )=2+1x−1∈(1,2),当x ∈[0,+∞)时,f (x )=1x+1∈(0,1],所以f (x )在R 上的值域为(0,2),C 正确; 对于D ,当x ∈(0,+∞)时,f (x )=1x+1,其图像是由反比例函数y =1x 向左平移1个单位而得, 图象是单调递减的曲线且以x 轴为渐近线,可知f (x )是凹函数, 可知∀x 1,x 2∈(0,+∞),都有f(x 1+x 22)≤f(x 1)+f(x 2)2成立,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.若幂函数f (x )=x α(α∈R )是奇函数,且在(﹣∞,0)上单调递减,则α的值可以是 .(只要写一个即可) 解:当α=﹣1时,则f (x )=1x为奇函数,且在(﹣∞,0)上单调递减,符合题意. 故答案为:﹣1(答案不唯一).14.命题“∃x >1,x 2<1”的否定为 . 解:“∃x >1,x 2<1”的否定为:∀x >1,x 2≥1. 故答案为:x >1,x 2≥1.15.函数f (x )=[x ]的函数值表示不超过x 的最大整数,例如,[﹣3.5]=﹣4,[2.1]=2,若集合A ={y |y =[2x 2−3x 2+1],x ∈R },则A 中元素的个数是 . 解:∵2x 2−3x 2+1=2(x 2+1)−5x 2+1=2−5x 2+1,x 2+1≥1,0<5x 2+1≤5,∴−3≤2−5x 2+1<2, ∴−3≤2x 2−3x 2+1<2, ∴A ={﹣3,﹣2,﹣1,0,1},A 中元素的个数为5. 故答案为:5.16.已知函数f (x )=﹣x +2,g (x )=x 2+5x+10x+3+m ,若对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2),则实数m 的取值范围 .解:∵f (x )=﹣x +2为减函数,∴当x ∈[1,2]时,其值域A =[0,1]; ∵x ∈(﹣2,3),∴x +3∈(1,6), 令t =x +3,则t ∈(1,6),g (x )=x 2+5x+10x+3+m ,可化为y =(t−3)2+5(t−3)+10t +m =t +4t+m ﹣1(1<t <6), 由对勾函数的性质可知,h (t )=t +4t+m ﹣1在区间(1,2]上单调递减,在区间[2,6)上单调递增, ∴h (t )min =h (2)=3+m ,又h (1)=4+m ,h (6)=173+m ,h (6)>h (1), ∴h (t )∈[3+m ,173+m ),∴当x ∈(﹣2,3)时,g (x )的值域为B =[3+m ,173+m );∵对任意x 1∈[1,2],存在x 2∈(﹣2,3),使得f (x 1)=g (x 2), ∴A ⊆B , ∴{3+m ≤0173+m >1,解得−143<m ≤﹣3.故答案为:(−143,﹣3]. 四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设全集为U =R ,集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}. (1)求(∁U A )∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围. 解:(1)因为集合A ={x |x <﹣3或x >5},B ={x |﹣2<x <10}, 所以∁U A ={x |﹣3≤x ≤5},(∁U A )∩B =(﹣2,5];(2)因为C ⊆B ,所以{a +1≤10a ≥−2,解得﹣2≤a ≤9,即a 的取值范围[﹣2,9].18.(12分)若正数a ,b 满足ab =4a +b +t ,t ∈R . (1)当t =0时,求a +4b 的最小值;(2)当t =5时,求ab 的取值范围. 解:(1)当t =0时,4a +b =ab , 所以4b +1a=1,所以a +4b =(a +4b )(1a +4b )=17+4ba +4ab ≥17+2√4b a ⋅4ab =25,当且仅当4a b=4b a且ab =4a +b ,即a =b =5时取等号;(2)当t =5时,ab =4a +b +5≥2√4ab +5,当且仅当b =4a ,即a =52,b =10时取等号, 解得ab ≥25,故ab 的取值范围为[25,+∞).19.(12分)已知二次函数f (x )=ax 2+bx +c 的图象与直线y =﹣4有且仅有一个公共点,且不等式f (x )<0的解集为[﹣1,3]. (1)求f (x )的解析式;(2)关于x 的不等式f (x )<(m ﹣1)x ﹣3﹣m 的解集中恰有两个整数,求实数m 的取值范围. 解:(1)根据题意,可得f (x )<0的根为﹣1和3,且ax 2+bx +c +4=0有两个相等的实数根, 故{−1+3=−ba −1×3=c a ,且b 2﹣4a (c +4)=0,解得a =1,b =﹣2,c =﹣3,f (x )=x 2﹣2x ﹣3;(2)f (x )<(m ﹣1)x ﹣3﹣m ,即x 2﹣2x ﹣3<(m ﹣1)x ﹣3﹣m ,整理得x 2﹣(m +1)x +m <0, 若m =1,不等式化为(x ﹣1)2<0,解集为空集,不符合题意; 若m ≠1,不等式化为(x ﹣m )(x ﹣1)<0,当m <1时,解集为(m ,1),若恰有两个整数在区间(m ,1),则﹣2≤m <﹣1; 当m >1时,解集为(1,m ),若恰有两个整数在区间(1,m ),则3<m ≤4. 综上所述,实数m 的取值范围是[﹣2,﹣1)∪(3,4].20.(12分)立德中学学生在社会实践活动中,通过对某商店一种换季商品销售情况的调查发现:该商品在过去的两个月内(以60天计)的日销售价格P (x )(元)与时间x (天)的函数关系近似满足P (x )=1+2x.该商品的日销售量 Q (x )(个)与时间x (天)部分数据如下表所示:给出以下两种函数模型:①Q (x )=a (x ﹣25)2+b ,②Q (x )=a |x ﹣30|+b .(1)请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述该商品的日销售量Q (x )与时间x 的关系,并求出该函数的解析式;(2)求该商品的日销售收入f (x )(1≤x ≤60,x ∈N *)的最小值.解:(1)模型①:Q (x )=a (x ﹣25)2+b ,x =25时,Q (25)=b =1670, x =20时,Q (20)=25a +1670=1680,解得a =0.4; 所以Q (x )=0.4(x ﹣25)2+1670;计算Q (45)=0.4×202+1670=1830>1690, Q (60)=0.4×352+1670=2160>1720;模型②:Q (x )=a |x ﹣30|+b ,表示在x =30两侧“等距”的函数值相等, 由{Q(25)=5a +b =1670Q(20)=10a +b =1680,解得a =2,b =1660, 所以Q (x )=2|x ﹣30|+1660,所以Q (45)=15×2+1660=1690,Q (60)=30×2+1660=1720; 所以利用模型②最合适,此时Q (x )=2|x ﹣30|+1660;(2)由(1)知,该商品的日销售收入f (x )=P (x )•Q (x )=(1+2x)(2|x ﹣30|+1660)={3440x −2x +1716,1≤x ≤302x +3200x+1604,30<x ≤60, 当1≤x ≤30时,f (x )是单调递减函数,最小值为f (30)=344030−60+1716≈1771, 当30<x ≤60时,f (x )=2x +3200x +1604≥2√2x ⋅3200x +1604=1764,当且仅当2x =3200x,即x =40时“=”成立,综上,f (x )的最小值是1764.21.(12分)定义:对于函数f 1(x ),f 2(x ),h (x ),如果存在实数a ,b ,使得af 1(x )+bf 2(x )=h (x ),那么称h (x )为f 1(x )和f 2(x )的生成函数. (1)给出函数f 1(x )=−14x 2−12x +154,f 2(x )=x 2﹣4x ﹣5,h (x )=x 2﹣10x +5,请判断h (x )是否为f (x )和f 2(x )的生成函数?并说明理由;(2)设f 1(x )=x (x >0),f 2(x )=1x (x >0),当a =2,b =8时,f 1(x )和f 2(x )的生成函数为h (x ).若对于任意正实数x 1,x 2且x 1+x 2=2,是否存在实数m ,使得h (x 1)h (x 2)>m 恒成立?若存在,求出m 的最大值;若不存在,请说明理由.解:(1)h (x )是f 1(x ),f 2(x )的生成函数,理由如下:若h (x )是f 1(x ),f 2(x )的生成函数,则存在实数a ,b 使得h (x )=af 1(x )+bf 2(x )成立, 所以x 2−10x +5=a(−14x 2−12x +154)+b(x 2−4x −5),即{ −14a +b =1−12a −4b =−10154a −5b =5,解得a =4,b =2, 所以h (x )是f 1(x ),f 2(x )的生成函数.(2)f 1(x )=x (x >0),f 2(x)=1x (x >0),当a =2,b =8时的生成函数ℎ(x)=2x +8x, 假设存在实数m ,使得对任意正实数x 1,x 2,满足x 1+x 2=2,h (x 1)h (x 2)≥m 恒成立, 所以ℎ=ℎ(x 1)ℎ(x 2)=4x 1x 2+64x 1x 2+16(x 1x 2+x2x 1)=4x 1x 2+64x 1x 2+16[(x 1+x 2)2x 1x 2−2]=4x 1x 2+128x 1x 2−32,令t =x 1x 2,t =x 1x 2≤(x 1+x 22)2=1, 因为ℎ=4t +128I−32在(0,1]单调递减, 所以h 的最小值为100,所以m 的最大值为100. 22.(12分)已知f (x )=x (|x ﹣4a |+2),a ∈R . (1)若f (1)=3,判断f (x )的奇偶性;(2)若f (x )在[1,3]上的最小值是3,求正数a 的值. 解:(1)根据题意,f (x )=x (|x ﹣4a |+2),其定义域为R , 若f (1)=3,即|1﹣4a |+2=3,解得a =0或a =12, 当a =0时,f (x )=x |x |+2x ,因为f (﹣x )=﹣x |﹣x |﹣2x =﹣x |x |﹣2x =﹣f (x ),所以f (x )是奇函数, 当a =12时,f (x )=x |x ﹣2|+2x ,所以 f (﹣1)=﹣5,f (1)≠f (﹣1),f (1)≠﹣f (﹣1), 所以f (x )既不是奇函数,也不是偶函数; (2)由题意得f (x )={x 2−(4a −2)x ,x ≥4a −x 2+(4a +2)x ,x <4a,对于f (x )=x 2﹣(4a ﹣2)x ,其对称轴为x =2a ﹣1,开口向上, 对于f (x )=﹣x 2﹣(4a +2)x ,其对称轴为x =2a +1,开口向下, 又由f (x )在[1,3]上的最小值是3,则有f (1)=|1﹣4a |+2≥3, 解可得a ≤0或a ≥12,又由a为正数,则a≥1 2,当a=12时,f(x)=x|x﹣2|+2x,易得f(x)在[1,3]上递增,且f(1)=3,符合题意;当a>12时,有4a>2a+1>2a﹣1,f(x)在(﹣∞,2a+1]单调递增,在[2a+1,4a]单调递减,在[4a,+∞)单调递增.有1<2a+1且f(4a)=8a>4>3,则f(x)在[1,3]上的最小值只能在x=1处取到,但f(1)=4a+2>3,与之矛盾;故a>12不符合题意,综合可得:a=1 2.。

2023-2024学年度上学期高一数学期中考试[含答案]

2023-2024学年度上学期高一数学期中考试[含答案]

又 f (x) 是奇函数,所以 0 x 2 时, f (x) 0 , x 2 时, f (x) 0 ,且 f (0) f (2) 0 ,
不等式
xf
x
0
x
f
0
x
0

x
f
0 (x)
0

x
0
,所以 0
x
2 或 2
x
0

综上 2 x 2 .
故选:D.a 23 , b 45 , c 253 ,则
【解析】
【分析】根据交集含义即可得到答案.
A B 1, 0,1
【详解】根据交集含义即可得到

故选:B.
2. 命题: x R, x | x | 0 的否定为( )
A. x R, x | x | 0
B. x R, x | x | 0
C. x R, x | x | 0
D. x R, x | x | 0
【详解】因为
f
2x
1
x2
1 t
,令
2x
1,
x
t
1 2

f
(t)
t
1 2 2
1
,即
f
(x)
x 12 2
1

所以 f (3) 2 .
故选:B
6.
若定义在 R 的奇函数
f
x
,若
x
0

f
x
x 2
xf
,则满足
x 0 的 x 的取值范围是(

, 20, 2
A. 【答案】D 【解析】
, 2 2, , 20, 2
对于 C,
y∣y∣ x2 1, x R

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)

高一数学上册期中考试题(带答案)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学上册期中考试题(带答案)关于高一数学上册期中考试题(带答案)当我们进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,下面本店铺为大家带来高一数学上册期中考试题(带答案),欢迎大家参考阅读,希望能够帮助到大家!高一数学上册期中考试题(带答案)一、选择题(本大题共12小题,每小题5分,共60分.)1.设全集U=R,集合A={X|X≥1},B={X|0≤X A.{X|02.如果集合A={X|X=2kπ+π,k∈Z},B={X|X=4kπ+π,k∈Z},则( )A.A BB.B AC.A = BD.A∩B=3.设A={X∈Z||X|≤2},B={y|y=X2+1.X∈A},则B的元素个数是( )A.5B.4C.3D.24.若log2 a1.则( ).A.a>1.b>0B.a>1.b5.已知集合A=B=R,X∈A,y∈B,f:X→y=aX+b,若4和10的原象分别对应是6和9,则19在f作用下的象为( )A.18B.30C.272D.286.已知函数的周期为 2.当,那么函数的图像与函数的图像的交点共有( )A.10个B.9个C.8个D.1个7.已知f(X)是一次函数,且2f(2)-3f((1)=5.2f(0)-f(-(1)=1.则f(X)的解析式为( )A.3X-2B.3X+2C.2X+3D.2X-38.下列四组函数中,表示同一函数的是( ).A.f(X)=|X|,g(X)=B.f(X)=lg X2.g(X)=2lg XC.f(X)= ,g(X)=X+1D.f(X)= •,g(X)=9.已知函数f(X)= ,则f(-10)的值是( ).A.-2B.-1C.0D.110.设f(X)为定义在R上的奇函数.当X≥0时,f(X)=2X+2X+b(b 为常数),则f(-(1)等于( ).A.-3B.-1C.1D.311.已知2lg(X-2y)=lgX+lgy,则Xy 的值为( )A.1B.4C.1或4D.14 或412.方程2X=2-X的根所在区间是( ).A.(-1.0)B.(2.(3)C.(1.(2)D.(0,(1)三岔中学20XX-20XX学年度第一学期期中考试题高一数学答题卡一、选择题(12_5=60分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题(每小题5分,共20分.)13.求满足 > 的X的取值集合是14.设,则的大小关系是15..若定义在区间(-1.0)内的函数f(X)=log2a(X+(1)满足f(X)>0,则a的取值范围是__ _ ___.16.已知函数内有零点,内有零点,若m为整数,则m的值为三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)计算下列各式的值:((1)18.(12分)集合。

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一上学期期中考试数学试卷含答案(共3套,新课标版)

高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。

3.本卷命题范围:新人教版必修第一册第一章~第四章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。

一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。

辽宁省大连市2023-2024学年高一上学期期中考试数学试题含解析

辽宁省大连市2023-2024学年高一上学期期中考试数学试题含解析

2023-2024学年度上学期期中考试高一年级数学科试卷(答案在最后)注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U =R ,集合{}10,1,2,3,4,5,6A =-,,{}N |4B x x =∈<,则A B = ()A.{}10,1,23-,,B.{}1,23,C .{}0,1,2,3 D.{}10,1,2,3,4,5,6-,2.命题“0x ∀>,2320x x +->”的否定是()A.0x ∃≤,2320x x +-≤B.0x ∃>,2320x x +-≤C.0x ∀≤,2320x x +-> D.0x ∀>,2320x x +-≤3.已知函数(32)f x +的定义域为()0,1,则函数()21f x -的定义域为()A.3,32⎛⎫ ⎪⎝⎭ B.75,33⎛⎫- ⎪⎝⎭C.11,63⎛⎫⎪⎝⎭ D.1,12⎛⎫⎪⎝⎭4.“x ∀∈R ,关于x 的不等式210ax ax -+>恒成立”的一个必要不充分条件是()A.04a ≤<B.04a ≤≤C.04a <≤ D.04a <<5.函数()21x f x x -=的图像为()A. B.C. D.6.已知()f x 是定义在()0,∞+上的函数,()()g x xf x =,则“()f x 为增函数”是“()g x 为增函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7.“若1,22x ⎡⎤∀∈⎢⎥⎣⎦,2310x x λ-+>恒成立”是真命题,则实数λ可能取值是()A. B. C.4 D.58.设函数()(0)2a x f x a a x -=≠+,若()()120232g x f x =-+是奇函数,则()2023f =()A.14- B.15 C.14 D.13-二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.在下列四组函数中,()f x 与()g x 不表示同一函数的是()A.21()1()1,x f x x g x x -=-=+B.()1f x x =+,1,1()1,1x x g x x x +≥-⎧=⎨--<-⎩C.0()1,()(1)f x g x x ==+D.2(),()f x x g x ==10.已知不等式20ax bx c ++>的解集为1,22⎛⎫-⎪⎝⎭,则下列结论正确的是()A.a<0B.0b <C.0c >D.20a b c ++<11.已知函数()y f x =是定义在[0,2]上的增函数,且其图像是连续不断的曲线.若(0)f M =,(2)f N =(0M >,0N >),那么对上述常数,M N ,下列选项正确的是()A.一定存在[0,2]x ∈,使得()2M N f x +=B.一定存在[0,2]x ∈,使得()f x =C.不一定存在[0,2]x ∈,使得2()11f x M N=+D.不一定存在[0,2]x ∈,使得()f x =12.已知函数221()1x x f x x x +=++,则下列结论正确的是()A.()f x 为奇函数B.()f x 值域为(,2][2,)-∞-+∞ C.若12120,0,x x x x >>≠,且12()()f x f x =,则122x x +>D.当0x >时,恒有5()2f x x ≥成立第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为______.14.若函数()3,11,1x x f x ax x +≥⎧=⎨+<⎩在R 上为单调函数,则实数a 的取值范围为_______.15.已知正数,x y 满足2(43)3x y x y +=,则23x y +的最小值为____________.16.若定义在()(),00,∞-+∞U 上的函数()f x 同时满足:①()f x 为偶函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()222121210x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2242(2)f x f x x --<+的解集为_________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集为R ,{}2R 2320A x x x =-->ð.(1)求集合A ;(2)设不等式220x ax a -+≤的解集为C ,若C ≠∅且“x C ∈”是“x A ∈”的充分不必要条件,试求实数a 的取值范围.18.设2()(1)f x ax a x a =+++.(1)若不等式()0f x ≥有实数解,试求实数a 的取值范围;(2)当0a >时,试解关于x 的不等式()1f x a <-.19.已知函数()22x x m f x x-+=.(1)若()()2g x f x =+,判断()g x 的奇偶性并加以证明.(2)若1[,1]4x ∈时,不等式()22f x m >-恒成立,试求实数m 的取值范围.20.已知函数()f x x m =+,()22232m g x x mx m =-++-,(1)若()212m g x <+的解集为()1,a ,求a 的值;(2)试问是否存在实数m ,使得对于12[0,1],[1,2]x x ∀∈∀∈时,不等式12()()f x g x >恒成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.21.已知函数()2(2)4f x x a x =--+,()232x b g x ax +-=+.(1)若函数()f x 在2,3b b b ⎡⎤---⎣⎦上为偶函数,试求实数b 的值;(2)在(1)的条件下,当()g x 的定义域为()1,1-时,解答以下两个问题:①判断函数()g x 在定义域上的单调性并加以证明;②若()()120g t g t -+<,试求实数t 的取值范围.22.设函数()f x 的定义域为D ,对于区间[],I a b =(a b <,I D ⊆),若满足以下两条性质之一,则称I为()f x 的一个“美好区间”.性质①:对任意x I ∈,有()f x I ∈;性质②:对任意x I ∈,有()f x I ∉.(1)判断并证明区间[]1,2是否为函数3y x =-的“美好区间”;(2)若[]0,m (0m >)是函数()22f x x x =-+的“美好区间”,试求实数m 的取值范围;(3)已知定义在R 上,且图像连续不断的函数()f x 满足:对任意,R a b ∈(a b <),有()()f a f b b a ->-.求证:()f x 存在“美好区间”,且存在0R x ∈,使得0x 不属于()f x 的任意一个“美好区间”.2023-2024学年度上学期期中考试高一年级数学科试卷注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U =R ,集合{}10,1,2,3,4,5,6A =-,,{}N |4B x x =∈<,则A B = ()A.{}10,1,23-,, B.{}1,23,C.{}0,1,2,3 D.{}10,1,2,3,4,5,6-,【答案】C【解析】【分析】确定{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}N |40,1,2,3B x x =∈<=,{}10,1,2,3,4,5,6A =-,,故{}0,1,2,3A B = .故选:C.2.命题“0x ∀>,2320x x +->”的否定是()A.0x ∃≤,2320x x +-≤ B.0x ∃>,2320x x +-≤C.0x ∀≤,2320x x +-> D.0x ∀>,2320x x +-≤【答案】B【解析】【分析】根据全称量词命题的否定为特称量词命题判断即可.【详解】命题“0x ∀>,2320x x +->”为全称量词命题,其否定为:0x ∃>,2320x x +-≤.故选:B3.已知函数(32)f x +的定义域为()0,1,则函数()21f x -的定义域为()A .3,32⎛⎫ ⎪⎝⎭ B.75,33⎛⎫- ⎪⎝⎭C.11,63⎛⎫ ⎪⎝⎭D.1,12⎛⎫ ⎪⎝⎭【答案】A【解析】【分析】由(32)f x +的定义域求出32x +,再令2215x <-<,解得即可.【详解】函数(32)f x +的定义域为()0,1,即01x <<,所以2325x <+<,令2215x <-<,解得332x <<,所以函数()21f x -的定义域为3,32⎛⎫ ⎪⎝⎭.故选:A4.“x ∀∈R ,关于x 的不等式210ax ax -+>恒成立”的一个必要不充分条件是()A.04a ≤< B.04a ≤≤C.04a <≤ D.04a <<【答案】B【解析】【分析】首先求出不等式恒成立时参数的取值范围,再根据集合的包含关系判断即可.【详解】因为对x ∀∈R ,关于x 的不等式210ax ax -+>恒成立,当0a =时10>恒成立,符合题意;当0a ≠时,20Δ40a a a >⎧⎨=-<⎩,解得04a <<;综上可得04a ≤<.因为[)0,4[]0,4,所以“x ∀∈R ,关于x 的不等式210ax ax -+>恒成立”的一个必要不充分条件可以是04a ≤≤.故选:B5.函数()21x f x x -=的图像为()A. B.C. D.【答案】D【解析】【分析】分析函数()f x 的定义域、奇偶性、单调性及其在(),0∞-上的函数值符号,结合排除法可得出合适的选项.【详解】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x x x ----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x x x x--===-函数单调递增,故B 选项错误;故选:D.6.已知()f x 是定义在()0,∞+上的函数,()()g x xf x =,则“()f x 为增函数”是“()g x 为增函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】D【解析】【分析】取特殊函数分别按照充分和必要条件判断即可.【详解】取()21(0)f x x x =->,则()3g x x x =-在()0,∞+不单调;取()1(0)g x x x =+>单调递增,但()11,(0)f x x x=+>单调递减,故“()f x 为增函数”是“()g x 为增函数”的既不充分也不必要条件.故选:D.7.“若1,22x ⎡⎤∀∈⎢⎥⎣⎦,2310x x λ-+>恒成立”是真命题,则实数λ可能取值是()A.B. C.4 D.5【答案】A【解析】【分析】由题得到13x x λ<+恒成立,求出min 13x x ⎛⎫+ ⎪⎝⎭即可得到答案.【详解】1,22x ⎡⎤∀∈⎢⎥⎣⎦,2310x x λ-+>,即13x x λ<+恒成立,13x x +≥=13x x =,即33x =时等号成立,故λ<对比选项知A 满足.故选:A8.设函数()(0)2a x f x a a x -=≠+,若()()120232g x f x =-+是奇函数,则()2023f =()A.14- B.15 C.14 D.13-【答案】C【解析】【分析】首先得到()g x 的解析式,再根据()g x 为奇函数求出参数a 的值,即可得到()f x 的解析式,最后代入计算可得.【详解】因为()(0)2a x f x a a x-=≠+,所以()()()()20231202322202123x g x a f a x x -=-+=--++432023204624046202322a x a x a a a x x ++-=+-=+-+-,因为()()120232g x f x =-+是奇函数,所以()()g x g x -=-,即63432240624042a a ax a x =--+-+-,又0a ≠,所以280920a -=,解得4046a =,所以4046()40462x f x x -=+,所以()40462023120234046220234f -==+⨯.故选:C二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.在下列四组函数中,()f x 与()g x 不表示同一函数的是()A.21()1()1,x f x x g x x -=-=+B.()1f x x =+,1,1()1,1x x g x x x +≥-⎧=⎨--<-⎩C.0()1,()(1)f x g x x ==+D.2(),()f x x g x ==【答案】ACD【解析】【分析】通过函数的定义域,对应法则是否一致进行判断.【详解】对于A ,()f x 的定义域为R ,而()g x 的定义域为{}1x x ≠-,所以不是同一函数;对于B ,因为1x ≥-时,()1f x x =+;1x <-时,()1f x x =--;所以(),()f x g x 表示同一函数;对于C ,()f x 的定义域为R ,而()g x 的定义域为{}1x x ≠-,所以不是同一函数;对于D ,()f x 的定义域为R ,而()g x 的定义域为{}0x x ≥,所以不是同一函数;故选:ACD.10.已知不等式20ax bx c ++>的解集为1,22⎛⎫- ⎪⎝⎭,则下列结论正确的是()A.a<0B.0b <C.0c >D.20a b c ++<【答案】AC 【解析】【分析】根据不等式性质确定a<0且32b ac a⎧=-⎪⎨⎪=-⎩,再依次判断每个选项得到答案.【详解】不等式20ax bx c ++>的解集为1,22⎛⎫- ⎪⎝⎭,故a<0且122122b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即32b a c a ⎧=-⎪⎨⎪=-⎩,对选项A :a<0,正确;对选项B :302b a =->,错误;对选项C :0c a =->,正确;对选项D :3522022a b c a a a a ++=--=->,错误;故选:AC11.已知函数()y f x =是定义在[0,2]上的增函数,且其图像是连续不断的曲线.若(0)f M =,(2)f N =(0M >,0N >),那么对上述常数,M N ,下列选项正确的是()A.一定存在[0,2]x ∈,使得()2M Nf x +=B.一定存在[0,2]x ∈,使得()f x =C.不一定存在[0,2]x ∈,使得2()11f x M N =+D.不一定存在[0,2]x ∈,使得()f x =【答案】AB 【解析】【分析】取M N λ<<,构造函数()()g x f x λ=-,确定函数单调递增,根据零点存在定理得到存在()01,2x ∈使得()0f x λ=,再依次判断每个选项得到答案.【详解】函数()y f x =是定义在[0,2]上的增函数,故0M N <<,对任意值λ,M N λ<<,考虑()()g x f x λ=-,函数单调递增,则()()110g f M λλ=-=-<,()()220g f N λλ=-=->,故存在()01,2x ∈使得()()000g x f x λ=-=,即()0f x λ=,对选项A :2M N M N +<<,存在[0,2]x ∈,使得()2M Nf x +=,正确;对选项B:M N <<,存在[0,2]x ∈,使得()f x =对选项C :211M NM N <<+,存在[0,2]x ∈,使得2()11f x M N=+,错误;对选项D:M N <<,存在[0,2]x ∈,使得()f x =故选:AB.12.已知函数221()1x xf x x x +=++,则下列结论正确的是()A.()f x 为奇函数B.()f x 值域为(,2][2,)-∞-+∞ C.若12120,0,x x x x >>≠,且12()()f x f x =,则122x x +>D.当0x >时,恒有5()2f x x ≥成立【答案】AC 【解析】【分析】应用奇偶性定义判断A ;在,()0x ∈+∞上,令211x t x x x+==+研究其单调性和值域,再判断()f x 的区间单调性和值域判断B ;利用解析式推出1()()f f x x=,根据已知得到211x x =,再应用基本不等式判断C ;特殊值法,将2x =代入判断D.【详解】由解析式知:函数定义域为{|0}x x ≠,且2222()11()()()()11x x x xf x f x x x x x -+-+-=+=-+=---++,所以()f x 为奇函数,A 对;当,()0x ∈+∞时,令2112x t x x x +==+≥=,当且仅当1x =时等号成立,由对勾函数性质知:1t x x=+在(0,1)上递减,在(1,)+∞上递增,且值域为[2,)t ∈+∞,而1()f x t t =+在[2,)t ∈+∞上递增,故()f x 在(0,1)x ∈上递减,在(1,)x ∈+∞上递增,且5()[,)2f x ∈+∞,由奇函数的对称性知:()f x 在(,1)x ∈-∞-上递增,在(1,0)x ∈-上递减,且5()(,2f x ∈-∞,所以()f x 值域为55(,[,)22-∞-+∞ ,B 错;由222211()111()()111()1x x x x f f x x x x x x++=+=+=++,若12120,0,x x x x >>≠且12()()f x f x =,所以211x x =,故121112x x x x +=+≥=,当且仅当11x =时等号成立,而11x =时211x x ==,故等号不成立,所以122x x +>,C 对;由412295(2)25241102f +=+=<⨯=+,即2x =时5()2f x x <,D 错;故选:AC【点睛】关键点点睛:对于C 选项,根据解析式推导出1(()f f x x=,进而得到211x x =为关键.第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.设{}50A x x =-=,{}10B x ax =-=,若A B B = ,则实数a 的值为______.【答案】0或15【解析】【分析】依题意可得B A ⊆,分B =∅和{}5B =两种情况讨论.【详解】因为{}{}505A x x =-==,又A B B = ,所以B A ⊆,当0a =时{}10B x ax =-==∅,符合题意;当{}5B =,则510a -=,解得15a =,综上可得0a =或15a =.故答案为:0或1514.若函数()3,11,1x x f x ax x +≥⎧=⎨+<⎩在R 上为单调函数,则实数a 的取值范围为_______.【答案】(]0,3【解析】【分析】确定函数单调递增,得到0a >且131a +≥+,解得答案.【详解】()3,11,1x x f x ax x +≥⎧=⎨+<⎩在R 上为单调函数,3y x =+,1x ≥为单调递增函数,故1y ax =+,1x <单调递增,0a >,且131a +≥+,即3a ≤,故03a <≤.故答案为:(]0,315.已知正数,x y 满足2(43)3x y x y +=,则23x y +的最小值为____________.【答案】【解析】【分析】令23t x y =+,则0t >且23t x y -=,即可得到22294t x x=+,再利用基本不等式求出2t 的最小值,即可求出t 的最小值.【详解】因为0x >,0y >,令23t x y =+,则0t >且23t xy -=,因为2(43)3x y x y +=,所以22243333t x t x x x --⎛⎫⋅+⨯= ⎪⎝⎭,所以()()2922t x t x x -+=,即22294t x x -=,所以22294t x x =+,又2229412t x x =+≥=,当且仅当2294x x =,即2x =时取等号,所以t ≥或t ≤-,所以23x y +的最小值为2x =、3y =时取等号.故答案为:16.若定义在()(),00,∞-+∞U 上的函数()f x 同时满足:①()f x 为偶函数;②对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()222121210x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式()()2242(2)f x f x x --<+的解集为_________.【答案】()()3,22,1--⋃--【解析】【分析】构造函数()()2f xg x x=,由题意可以推出函数()()2f xg x x=的奇偶性、单调性,再根据函数的奇偶性和单调性解不等式即可.【详解】不妨设120x x <<,则120x x -<,由()()222121210x f x x f x x x -<-,得()()2221120x f x x f x ->,则()()122212f x f x xx>,构造函数()()2f xg x x=,则120x x <<,()()12g x g x >,所以函数()g x 在()0,∞+上单调递减,因为()f x 为偶函数,所以()()f x f x -=,则()()()()()22f x f xg x xx g x --==-=,所以函数()g x 为偶函数,且函数()g x 的定义域为()(),00,∞-+∞U ,由()()2242(2)f x f x x --<+,得()()()()22224224f x f x x x--<--,即()()224g x g x -<-,所以22242040x x x x ⎧->-⎪⎪-≠⎨⎪-≠⎪⎩,解得31x -<<-且2x ≠-,所以不等式()()2242(2)f x f x x --<+的解集为()()3,22,1--⋃--.故答案为:()()3,22,1--⋃--.【点睛】关键点点睛:解决本题的关键是由已知条件去构造函数()()2f xg x x=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知全集为R ,{}2R 2320A x x x =-->ð.(1)求集合A ;(2)设不等式220x ax a -+≤的解集为C ,若C ≠∅且“x C ∈”是“x A ∈”的充分不必要条件,试求实数a 的取值范围.【答案】(1)122A x x ⎧⎫=-≤≤⎨⎬⎩⎭(2)14[,0][1,]83- 【解析】【分析】(1)依题意可得{}22320A x x x =--≤,再解一元二次不等式即可;(2)依题意可得220x ax a -+≤的解集非空且是122A x x ⎧⎫=-≤≤⎨⎬⎩⎭的真子集,设2()2f x x ax a =-+,即可得到Δ01221()02(2)0a f f ≥⎧⎪⎪-≤≤⎪⎨⎪-≥⎪⎪≥⎩,解得即可.【小问1详解】由{}2R 2320A x x x =-->ð,得{}22320A x x x =--≤,由22320x x --≤,得()1202x x ⎛⎫+-≤ ⎪⎝⎭,解得122x -≤≤,故122A x x ⎧⎫=-≤≤⎨⎬⎩⎭.【小问2详解】因为C ≠∅且“x C ∈”是“x A ∈”的充分不必要条件,所以220x ax a -+≤的解集非空且是122A x x ⎧⎫=-≤≤⎨⎬⎩⎭的真子集,设2()2f x x ax a =-+,则Δ01221(02(2)0a f f ≥⎧⎪⎪-≤≤⎪⎨⎪-≥⎪⎪≥⎩,即2440122104440a a a a a a a ⎧-≥⎪⎪-≤≤⎪⎨⎪++≥⎪⎪-+≥⎩,解得108a -≤≤或413a ≤≤,当18a =-时不等式220x ax a -+≤的解集为11,24C ⎡⎤=-⎢⎥⎣⎦,符合题意;当43a =时不等式220x ax a -+≤的解集为2,23C ⎡⎤=⎢⎥⎣⎦,符合题意;综上,实数a 的取值范围为14[,0][1,83- .18.设2()(1)f x ax a x a =+++.(1)若不等式()0f x ≥有实数解,试求实数a 的取值范围;(2)当0a >时,试解关于x 的不等式()1f x a <-.【答案】(1)13a ≥-(2)答案见解析【解析】【分析】(1)依题意不等式()210ax a x a +++≥有实数解,分0a =、0a >、a<0三种情况讨论,当a<0时需0∆≥,即可求出参数的取值范围;(2)原不等式可化为()110x x a ⎛⎫++< ⎪⎝⎭,再分1a =、01a <<、1a >三种情况讨论,分别求出不等式的解集.【小问1详解】依题意,()0f x ≥有实数解,即不等式()210ax a x a +++≥有实数解,当0a =时,0x ≥有实数解,则0a =符合题意.当0a >时,取0x =,则()210ax a x a a +++=>成立,符合题意.当a<0时,二次函数()21y ax a x a =+-+的图像开口向下,要0y ≥有解,当且仅当()22114013a a a ∆=+-≥⇔-≤≤,所以103a -≤<.综上,实数a 的取值范围是13a ≥-.【小问2详解】不等式()()21110f x a ax a x <-⇔+++<,因为0a >,所以不等式可化为()110x x a ⎛⎫++< ⎪⎝⎭,当11a -=-,即1a =时,不等式()()110x x ++<无解;当11-<-a ,即01a <<时,11x a-<<-;当11a ->-,即1a >时,11x a-<<-;综上,当01a <<时,原不等式的解集为1(,1)a--,当1a =时,原不等式的解集为∅,当1a >时,原不等式的解集为1(1,)a--.19.已知函数()22x x mf x x-+=.(1)若()()2g x f x =+,判断()g x 的奇偶性并加以证明.(2)若1[,1]4x ∈时,不等式()22f x m >-恒成立,试求实数m 的取值范围.【答案】(1)奇函数,证明见解析(2)1,18⎛⎫- ⎪⎝⎭【解析】【分析】(1)首先求出()g x 的解析式,再根据奇偶性的定义证明即可;(2)设()mh x x x =+(1[,1]4x ∈),依题意只需min ()2h x m >,再分0m ≤、m 1≥、1016m <≤、1116m <<四种情况讨论,求出()h x 的最小值,从而求出m 的取值范围.【小问1详解】()g x 为奇函数,证明如下:因为()22x x m f x x -+=,所以()()2222x x m mx x xg x f x -+=+=+=+,则()g x 的定义域为()(),00,∞-+∞U ,且()()mg x x g x x-=--=-,所以()g x 为奇函数.【小问2详解】1[,1]4x ∈ 时,不等式()22f x m >-恒成立,2mx m x ∴+>对1[,1]4x ∈恒成立.设()mh x x x =+(1[,1]4x ∈),则只需min ()2h x m >即可.当0m ≤时,则()h x 在1[,1]4单调递增,所以min 11()()4244h x h m m ==+>,解得18m >-,所以108m -<≤;当0m >时,因为()h x 在单调递减,)+∞单调递增.1≥,即m 1≥时,()h x 在1[,1]4单调递减,所以min ()(1)12h x h m m ==+>,解得1m <,舍去;14≤,即1016m <≤时,()h x 在1[,1]4单调递增,所以min 11()()4244h x h m m ==+>,解得18m >-,所以此时1016m <≤;③当114<<,即1116m <<时,min ()2h x h m ==,解得01m <<,所以此时1116m <<;综上,实数m 的取值范围为1,18⎛⎫- ⎪⎝⎭.20.已知函数()f x x m =+,()22232m g x x mx m =-++-,(1)若()212m g x <+的解集为()1,a ,求a 的值;(2)试问是否存在实数m ,使得对于12[0,1],[1,2]x x ∀∈∀∈时,不等式12()()f x g x >恒成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.【答案】(1)2(2)不存在,理由见解析【解析】【分析】(1)代入数据得到2240x mx m -+-<,根据不等式与方程的关系确定3m =,代入计算得到答案.(2)题目转化为min max ()()f x g x >,根据单调性计算()min f x m =,根据二次函数性质考虑322m ≤和322m >两种情况,计算最值得到答案.【小问1详解】()212m g x <+,即()22223122m m g x x mx m =-++-<+,整理得到2240x mx m -+-<,不等式2240x mx m -+-<的解集为()1,a ,故1x =为方程2240x mx m -+-=的根,即1240m m -+-=,解得3m =,故2320x x -+<,解得12x <<,则2a =.【小问2详解】对[]10,1x ∀∈,2[1,2]x ∈,()()12f x g x >恒成立,只需min max ()()f x g x >.()f x x m =+在[]0,1上单调递增,因此()()min 0f x f m ==;()22232m g x x mx m =-++-的对称轴为02m x =.当322m ≤,即3m ≤时,2max ()(2)12m g x g ==+,故212m m >+,即2220m m -+<,无解,舍;当322m >,即3m >时,2max ()(1)22m g x g m ==+-,故222m m m >+-,解得22m -<<,舍.综上所述:不存在实数m 符合题意.21.已知函数()2(2)4f x x a x =--+,()232x b g x ax +-=+.(1)若函数()f x 在2,3b b b ⎡⎤---⎣⎦上为偶函数,试求实数b 的值;(2)在(1)的条件下,当()g x 的定义域为()1,1-时,解答以下两个问题:①判断函数()g x 在定义域上的单调性并加以证明;②若()()120g t g t -+<,试求实数t 的取值范围.【答案】(1)3b =(2)①()g x 在()1,1-上单调递增,证明见解析;②10,3⎛⎫ ⎪⎝⎭【解析】【分析】(1)根据偶函数确定2a =且230b b b -+--=,解得答案.(2)任取12,x x 满足1211x x -<<<,计算()()12g x g x <得到函数单调递增,变换()()21g t g t <-,考虑函数的单调性结合函数定义域计算得到答案.【小问1详解】()2(2)4f x x a x =--+在2,3b b b ⎡⎤---⎣⎦上为偶函数,故2a =,230b b b -+--=,即()()310b b -+=,解得3b =或1b =-,由区间定义可知23b b b -<--,即23b >,1b =-不满足,所以3b =.【小问2详解】①函数()g x 在()1,1-上单调递增;证明如下:()222x g x x =+,()1,1x ∈-,任取12,x x 满足1211x x -<<<,()()()()()()122112122222121212222211x x x x x x g x g x x x x x ---=-=++++,由于1211x x -<<<,故121x x <,210x x ->,于是()()()()()()122112*********x x x x g x g x x x ---=<++,则()()12g x g x <,则()g x 在()1,1-上单调递增.②函数()g x 的定义域为()1,1-,关于原点对称,()()222x g x g x x --==-+,则()g x 为奇函数,由(1)(2)0g t g t -+<,即()()21g t g t <-,又因为()g x 在()1,1-上单调递增,则12111121t t t t -<<⎧⎪-<-<⎨⎪<-⎩,解得103t <<,所以实数t 的取值范围是10,3⎛⎫ ⎪⎝⎭.22.设函数()f x 的定义域为D ,对于区间[],I a b =(a b <,I D ⊆),若满足以下两条性质之一,则称I 为()f x 的一个“美好区间”.性质①:对任意x I ∈,有()f x I ∈;性质②:对任意x I ∈,有()f x I ∉.(1)判断并证明区间[]1,2是否为函数3y x =-的“美好区间”;(2)若[]0,m (0m >)是函数()22f x x x =-+的“美好区间”,试求实数m 的取值范围;(3)已知定义在R 上,且图像连续不断的函数()f x 满足:对任意,R a b ∈(a b <),有()()f a f b b a ->-.求证:()f x 存在“美好区间”,且存在0R x ∈,使得0x 不属于()f x 的任意一个“美好区间”.【答案】(1)是,证明见解析(2)[]1,2(3)证明见解析【解析】【分析】(1)根据题设中的新定义,结合函数3y x =-,进行判定,即可求解;(2)若I 为()f x 的“美好区间”,则不满足性质②,必满足性质①,即S I ⊆,由()22f x x x =-+,根据二次函数的性质,分类讨论,即可求解;(3)对于任意区间[],I a b =,记{()|}S f x x I =∈,根据单调性得到()(),S f b f a =⎡⎤⎣⎦,若I 为()f x 的“美好区间”,必满足性质②,转化为()f a a <或()f b b >,得出()f x 一定存在“美好区间”,记()()g x f x x =-,结合函数的单调性和零点的存在性定理,得到存在()0,0x t ∈,使得()00g x =,即可求解.【小问1详解】函数3y x =-,当[1,2]x ∈时,可得[]1,2y ∈,所以区间[]1,2是函数3y x =-的一个“美好区间”.【小问2详解】记[]0,I m =,{()|}S f x x I =∈,可得()[]000,f m =∈,故若I 为()f x 的“美好区间”,则不满足性质②,必满足性质①,即S I ⊆;由()()22211f x x x x =-+=--+,当01m <<时,()f x 在[]0,m 上单调递增,且()()2210f m m m m m m m -=-+-=-->,即()f m m >,所以()0,S f m =⎡⎤⎣⎦不包含于[]0,I m =,不合题意;当12m ≤≤时,()()[][]0,10,10,S f f m I ==⊆=⎡⎤⎣⎦,符合题意;当m>2时,()()()220f m f f <==,所以()f m I ∉,不合题意;综上可知,12m ≤≤,即实数m 的取值范围是[]1,2.【小问3详解】对于任意区间[](),I a b a b =<,记{()|}S f x x I =∈,由已知得()f x 在I 上单调递减,故()(),S f b f a =⎡⎤⎣⎦,因为()()f a f b b a ->-,即S 的长度大于I 的长度,故不满足性质①,所以若I 为()f x 的“美好区间”,必满足性质②,这只需S I =∅ ,即只需()f a a <或()f b b >,由()f x x =显然不恒成立,所以存在常数c 使得()f c c ≠.如()f c c <,取a c =,区间[](),I a b a b =<满足性质②;如()f c c >,取b c =,区间[](),I a b a b =<满足性质②;综上,函数()f x 一定存在“美好区间”;记()()g x f x x =-,则()g x 图象连续不断,下证明()g x 有零点:因为()f x 在R 上是减函数,所以()g x 在R 上是减函数,记()0f t =;若0=t ,则00x =是()g x 的零点,若0t >,则()()0f t f t <=,即()00g >,()0g t <,由零点存在性定理,可知存在()00,x t ∈,使得()00g x =,若0t <,则()()0f t f t >=,即()0g t >,()00g <,由零点存在性定理,可知存在()0,0x t ∈,使得()00g x =,综上,()g x 有零点0x ,即()00f x x =,因为()f x 的所有“美好区间”I 都满足性质②,故0x I ∉.(否则()00f x x I =∈,与性质②不符),即0x 不属于()f x 的任意一个“美好区间”,证毕.【点睛】关键点睛:对于新定义问题关键是理解所给定义及限制条件,再利用相应的数学知识解答.。

(完整版)高一数学第一学期期中考试试题及答案

(完整版)高一数学第一学期期中考试试题及答案

A高一数学(必修1)第I 卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(C u M )∩N =A .B .C .D .{}4,3,2{}2{}3{}4,3,2,1,02.设集合,,给出如下四个图形,其中能表示从集{}02M x x =≤≤{}02N y y =≤≤合到集合的函数关系的是M NA .B .C .D .3. 设,用二分法求方程内近似解的过程中()833-+=x x f x()2,10833∈=-+x x x在得,则方程的根落在区间()()()025.1,05.1,01<><f f f A. B. C. D. 不能确定(1,1.25)(1.25,1.5)(1.5,2)4. 二次函数的值域为])5,0[(4)(2∈-=x x x x f A. B. C. D.),4[+∞-]5,0[]5,4[-]0,4[-5. =+--3324log ln 01.0lg 2733e A .14 B .0C .1 D . 66. 在映射,,且,则中B A f →:},|),{(R y x y x B A ∈==),(),(:y x y x y x f +-→A 中的元素在集合B 中的像为)2,1(-A . B .C .D . )3,1(--)3,1()1,3()1,3(-7.三个数,,之间的大小关系为231.0=a 31.0log 2=b 31.02=c A .a <c <b B .a <b <c C .b <a <cD .b <c <a8.已知函数在上为奇函数,且当时,,则当时,()y f x=R0x≥2()2f x x x=-0x<函数的解析式为()f xA. B.()(2)f x x x=-+()(2)f x x x=-C. D.()(2)f x x x=--()(2)f x x x=+9.函数与在同一坐标系中的图像只可能是xy a=log(0,1)ay x a a=->≠且A. B. C. D.10.设,则2log2log<<baA. B.10<<<ba10<<<abC . D.1>>ba1>>ab11.函数在区间上的最大值为5,最小值为1,则实数m的取值54)(2+-=xxxf],0[m范围是A. B.[2,4] C. [0,4] D.),2[+∞]4,2(12.若函数()f x为定义在R上的奇函数,且在(0,)+∞内是增函数,又(2)f0=,则不等式的解集为)(<xxfA.(2,0)(2,)-+∞B.(,2)(0,2)-∞-C.(,2)(2,)-∞-+∞D.)2,0()0,2(-高一数学(必修1)答题卷题 号一二三总分得 分一、选择题:(本大题小共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案第II 卷 非选择题(共90分)二、填空题:(本大题共4小题,每小题4分,共16分)13.函数,则的值为.⎩⎨⎧≥<--=-)2(2)2(32)(x x x x f x )]3([-f f 14.计算:.=⋅8log 3log 9415.二次函数在区间上是减少的,则实数k 的取值范围为 842--=x kx y ]20,5[.16.给出下列四个命题:①函数与函数表示同一个函数;||x y =2)(x y =②奇函数的图像一定通过直角坐标系的原点;③函数的图像可由的图像向右平移1个单位得到;2)1(3-=x y 23x y =④若函数的定义域为,则函数的定义域为;)(x f ]2,0[)2(x f ]4,0[⑤设函数是在区间上图像连续的函数,且,则方程()x f []b a ,()()0<⋅b f a f 在区间上至少有一实根;()0=x f []b a ,得分评卷人得分评卷人其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知全集,集合,,R U ={}1,4>-<=x x x A 或{}213≤-≤-=x x B (1)求、;B A )()(BC A C U U (2)若集合是集合A 的子集,求实数k 的取值范围.{}1212+≤≤-=k x k x M 18. (本题满分12分)已知函数.1212)(+-=x x x f ⑴判断函数的奇偶性,并证明;)(x f ⑵利用函数单调性的定义证明:是其定义域上的增函数.)(x f 19. (本题满分12分)已知二次函数在区间上有最大值,求实数的值2()21f x x ax a =-++-[]0,12a 20. (本题满分12分)函数)1,0)(3(log )(≠>-=a a ax x f a (1)当时,求函数的定义域;2=a )(x f (2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;a )(x f ]2,1[a 若不存在,请说明理由.21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则得分评卷人增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元.x (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)y x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出x y 最大值.22. (本题满分13分)设是定义在R 上的奇函数,且对任意a 、b ,当时,都有)(x f R ∈0≠+b a .0)()(>++ba b f a f (1)若,试比较与的大小关系;b a >)(a f )(b f (2)若对任意恒成立,求实数k 的取值范围.0)92()329(>-⋅+⋅-k f f xx x ),0[+∞∈x 高一数学参考答案一、选择题:题号123456789101112答案CDBCBDCAABBD二、填空题:13.14. 15. 16. ③⑤8143101,0()0,( -∞三、解答题:17. (1){}{}32213≤≤-=≤-≤-=x x x x B ………2分,∴{}31≤<=x x B A ………4分{}3,1)()(>≤=x x x B C A C U U 或 ………6分(2)由题意:或, 112>-k 412-<+k ………10分解得:或. 1>k 25-<k ………12分18. (1)为奇函数.)(x f ………1分 的定义域为,,012≠+x∴)(x f R ………2分又 )(121221211212)(x f x f x x x x xx -=+--=+-=+-=--- 为奇函数.)(x f ∴………6分(2)1221)(+-=x x f 任取、,设,1x R x ∈221x x <)1221(1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x , 又,022********<-∴<∴<x x x x x x 或 12210,210x x +>+>.在其定义域R 上是增函数.)()(0)()(2121x f x f x f x f <∴<-∴或)(x f ∴………12分19. 函数的对称轴为:,)(x f x a =当时,在上递减,,即; 0<a ()f x ]1,0[2)0(=∴f 1,21-=∴=-a a ………4分当时,在上递增,,即; 1>a ()f x ]1,0[2)1(=∴f 2=a ………8分当时,在递增,在上递减,,即,01a ≤≤()f x ],0[a ]1,[a 2)(=∴a f 212=+-a a 解得:与矛盾;综上:或 251±=a 01a ≤≤1a =-2=a ………12分20. (1)由题意:,,即,)23(log )(2x x f -=023>-∴x 23<x 所以函数的定义域为;)(x f 23,(-∞………4分(2)令,则在上恒正,,在ax u -=3ax u -=3]2,1[1,0≠>a a ax u -=∴3上单调递减,]2,1[,即023>⋅-∴a )23,1()1,0( ∈a ………7分又函数在递减,在上单调递减,,即)(x f ]2,1[ax u -=3 ]2,1[1>∴a )23,1(∈a ………9分又函数在的最大值为1,, )(x f ]2,1[1)1(=∴f 即,1)13(log )1(=⋅-=a f a 23=∴a ………11分与矛盾,不存在. 23=a )23,1(∈a a ∴………12分21. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[ ∴, ⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022………5分定义域为{}407<<∈+x N x ………7分 (2) ∵,⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,402041089247[(100,207],81)16[(40022∴ 当时,则,(元)020x <≤16x =max 32400y =………10分当时,则,(元)2040x <<472x =max 27225y =综上:当时,该特许专营店获得的利润最大为32400元. 16x =………13分22. (1)因为,所以,由题意得:b a >0>-b a ,所以,又是定义在R 上的奇函数,0)()(>--+ba b f a f 0)()(>-+b f a f )(x f ,即.)()(b f b f -=-∴0)()(>-∴b f a f )()(b f a f >………6分(2)由(1)知为R 上的单调递增函数,)(x f ………7分对任意恒成立,0)92()329(>-⋅+⋅-k f f x x x ),0[+∞∈x ,即,)92()329(k f f x x x -⋅->⋅-∴)92()329(x x x k f f ⋅->⋅-………9分,对任意恒成立,x x x k 92329⋅->⋅-∴x x k 3293⋅-⋅<∴),0[+∞∈x 即k 小于函数的最小值. ),0[,3293+∞∈⋅-⋅=x u xx………11分令,则,xt 3=),1[+∞∈t 13131(323329322≥--=-=⋅-⋅=∴t t t u x x .1<∴k (13)。

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题(含参考答案)

高一上学期期中数学试题一、单选题(本大题共8小题)1. 已知集合{}2Z160U x x =∈-≤∣,集合{}2Z 340A x x x =∈--<∣,则UA =( )A .{14xx ≤≤∣或4}x =- B .{41xx -≤≤-∣或4}x = C .{}4,3,2,1,4---- D .{}4,3,2,1----2. 24x =是2x =-的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 若,,a b c R ∈,a b >则下列不等式成立的是( ) A .11a b<B .22a b <C .a c b c >D .2211a bc c >++ 4. 设函数()21,01,0x x f x x x -+≤⎧=⎨->⎩,若()3f a =,则实数=a ( )A .2B .2-或2C .4-或2D .4-5. 幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =( )A .27B .9C .19D .1276. 下列函数中,既是其定义域上的单调函数,又是奇函数的是( ) A .4y x = B .1y x=C .y =D .3y x =7. 若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围为( )A .41,3⎛⎫- ⎪⎝⎭B .()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭C .4,13⎛⎫- ⎪⎝⎭D .()4,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭8. 已知函数()f x 的定义域是()0,∞+,且满足()()()1,12f xy f x f y f ⎛⎫=+= ⎪⎝⎭,如果对于0x y <<,都有()()f x f y >,则不等式()()232f x f x +-≥-的解集为( ) A .[]1,2 B .][(),12,-∞⋃+∞C .()()0,12,3D .][()0,12,3⋃二、多选题(本大题共4小题)9. 已知{}21|A y y x ==+,(){}21|,B x y y x ==+ ,下列关系正确的是( )A .=AB B .()1,2A ∈C .1B ∉D .2A ∈10. 已知关于x 的不等式20ax bx c ++>的解集为{}|23<<x x ,则下列说法正确的有( ) A .0a >B .0a b c ++<C .24c a b ++的最小值为6D .不等式20cx bx a -+<的解集为1|32x x x ⎧⎫<->⎨⎬⎩⎭或11. 下列说法正确的是( )A .偶函数()f x 的定义域为[]21,a a -,则1a =B .若函数()21y f x =-的定义域是[]2,3-,则f x y =的定义域是(]3,5-C .奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为1-,则()()24215f f -+-=-D .若集合{}2|420A x ax x =-++=中至多有一个元素,则2a ≤-12. 已知定义在R 上的函数()f x 的图像是连续不断的,且满足以下条件:①()()R,x f x f x ∀∈-=;② ()12,0,x x ∀∈+∞,当12x x ≠时,()()21210f x f x x x ->-;③()10f -=.则下列选项成立的是( )A .()f x 在(),0∞-上单调递减,B .()()53f f -<C .若()()12f m f -<,则3m <D .若()0f x x>,则()()1,01,x ∈-⋃+∞三、填空题(本大题共3小题)13. 已知()y f x =为奇函数,当0x ≥时()()1f x x x =+,则()3f -= . 14. 已知1x >,则1411y x x =++-的最小值是 . 15. 已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()()2,01f x f x f +=-=,则()()()()()12320212022f f f f f +++++= .四、双空题(本大题共1小题)16. 已知函数()22,31,3x x x c f x c x x ⎧+-≤≤⎪=⎨<≤⎪⎩,若0c ,则()f x 的值域是 ;若()f x 的值域是[]1,3-,则实数c 的取值范围是 .五、解答题(本大题共6小题)17. (1)某网店销售一批新款削笔器,每个削笔器的最低售价为15元.若按最低售价销售,每天能卖出30个;若一个削笔器的售价每提高1元,日销售量将减少2个.为了使这批削笔器每天获得400元以上的销售收入,应怎样制定这批削笔器的销售价格?(2)根据定义证明函数1y x x=+在区间()1,+∞上单调递增. 18. 已知命题2120p x x a ∀≤≤-≥:,,命题22R +2+2+=0q x x ax a a ∃∈:,. (1)若命题p 的否定为真命题,求实数a 的取值范围;(2)若命题p 为真命题,命题q 为假命题,求实数a 的取值范围.19. 已知函数()f x A ,集合={1<<1+}B x a x a -.(1)当=2a 时,求R A B ⋂();(2)若B A ⊆,求a 的取值范围.20. 已知幂函数()22()55m f x m m x -=-+的图象关于点(0,0)对称.(1)求该幂函数()f x 的解析式;(2)设函数()|()|g x f x =,在如图的坐标系中作出函数()g x 的图象; (3)直接写出函数()g x 的单调区间.21. 已知函数()223,R f x x bx b =-+∈. (1)求不等式()24f x b <-的解集;(2)当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.22. 设函数()()22,52(0)1x f x g x ax a a x ==+->+,(1)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x ≥,求实数a 的取值范围; (2)若对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x =,求实数a 的取值范围.参考答案1. 【答案】C【分析】解一元二次不等式求得集合U 和A ,根据补集的概念即可求得答案.【详解】解不等式2340x x --<得14,{Z 14}{0123}x A x x -<<∴=∈-<<=∣,,,, 由2160x -≤,可得44x -≤≤,{}Z 44{432101234}U x x ∴=∈-≤≤=----∣,,,,,,,,, {}4,3,2,1,4U A ∴=----故选:C. 2. 【答案】B【分析】先解方程24x =,进而判断出.24x =是2x =-的必要不充分条件. 【详解】①当24x =时,则2x =±,∴充分性不成立,②当2x =-时,则24x =,∴必要性成立,∴24x =是2x =-的必要不充分条件. 故选:B. 3. 【答案】D【分析】通过反例1a =,1b ,0c 可排除ABC ;利用不等式的性质可证得D 正确.【详解】若1a =,1b,则1111a b=>=-,221a b ==,则A 、B 错误; 若a b >,0c ,则0a c b c ==,则C 错误;211c +≥,21011c ∴<≤+,又a b >,2211a bc c ∴>++,则D 正确.故选:D. 4. 【答案】B【分析】根据()21,01,0x x f x x x -+≤⎧=⎨->⎩,分0a ≤和 0a >讨论求解. 【详解】解:()21,01,0x x f x x x -+≤⎧=⎨->⎩,当0a ≤时,13a -+=,则2a =-, 当0a >时,令24a =,则2a =, 故实数2a =-或2, 故选:B. 5. 【答案】A【分析】根据幂函数的概念及性质,求得实数m 的值,得到幂函数的解析式,即可求解.【详解】由题意,令251m m +-=,即260m m +-=,解得2m =或3m =-,当2m =时,可得函数3()f x x =,此时函数()f x 在(0,)+∞上单调递增,符合题意; 当3m =-时,可得2()f x x -=,此时函数()f x 在(0,)+∞上单调递减,不符合题意, 即幂函数3()f x x =,则(3)27f =. 故选:A. 6. 【答案】D【分析】根据幂函数的单调性与奇偶性分析判断.【详解】对于A :∵()44x x -=,则4y x =是偶函数,故A 错误; 对于B :∵11=--x x ,则1y x=为奇函数,在()(),0,0,-∞+∞单调递减,但在定义域上不单调,故B 错误;对于C :y =[)0,∞+,在定义域上单调递增,但定义域不关于原点对称,即y =C 错误;对于3D :y x =在定义域R 上单调递增,且33()x x -=-,即3y x =为奇函数,故D 正确; 故选:D. 7. 【答案】B【分析】根据基本不等式,结合不等式有解的性质进行求解即可. 【详解】不等式234y x m m +<-有解,2min 3,0,04y x m m x y <⎛⎫∴+->> ⎪⎝⎭,且141x y +=,144224444y y x y x x x y y x ⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当44x y y x =,即2,8x y ==时取“=",min 44y x ⎛⎫∴+= ⎪⎝⎭,故234m m ->,即()()1340m m +->,解得1m <-或4,3m >∴实数m 的取值范围是()4,1,3∞∞⎛⎫--⋃+ ⎪⎝⎭. 故选:B. 8. 【答案】D【分析】由赋值法得()42f =-,由函数的单调性转化后求解,【详解】由于()()()f xy f x f y =+,令1x y ==得()()121f f =,即()10f =,则()()11122022f f f f ⎛⎫⎛⎫=⨯=+= ⎪ ⎪⎝⎭⎝⎭,由于112f ⎛⎫= ⎪⎝⎭,则()21f =-, 即有()()4222f f ==-,由于对于0x y <<,都有()()f x f y >,则()f x 在()0,∞+上递减, 不等式()()232f x f x +-≥-即为()()234f x x f ⎡⎤-≥⎣⎦.则20302(3)4x x x x >⎧⎪->⎨⎪-≤⎩,解得01x <≤或23x ≤<,即解集为][()0,12,3⋃. 故选:D9. 【答案】CD【分析】根据集合A 、B 的特征,结合元素与集合的关系进行判断.【详解】∵{}2|1{|1}A y y x y y ==+=是数集;{}2(,)|1B x y y x ==+为点集,∴2A ∈,2B ∉,1B ∉,故A 错误,C 、D 正确;由21y x =+知,=1x 时=2y ,∴(1,2)B ∈,(1,2)A ∉,故B 错误. 故选:CD . 10. 【答案】BC【分析】由不等式与方程的关系得出02323a b a c a ⎧⎪<⎪⎪+=-⎨⎪⎪⨯=⎪⎩,从而得到:5b a =-,6c a =,且a<0,再依次对四个选项判断即可得出答案.【详解】不等式20ax bx c ++>的解集为{}|23<<x x ,02323a b a c a ⎧⎪<⎪⎪∴+=-⎨⎪⎪⨯=⎪⎩,解得:5b a =-,6c a =,且a<0,故选项A 错误;5620a b c a a a a ++=-+=<,故选项B 正确;()2243641964c a a a b a a ++⎛⎫==-+-≥ ⎪+-⎝⎭, 当且仅当13a =-时等号成立,故选项C 正确;20cx bx a -+<可化为:2650ax ax a ++<,即26510x x ++>,则解集为1123x x x ⎧⎫--⎨⎬⎩⎭或,故选项D 错误;综上所述选项B 、C 正确, 故选:BC. 11. 【答案】BC【分析】根据偶函数的定义域关于原点对称,可判断A 项错误;根据抽象函数定义域的求解法则,以及使得分式根式有意义,可列出不等式组,可判断B 项正确;根据条件可得()21f =-,()48f =,根据奇函数的性质可求得()2f -与()4f -的值,代入即可得出C 项正确;由题意可知,方程2420ax x -++=至多有一个解,对a 是否为0讨论,可得D 项错误.【详解】由偶函数()f x 的定义域为[]21,a a -,可得210a a -+=,解得13a =,A 错;因为函数()21y f x =-的定义域是[]2,3-,所以23x -≤≤,即5215x -≤-≤.所以函数()f x 的定义域为[]5,5-.要使f x y =5530x x -≤≤⎧⎨+>⎩,解得35x -<≤,即y =(]3,5-,B 对;因为,奇函数()f x 在[]2,4上单调递增,且最大值为8,最小值为-1, 则()21f =-,()48f =,根据奇函数的性质可得,()()221f f -=-=,()()448f f -=-=-, 则()()()24228115f f -+-=⨯-+=-,则C 项正确;因为集合{}2420A x ax x =-++=∣中至多有一个元素, 所以方程2420ax x -++=至多有一个解,当0a =时,方程420x +=只有一个解12x =-,符合题意;当0a ≠时,由方程2420ax x -++=至多有一个解,可得Δ1680a =+≤,解得2a ≤-. 所以,0a =或2a ≤-,则D 项错误. 故选:BC. 12. 【答案】AD【分析】由①可得,()f x 为偶函数.由②可得,()f x 在()0,∞+上单调递增.后分析选项可得答案.【详解】由()()()21121221,0,,,0f x f x x x x x x x ∞-∀∈+≠>-得:()f x 在()0,∞+上单调递增,由R x ∀∈,()()f x f x -=得:函数()f x 是R 上的偶函数.对于A 选项,因()f x 在()0,∞+上单调递增,且()f x 为偶函数,则()f x 在(),0∞-上单调递减,故A 正确.对于B ,C 选项,因()f x 为偶函数,则()()f x f x =.又()f x 在()0,∞+上单调递增,则()()()553,f f f -=>故B 错误;()()()()1212f m f f m f -<⇔-<,又函数()f x 的图像是连续不断的,则有12m -<,解得13,m -<<故C 错误;对于D 选项,由()0f x >及()10f -=得:()()11f x f x >⇔>,解得1x <-或1x >,由()0f x <得:()()11f x f x <⇔<,解得11x -<< 则()0f x x>可化为:()00f x x ⎧>⎨>⎩或()00f x x ⎧<⎨<⎩,解得1x >或10x -<<,即()()1,01,x ∈-⋃+∞,故D 正确.故选:AD13. 【答案】-12【分析】利用奇函数的性质()()f x f x -=-即可得到答案. 【详解】因为()y f x =为奇函数,所以()()f x f x -=-, 故()()()3331312f f -=-=-⨯+=-. 故答案为:-12. 14. 【答案】9【分析】将目标式变形,利用基本不等式即可得出其最值. 【详解】1x >,10x ->,()(11414152415911x x x x x ∴++=-++-=--, 当且仅当()1411x x -=-即3=2x 时取等号, 32x ∴=时, 1411y x x =++-取最小值9. 故答案为:9. 15. 【答案】1-【分析】由()()2f x f x +=-知函数是周期为4的周期函数,再结合偶函数可求()()()()1234f f f f ,,,的值,从而可求()()()()()12320212022f f f f f +++++的值.【详解】由()f x 满足()()2f x f x +=-,则()()()42f x f x f x +=-+=,即函数是周期为4的周期函数;根据题意,()f x 是定义域为(),-∞+∞的偶函数,则有()()11f f -=,又由()f x 满足()()2f x f x +=-,则()()()111f f f -=-=,所以()()110f f =-=,由()()2f x f x +=-,可得()()()()201,310f f f f =-=-=-=, 则()()()()12340f f f f +++=, 所以()()()()()12320212022f f f f f +++++()()()()()()5051234121f f f f f f ⎡⎤=+++++=-⎣⎦. 故答案为:1-.16. 【答案】 [1,)-+∞ 1[,1]3.【分析】作出函数()f x 的图象,根据二次函数与反比例函数的图象与性质,结合图象,即可求解.【详解】由0c 时,函数()22,301,03x x x f x x x⎧+-≤≤⎪=⎨<≤⎪⎩,当[3,0]x ∈-时,函数()22f x x x =+,可得函数()f x 在[3,1]--上单调递减,在[1,0]-上单调递增, 且()()(3)3,11,00f f f -=-=-=,所以函数的值为[1,3]-; 当(0,3]x ∈时,函数()1f x x =为单调递减函数,其值域为1[,)3+∞, 综上可得,函数()f x 的值域为[1,)-+∞; 作出函数()f x 的图象,如图所示, 若函数()f x 的值域为[1,3]-,当1y =-时,即221x x +=-,解得=1x -, 当3y =时,即223x x +=,解得3x =-或1x =, 当13x=时,可得13x =,结合图象,可得实数c 的取值范围是1[,1]3.故答案为:[1,)-+∞;1[,1]3.17. 【答案】(1)应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元);(2)证明见解析.【分析】(1)设这批削笔器的销售价格定为()15x x 元/个,解不等式()30152400x x ⎡⎤--⨯⋅>⎣⎦即得解;(2)利用函数单调性的定义证明.【详解】(1)设这批削笔器的销售价格定为()15x x 元/个,由题意得()30152400x x ⎡⎤--⨯⋅>⎣⎦,即2302000,x x -+<方程230200x x -+=的两个实数根为1210,20x x ==,2302000x x ∴-+<解集为{1020}x x <<∣, 又15,1520x x ≥∴≤<,故应将这批削笔器的销售价格制定在每个15元到20元之间(包括15元但不包括20元),才能使这批削笔器每天获得400元以上的销售收入.(2)证明:()12,1,x x ∀∈+∞,且12x x <,有()()()211212121212121212121211111x x x x y y x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,1,x x ∈+∞,得121,1x x >>.所以12121,10x x x x >->. 又由12x x <,得120x x -<.于是()12121210x x x x x x --<,即12y y <. 所以,函数1y x x=+在区间()1,+∞上单调递增. 18. 【答案】(1)(1,)+∞ (2)(0,1]【分析】(1)先求出p ⌝,然后利用其为真命题,求出a 的取值范围即可; (2)由(1)可知,命题p 为真命题时a 的取值范围,然后再求解q 为真命题时a 的取值范围,从而得到q ⌝为真命题时a 的取值范围,即可得到答案. 【详解】(1)根据题意,当12x ≤≤时,214x ≤≤, p ⌝:存在12x ≤≤,20x a -<为真命题,则1a >, 所以实数a 的取值范围是(1,)+∞;(2)由(1)可知,命题p 为真命题时,1a ≤, 命题q 为真命题时,2244(2)0a a a ∆=-+≥,解得0a ≤, 所以q ⌝为真命题时,0a >,所以1>0a a ≤⎧⎨⎩,解得01a <≤,所以实数a 的取值范围为(0,1]. 19. 【答案】(1){3<1x x -≤-或}34x ≤≤(2){3}aa ≤|【分析】(1)求出定义域,得到{-34}A xx =<≤|,进而计算出RB 及()R A B ⋂;(2)分B =∅与B ≠∅,列出不等式,求出a 的取值范围. 【详解】(1)要使函数()f x 40+3>0x x -≥⎧⎨⎩,解得:34x -<≤, 所以集合{-34}A x x =<≤|. 2a =,∴{}{}=1<<1+=1<<3B x a x a x x --, ∴{=1RB x x ≤-或}3x ≥,∴{=3<1RA B x x ⋂-≤-或}34x ≤≤;(2)B A ⊆,①当B =∅时,11a a -≥+,即0a ≤,满足题意;②当B ≠∅时,由B A ⊆,得1<1+131+4a a a a --≥-≤⎧⎪⎨⎪⎩,解得:03a <≤,综上所述:a 的取值范围为{}3a a ≤.20. 【答案】(1)1()f x x -=(2)作图见解析(3)递增区间是(,0)-∞,递减区间是(0,)+∞【分析】(1)利用幂函数的定义求出m 值,再结合其图象性质即可得解.(2)由(1)求出函数()g x ,再借助反比例函数、对称性作出()g x 的图象.(3)根据(2)中图象特征写出函数()g x 的单调区间.【详解】(1)因幂函数()22()55m f x m m x -=-+,则2551m m -+=,解得1m =或4m =,当1m =时,函数11()f x x x-==定义域是(,0)(0,)-∞+∞,()f x 是奇函数,图象关于原点对称,则1m =,当4m =时,函数2()f x x =是R 上的偶函数,其图象关于y 轴对称,关于原点不对称,所以幂函数()f x 的解析式是1()f x x -=(2)因函数()|()|g x f x =,由(1)知,1()||g x x =,显然()g x 是定义域(,0)(0,)-∞+∞上的偶函数,当0x >时,1()g x x =在(0,)+∞上单调递减,其图象是反比例函数1y x =在第一象限的图象,作出函数()g x 第一象限的图象,再将其关于y 翻折即可得()g x 在定义域上的图象,如图,(3)观察(2)中图象得,函数()g x 的递增区间是(,0)-∞,递减区间是(0,)+∞. 21. 【答案】(1){|11}x b x b -<<+(2)答案见解析【分析】(1)根据题意解一元二次不等式即可;(2)分类讨论函数单调区间,找到最小值点,由最小值为1,求出系数b ,再求函数在区间内的最大值.【详解】(1)若()24f x b <-,即22234x bx b -+<-,则()()110x b x b ⎡⎤⎡⎤---+<⎣⎦⎣⎦,∵11b b -<+,所以11b x b -<<+,故不等式()0f x <的解集为{|11}x b x b -<<+.(2)因为()223f x x bx =-+是开口向上,对称轴为x b =的二次函数,①若1b ≤-,则()f x 在[]1,2-上单调递增,∴函数()y f x =的最小值为()1421f b -=+=,解得32b =-, 故函数()y f x =的最大值为()27413f b =-=;②若2b ≥,则()f x 在[]1,2-上单调递减,∴函数()y f x =的最小值为()2741f b =-=,解得32b =(舍去); ③若12b -<<,则()f x 在[]1,b -上单调递减,在(],2b 上是单调递增,∴函数()y f x =的最小值为()231f b b =-=,解得b =b =(舍去),故函数()y f x =的最大值为()1424f b -=+=+综上所述: 当32b =-时,()f x 的最大值为13;当b =()f x 最大值为4+22. 【答案】(1)5,2⎡⎫+∞⎪⎢⎣⎭(2)5,42⎡⎤⎢⎥⎣⎦【分析】(1)根据题意,分别求出两个函数的最小值,将问题等价转化为min min ()()g x f x ≤,解不等式即可求解;(2)根据题意,分别求出两个函数的值域,然后将问题等价转化为()f x 在[0,1]上值域是()g x 在[0,1]上值域的子集,结合集合的包含关系即可求解.【详解】(1)因为()()()2221221214111x x f x x x x x -+⎡⎤===++-⎢⎥+++⎣⎦,利用1y x x =+函数图像性质可知()f x 在[]0,1上单调递增,于是()f x 在0x =处取得最小值,即()min ()00f x f ==,因为()52g x x a α=+-,注意到0a >,则()g x 在[]0,1上单调递增,于是()g x 在0x =处取得最小值,即()min ()052g x g a ==-,由题意可得:520a -≤,即得5,2a ∞⎡⎫∈+⎪⎢⎣⎭,所以实数a 的取值范围为5,2⎡⎫+∞⎪⎢⎣⎭. (2)由(1)可知:()f x 在1x =处取得最大值,即()max ()11f x f ==于是当[]0,1x ∈时,()f x 的值域[]0,1A = ()g x 在1x =处取得最大值,即()max ()15g x g a ==- 于是当[]0,1x ∈时,()g x 的值域[]52,5B a a =-- 要使得对任意的[]10,1x ∈,存在[]20,1x ∈使得()()12f x g x = 根据()f x 与()g x 的连续性可知A B ⊆成立 则52051a a -≤⎧⎨-≥⎩,解得5,42a ⎡⎤∈⎢⎥⎣⎦,所以实数a 的取值范围为5,42⎡⎤⎢⎥⎣⎦.。

高一上学期期中考试数学试题(解析版)

高一上学期期中考试数学试题(解析版)
可得 在 上单调递增排除选项C
故选:D.
7.荀子曰:“故不积跬步无以至千里;不积小流无以成江海.“这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】
【分析】利用命题间的关系及命题的充分必要性直接判断.
【小问1详解】
解:设 的长为 米( )
是矩形
由 得
解得 或
即 的取值范围为
【小问2详解】
令 ( )则
当且仅当 即 时等号成立此时 最小面积为48平方米
22.已知函数 为偶函数.
(1)求实数a的值;
(2)判断 的单调性并用定义法证明你的判断:
(3)设 若对任意的 总存在 使得 成立求实数k的取值范围.
则 即 解得:
所以实数 的取值范围 .
【点睛】易错点睛:本题考查利用集合子集关系确定参数问题易错点是要注意: 是任何集合的子集所以要分集合 和集合 两种情况讨论考查学生的逻辑推理能力属于中档题.
18.已知关于x的不等式 .
(1)若不等式的解集是 求 的值;
(2)若 求此不等式的解集.
【答案】(1) ;(2)分类讨论答案见解析.
【详解】由已知设“积跬步”为命题 “至千里”为命题
“故不积跬步无以至千里”即“若 则 ”
其逆否命题为“若 则 ”反之不成立
所以命题 是命题 的必要不充分条件
故选:B.
8.中国宋代的数学家秦九韶曾提出“三斜求积术”即假设在平面内有一个三角形边长分别为abc三角形的面积 可由公式 求得其中 为三角形周长的一半这个公式也被称为海伦——秦九韶公式现有一个三角形的边长满足 则此三角形面积的最大值为()

高一(上)期中数学试卷(含答案)

高一(上)期中数学试卷(含答案)

一、单选题。

(本大题共8小题,共40高一(上)期中数学试卷分。

在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学上册期中试题及答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,,则( )A .B .C .D .【答案】D 【解析】全集,集合,,,,故选D .2.已知集合,,则( ) A . B . C .D .【答案】A 【解析】集合,,,故A 正确,D 错误;,故B 和C 错误,故选A .3.下列各组函数中,表示同一函数的是( ) A ., B .,C .,D .,【答案】C【解析】A 中,定义域为,,定义域为,定义域不同,不是同一函数;B 中,定义域为,,定义域不同不是同一函数, {}1,2,3,4,5,6U ={}2,3,4A ={}3,4,5B =()UA B ={}1,2{}3,4{}1,2,3,4{}1,2,5,6{}1,2,3,4,5,6U ={}2,3,4A ={}3,4,5B ={}3,4A B ∴={}()1,2,5,6U A B ∴={|1}A x x =<{|31}xB x =<{|0}A B x x =<A B =R {|1}AB x x =>AB =∅{|1}A x x =<{|31}{|0}xB x x x =<=<{|0}AB x x ∴=<{|1}A B x x =<()1f x =0()g x x =()1f x x =-21()1x g x x -=+()f x x=()g x =()||f x x=2()g x =()1f x =R 0()g x x ={|0}x x ≠()1f x x =-R 21()1(1)1x g x x x x -==-≠-+C 中,,定义域为,,定义域为,定义域相同,对应法则相同,是同一函数;D 中,,定义域为,,定义域为,两者定义域不同,不是同一函数, 故选C .4.下列函数在其定义域内既是奇函数,又是减函数的是( ) A .B .C .D . 【答案】C【解析】A 错,在,递减,不是整个定义域递减; B 错,不是奇函数;C 对,,且为上的减函数;D 错,不等于0,不是奇函数, 故选C .5.已知函数的定义域是,则函数的定义域是( )A .B .C .D .【答案】C【解析】由题意得,解得; 由,解得, 故函数的定义域是,故选C .()f x x =R ()g x x =R ()||f x x =R 2()g x x =={|0}x x >1()f x x=2()log f x x =-3()f x x =-1(0)()1(0)x x f x x x -+<⎧=⎨--≥⎩(,0)-∞(0,)+∞3()()f x x f x -=-=-R (0)1f =-()y f x =[8,1]-(21)()2f xg x x +=+(,2)(2,3]-∞--[8,2)(2,1]---9[,2)(2,0]2---9[,2]2--8211x -≤+≤902x -≤≤20x +≠2x ≠-9[,2)(2,0]2---6.已知函数且的图象恒过定点,点在幂函数的图象上,则( ) A . B .2C .D .1【答案】B【解析】函数中,令,解得, 此时,所以函数的图象恒过定点,又点在幂函数的图象上,所以,解得,所以,所以,故选B .7.已知函数是定义在的偶函数,则( ) A .5 B .C .0D .2019【答案】A 【解析】函数是偶函数,定义域关于原点对称,则,得,得, 则, 则函数关于轴对称,则,则,即, 则,故选A . 8.函数的图象大致为( ) A . B .log (1)4(0a y x a =-+>1)a ≠P P ()y f x =()()lg 2lg 5f f +=2-1-log (1)4a y x =-+11x -=2x =log 144a y =+=y (2,4)P P ()y f x x α==24α=2α=2()f x x =()()()()()22lg 2lg 5lg 25lg 252lg102f f f f +==⨯==⎡⎤⎣⎦2()2f x ax bx a b =++-[3,2]a a -()()f a f b +=5-∴320a a -+=33a =1a =22()22f x ax bx a b x bx b =++-=++-y 02b -=0b =2()2f x x =+()()()()1012025f a f b f f +=+=+++=2ln ||()x f x x=C .D .【答案】D【解析】函数的定义域为,,为偶函数, 的图象关于轴对称,当时,,; 当时,,; 当时,, 故选D . 9.已知,,,则( ) A . B .C .D .【答案】C【解析】因为,所以;因为,,所以,所以,故选C .10.已知函数在区间上单调递减,则实数的取值范围为( ) A . B . C . D .【答案】A 【解析】函数在区间上单调递减,则在区间上单调递增,且满足,(,0)(0,)-∞+∞22ln ||ln ||()()()x x f x f x x x--===-()f x ∴()f x ∴y 01x <<ln 0x <()0f x ∴<1x >ln 0x >()0f x ∴>1x =()0f x =2log 3.23a =4log 23b=log 5c =b a c >>a c b >>a b c >>c a b >>24log 3.21log 2>>24log 3.2log 233a b =>=log 5c ==41log 2233b ===b c >a b c >>212()log (4)f x x ax a =-+[2,)+∞a (2,4]-[2,4]-(,4]-∞[4,)+∞212()log (4)f x x ax a =-+[2,)+∞24y x ax a =-+[2,)+∞0y >故有,求得,故选A .11.若函数的零点与的零点之差的绝对值不超过0.25,则可以是( )A .B .C .D .【答案】A【解析】, 因为, 所以的零点区间是.A 中,的零点,两者的零点之差的绝对值不超过0.25,符合条件,所以A 正确;B 中,的零点是0,两者的零点之差的绝对值超过0.25,不符合条件,所以不正确;C 中,的零点为1,两者的零点之差的绝对值超过0.25,不符合条件,所以,C 不正确;D 中,的零点是,两者的零点之差的绝对值超过0.25,不符合条件,所以D 不正确, 故选A .12.设函数,则下列命题中正确的个数是( ) ①当时,函数在上有最小值;224240a a a ⎧≤⎪⎨⎪-+>⎩24a -<≤()f x 2()log 21g x x x =++()f x 5()42xf x x =+-()1xf x e =-2()(1)f x x =-1()ln()2f x x =-2()log 21g x x x =++221111117()()(log 21)(log 21)1()02422444g g ⋅=+⋅+⋅+⋅+=⋅-<()g x 11(,)425()42xf x x =+-12()1xf x e =-B 2()(1)f x x =-1()ln()2f x x =-32()||f x x x bx c =-+0b >()f x R②当时,函数在是单调增函数; ③若,则; ④方程可能有三个实数根. A .1 B .2C .3D .4【答案】C【解析】①当时,,值域是,故函数在上没有最小值;②当时,,由解析式可知函数在上是单调增函数;③, 解得,故③对;④令,,则,解得,2,,故④正确, 故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.函数的图象恒过的定点是 .【答案】【解析】令,求得,, 可得函数的图象恒过定点,故答案为.14.函数的零点个数为 . 0b <()f x R (2019)(2019)2020f f +-=1010c =()0f x =0b >22,0()||,0x bx c x f x x x bx c x bx c x ⎧-+≥=-+=⎨--+<⎩R ()f x R 0b <22,0()||,0x bx c x f x x x bx c x bx c x ⎧-+≥=-+=⎨--+<⎩()f x R 22(2019)(2019)20192019(20192019)22020f f b c b c c +-=-++-++==1010c =2b =-0c =()||20f x x x x =-=0x =2-21(01)x y aa a +=+>≠且(2,2)-20x +=2x =-2y =21(01)x y aa a +=+>≠且(2,2)-(2,2)-1()|lg |xf x x e =-【答案】2【解析】令,则,,,如下图所示, 所以两函数有两个交点,即函数有两个零点, 故答案为2.15.函数的值域为,则实数的取值范围是 . 【答案】【解析】设,要使的值域为, 则值域, 即判别式,得或, 即实数的取值范围是,故答案为.16.函数是定义域为的偶函数,当时,,若关于的方程,,,有且仅有6个不同实数根,则实数的取值范围是 .【答案】 【解析】由题意,作函数的图象如下,()0f x =1|lg |xx e=1()xx h x e e -==()|lg |g x x =()fx 22()log (2)f x x ax a =-+R a (][),08,-∞+∞22t x ax a =-+()f x R 22t x ax a =-+(0,)A ⊇+∞280Δa a =-≥8a ≥0a ≤a (][),08,-∞+∞(][),08,-∞+∞()y f x =R 0x ≥2,(02)16()51,(2)2xx x f x x ⎧≤≤⎪⎪=⎨⎪->⎪⎩x 2[()]()0f x af x b ++=a b ∈R a 111(,1)(,)424---()f x由图象可得, 关于的方程,,有且仅有6个不同实数根,方程有两个根,不妨设为,,且,或者,; 或者,又,, 故答案为.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)计算:(1; (2).【答案】(1);(2)2. 【解析】(1)原式. ()10()24f x f ≤≤=x 2[()]()0f x af x b ++=a b ∈R ∴20x ax b ++=1x 2x 114x =2104x <<110x -<<2104x <<1211(,)42x x ∴+∈121(1,)4x x +∈-12a x x -=+111(,1)(,)424a ∴∈---111(,1)(,)424---1421()0.25()22-+⨯7log 2334log lg25lg47log 8log +-+⋅7-4181(72=--+⨯=-(2)原式. 18.(12分)已知函数,其中,均为实数. (1)若函数的图象经过点,,求函数的值域; (2)如果函数的定义域和值域都是,求的值. 【答案】(1);(2). 【解析】(1)函数,其中,均为实数, 函数的图象经过点,,,,函数,函数. 又,故函数的值域为.(2)如果函数的定义域和值域都是,若,函数为增函数, ,求得,无解;若,函数为减函数,,求得, .19.(12分)已知函数的定义域为. (1)设,求的取值范围;(2)求的最大值与最小值及相应的的值.32332131log 3lg1002(3log 2)(log 3)222622=+-+⋅=+-+=()(0,1)xf x a b a a =+>≠a b ()f x (0,2)A (1,3)B 1()y f x =()f x [1,0]-a b +(0,1)32-()(0,1)xf x a b a a =+>≠a b ()f x (0,2)A (1,3)B 123b a b +=⎧∴⎨+=⎩21a b =⎧∴⎨=⎩∴()211xf x =+>111()21x y f x ==<+110()21x f x =>+1()y f x =(0,1)()f x [1,0]-1a >()xf x a b =+1110b a b ⎧+=-⎪∴⎨⎪+=⎩a b 01a <<()xf x a b =+1011b a b ⎧+=⎪∴⎨⎪+=-⎩122a b ⎧=⎪⎨⎪=-⎩32a b ∴+=-2()log )4f x x =⋅2log t x =t ()f x x【答案】(1);(2)时,有最小值,时,有最大值. 【解析】(1)由题意可得,, 即的取值范围为.(2), 令,则,其中, 所以,当,即时,有最小值, 当,即时,有最大值.20.(12分)已知集合,.(1)若,求实数的取值范围; (2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)因为函数的定义域为, 所以在上恒成立,当时,,不在上恒成立,故舍去;当时,则有,解得,综上所述,实数的取值范围为.(2)易得,若,所以在上有解,1[,3]2x =()f x 254-8x =()f x 4-x ∈21log 32x ∴≤≤t 1[,3]222222()log ()2(log 2)(1log )(log 4)(1log )4f x x x x x =⋅=+=-+2log t x =22325(4)(1)34()24y t t t t t =-+=--=--1[,3]2t ∈32t=x =()f x 254-3t =8x =()f x 4-22{|log (22)}A x y mx x ==-+{|24}x B x =≤≤A =R m AB ≠∅m 1(,)2+∞(4,)-+∞22log (22)y mx x =-+R 2220mx x -+>R 0m =1x <R 0m ≠0480m Δm >⎧⎨=-<⎩12m >m 1(,)2+∞1[,2]2B =AB ≠∅2220mx x -+>1[,2]2在上有解, 当,即时,,所以, 实数的取值范围为.21.(12分)已知是定义在区间上的奇函数,且,若,,时,有. (1)判断函数在上是增函数,还是减函数,并证明你的结论;(2)若对所有,恒成立,求实数的取值范围.【答案】(1)增函数,证明见解析;(2).【解析】(1)函数在上是增函数,设, 是定义在上的奇函数,.又,,由题设,有,即, 所以函数在上是增函数.(2)由(1)知,对任意恒成立,只需对恒成立,即对恒成立, 设,则, 解得或,的取值范围是.22221112()22m x x x ∴>-+=--+1[,2]212x =12x =min 222()4x x-+=-4m >-∴m (4,)-+∞()f x [1,1]-()11f =a [1,1]b ∈-0a b +≠()()0f a f b a b+>+()f x [1,1]-2()55f x m mt ≤--[1,1]x ∈-[1,1]t ∈-m (][),66,-∞-+∞()f x [1,1]-1211x x -≤<≤()f x [1,1]-2121()()()()f x f x f x f x ∴-=+-1211x x -≤<≤21()0x x ∴+->2121()()0()f x f x x x +->+-21()()0f x f x +->12()()f x f x <()f x [1,1]-()max ()11f x f ==2()55f x m mt ∴≤--[1,1]x ∈-2155m mt ≤--[1,1]t ∈-2560m mt --≥[1,1]t ∈-2()56g t m mt =--22(1)061560(1)016560g m m m m g m m m m -≥⎧≤-≥⎧+-≥⎧⇔⇔⎨⎨⎨≥≤-≥--≥⎩⎩⎩或或6m ≤-6m ≥m ∴(][),66,-∞-+∞22.(12分)对于函数,,,如果存在实数,,使得,那么称为与的生成函数.(1)当,时,是否存在奇函数,偶函数,使得为与的生成函数?若存在,请求出与的解析式,若不存在,请说明理由; (2)设函数,,,,生成函数,若函数有唯一的零点,求实数的取值范围. 【答案】(1)存在,,;(2). 【解析】(1)依题意可知,① 将代替,得,因为是奇函数,是偶函数,所以有②由①、②可得,. (2)依题意可得,, 令,可得,即或, 令或,结合图象可知,当时,的图象与直线只有一个交点, 所以,实数的取值范围为. 1()f x 2()f x ()h x a b 12()()()h x a f x b f x =⋅+⋅()h x 1()f x 2()f x 1a b ==()xh x e =1()f x 2()f x ()h x 1()f x 2()f x 1()f x 2()f x 21()ln(65)f x x x =++2()ln(23)f x x a =-1a =1b =-()h x ()h x a 1()2x x e e f x --=2()2x x e e f x -+=102[,)33--12()()x f x f x e +=---------------x -x 12()()x f x f x e --+-=1()f x 2()f x 12()()x f x f x e --+=----------1()2x x e e f x --=2()2x xe ef x -+=2()ln(65)ln(23)h x x x x a =++--()0h x =226506523x x x x x a⎧++>⎨++=-⎩2453(5x x a x ++=-<-1)x >-2()45(5g x x x x =++<-1)x >-2310a <-≤()y g x =3y a =-a 102[,)33--。

相关文档
最新文档