永磁直驱式风力发电机的工作原理

合集下载

直驱式永磁同步风力发电机概述

直驱式永磁同步风力发电机概述

直驱式永磁同步风力发电机概述永磁同步发电机是一种以永磁体进行励磁的同步电机,应用于风力发电系统,称为永磁同步风力发电机。

永磁同步风力发电机一般不用齿轮箱,而将风力机主轴与低速多极同步发电机直接连接,为“直驱式”,所以称为直驱式永磁同步风力发电机,以下本章除特指外均简称为永磁同步发电机。

一、永磁同步发电机的特点1.与传统电励磁同步发电机比较同步发电机是一种应用广泛的交流电机,其显著特点是转子转速n与定子电流频率f之间具有固定不变的关系,即n=n0=60f/p,其中n为同步转速,p为极对数。

现代社会中使用的交流电能几乎全部由同步发电机产生。

永磁同步发电机是一种结构特殊的同步发电机,它与传统的电励磁同步发电机的主要区别在于:其主磁场由永磁体产生,而不是由励磁绕组产生。

与普通同步发电机相比,永磁同步发电机具有以下特点:(1)省去了励磁绕组、磁极铁芯和电刷-集电环结构,结构简单紧凑,可靠性高,免维护。

(2)不需要励磁电源,没有励磁绕组损耗,效率高。

(3)采用稀土永磁材料励磁,气隙磁密较高,功率密度高,体积小,质量轻。

(4)直轴电枢反应电抗小,因而固有电压调整率比电励磁同步发电机小。

(5)永磁磁场难以调节,因此永磁同步发电机制成后难以通过调节励磁的方法调节输出电压和无功功率(普通同步发电机可以通过调节励磁电流方便地调节输出电压和无功功率)。

(6)永磁同步发电机通常采用钕铁硼或铁氧体永磁,永磁体的温度系数较高,输出电压随环境温度的变化而变化,导致输出电压偏离额定电压,且难以调节。

(7)永磁体存在退磁的可能。

目前,永磁同步发电机的应用领域非常广泛,如航空航天用主发电机、大型火电站用副励磁机、风力发电、余热发电、移动式电源、备用电源、车用发电机等都广泛使用各种类型的永磁同步发电机,永磁同步发电机在很多应用场合有逐步代替电励磁同步发电机的趋势。

2.与非直驱式双馈风力发电机比较虽然双馈风力发电机是目前应用最广泛的机型,但随着风力发电机组单机容量的增大,双馈型风力发电系统中齿轮箱的高速传动部件故障问题日益突出,于是不用齿轮箱而将风力机主轴与低速多极同步发电机直接连接的直驱式布局应运而生。

永磁同步风力发电系统的组成、工作原理及控制机理

永磁同步风力发电系统的组成、工作原理及控制机理

永磁同步风⼒发电系统的组成、⼯作原理及控制机理永磁同步风⼒发电系统的系统基本组成、⼯作原理、控制模式论述1.系统的基本组成:直驱式同步风⼒发电系统主要采⽤如下结构组成:风⼒机(这⾥概括为:叶⽚、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。

其中全功率变流器⼜可分为发电机侧整流器、直流环节和电⽹侧逆变器。

就空间位置⽽⾔,变流器和风机总控系统⼀般放在塔筒底部,其余主要部件均位于塔顶。

2.⼯作原理:系统中能量传递和转换路径为:风⼒机把捕获的流动空⽓的动能转换为机械能,直驱系统中的永磁同步发电机把风⼒机传递的机械能转换为频率和电压随风速变化⽽变化的不控电能,变流器把不控的电能转换为频率和电压与电⽹同步的可控电能并馈⼊电⽹,从⽽最终实现直驱系统的发电并⽹控制。

3.控制模式:风⼒发电机组的控制系统是综合性控制系统。

它不仅要监视电⽹、风况和机组运⾏参数,对机组运⾏进⾏控制。

⽽且还要根据风速与风向的变化,对机组进⾏优化控制,以提⾼机组的运⾏效率和发电量。

风⼒发电控制系统的基本⽬标分为三个层次:分别为保证风⼒发电机组安全可靠运⾏,获取最⼤能量,提供良好的电⼒质量。

控制系统主要包括各种传感器、变距系统、运⾏主控制器、功率输出单元、⽆功补偿单元、并⽹控制单元、安全保护单元、通讯接⼝电路、监控单元。

具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、⾃动最⼤功率点跟踪控制、功率因数控制、偏航控制、⾃动解缆、并⽹和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。

⼀、系统运⾏时控制:1、偏航系统控制:偏航系统的控制包括三个⽅⾯:⾃动对风、⾃动解缆和风轮保护。

1)⾃动对风正常运⾏时偏航控制系统⾃动对风,即当机舱偏离风向⼀定⾓度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,⾃动对风停⽌。

2)⾃动解缆当机舱向同⼀⽅向累计偏转2~3圈后,若此时风速⼩于风电机组启动风速且⽆功率输出,则停机,控制系统使机舱反⽅向旋转2~3圈解绕;若此时机组有功率输出,则暂不⾃动解绕;若机舱继续向同⼀⽅向偏转累计达3圈时,则控制停机,解绕;若因故障⾃动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,⾃动停机,等待⼈⼯解缆操作。

MW级直驱永磁同步风力发电机设计

MW级直驱永磁同步风力发电机设计

未来,需要进一步开展直驱永磁同步风力发电机的优化设计和应用研究。例如, 通过提高发电机的额定功率和降低制造成本,可以进一步提高其经济性;还需 要加强该技术在不同环境和气候条件下的适应性和稳定性研究,为直驱永磁同 步风力发电机的广泛应用提供更加坚实的基础。
谢谢观看
展望未来,风力发电技术将在全球范围内得到更广泛的应用和发展。随着技术 的不断进步和市场需求的变化,MW级直驱永磁同步风力发电机的研究也将不断 深入。未来的研究将更多地如何提高发电机的效率和可靠性,降低制造成本和 维护成本,
以及如何更好地与电网进行连接和控制等方面的问题。随着数字化和智能化技 术的发展,将这些技术应用于风力发电机设计中也将成为未来的一个研究方向。
2、结构简单:该技术不需要增速齿轮箱,减少了机械损耗和故障率。
3、维护方便:由于结构简单,直驱永磁同步风力发电机的维护工作量较小, 降低了维护成本。
4、适应性强:该技术适用于不同规模的风电场,能够满足不同需求。
三、直驱永磁同步风力发电机的 应用场景
1、大型风电场:直驱永磁同步风力发电机适用于大型风电场,能够满足大规 模电力输出的需求。
MW级直驱永磁同步风力发电机设计
01 一、确定主题
目录
02 二、编写大纲
03 三、详细设计
04 四、结果分析05 五来自总结与展望06 参考内容
一、确定主题
随着环保意识的不断提高和可再生能源的广泛应用,风力发电技术得到了持续 发展。其中,MW级直驱永磁同步风力发电机由于其高效、可靠、维护成本低等 特点,成为了风力发电领域的研究热点。本次演示将详细介绍MW级直驱永磁同 步风力发电机的设计过
2、效率评估:通过对比不同设计方案和不同制造工艺下的发电机效率,选择 最优方案和工艺。

双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理

双馈、直驱、半驱风力发电机工作原理双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。

它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中得到广泛应用。

我们来了解一下双馈风力发电机的工作原理。

双馈风力发电机是一种采用异步发电机的结构,其转子由两部分组成:一个是固定子,另一个是转子。

风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。

在双馈风力发电机中,转子的定子通过拖动转子的磁场,使得风力发电机可以实现变频调速。

双馈风力发电机具有转矩平稳、响应速度快的优点,可以适应不同风速下的工作状态。

接下来,我们介绍一下直驱风力发电机的工作原理。

直驱风力发电机是一种采用永磁同步发电机的结构,其转子由永磁体构成。

风力通过叶片传递给转子,转子通过直接驱动发电机产生电能。

直驱风力发电机不需要传动系统,减少了能量转换的损失,提高了发电效率。

直驱风力发电机具有结构简单、体积小、维护成本低等优点,逐渐成为风力发电领域的主流技术。

我们来了解一下半驱动风力发电机的工作原理。

半驱动风力发电机是双馈风力发电机和直驱风力发电机的结合体,它采用了双馈发电机的转子结构和直驱发电机的永磁体。

风力通过叶片传递给转子,转子通过传动系统将机械能转化为电能。

半驱动风力发电机兼具双馈风力发电机和直驱风力发电机的优点,具有较高的发电效率和稳定性。

双馈、直驱和半驱风力发电机是目前常见的几种风力发电机构。

它们分别采用不同的工作原理来转换风能为电能,并在风力发电行业中发挥重要作用。

双馈风力发电机通过变频调速实现转矩平稳,响应速度快;直驱风力发电机通过永磁同步发电机实现高效发电;半驱动风力发电机兼具双馈和直驱的优点,具有较高的发电效率和稳定性。

随着风力发电技术的不断发展,这些风力发电机构将进一步完善和提升,为可持续能源的开发和利用做出更大贡献。

永磁直驱式风力发电机的工作原理

永磁直驱式风力发电机的工作原理

你好,你的这个问题问的比较广。

我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双馈机和永磁直驱发电机。

永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。

总所周知,一般发电机要并网必须满足相位、幅频、周期同步。

而我国电网频率为50hz这就表示发电机要发出50hz的交流电。

学过电机的都知道。

转速、磁极对数、与频率是有关系的n=60f/p。

所以当极对数恒定时,发电机的转速是一定的。

所以一般双馈风机的发电机额定转速为1800r/min。

而叶轮转速一般在十几转每分。

这就需要在叶轮与发电机之间加入增速箱。

而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。

而齿轮箱是风力发电机组最容易出故障的部件。

所以,永磁直驱的可靠性要高于双馈。

对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。

风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。

不知道有木有解释清楚。

还有什么不清楚可以继续追问,知无不言。

风力发电机也在逐步的永磁化。

采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。

风力机的直驱化也是当前的一个热点趋势。

目前大多风电系统发电机与风轮并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。

直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。

直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。

永磁直驱风力发电机组并网发电原理

永磁直驱风力发电机组并网发电原理

永磁直驱风力发电机组并网发电原理
永磁直驱风力发电机组并网发电是一种新型的发电技术,它利用风力将机组的转矩转化为电能,并将该电能输出到电网中。

永磁直驱风力发电机组是一种特殊的发电机组,它采用永磁材料制造的发电机,可以将风力转换为电能,而无需使用变速箱和传动轴。

永磁直驱风力发电机组可以输出一定的功率,其输出电能可以用于发电。

并网发电是指将发电机组输出的电能输入到电网中,实现了发电和用电之间的互联互通。

发电机组可以将连续的电能输出到电网中,供用户使用,从而实现发电。

永磁直驱风力发电机组并网发电的优点是结构简单,可靠性高,运行维护成本低,可以有效地利用风能,实现节能环保,并可以获得较大的发电量,可以节约大量的能源费用,给社会带来更多的经济效益。

永磁直驱风力发电机组并网发电不仅可以节省能源,而且可以缓解电网负荷,提高电网的可靠性和安全性,进一步推动可再生能源的发展。

总之,永磁直驱风力发电机组并网发电是一项重要的发电技术,它具有结构简单、可靠性高、运行维护成本低等优点,
可以节省能源,缓解电网负荷,提高电网可靠性和安全性,进一步推动可再生能源的发展,给社会带来更多的经济效益。

直驱式永磁同步风力发电机组建模及其控制策略

直驱式永磁同步风力发电机组建模及其控制策略

直驱式永磁同步风力发电机组建模及其控制策略一、本文概述随着全球能源需求的持续增长和环境保护的日益紧迫,风力发电作为一种清洁、可再生的能源形式,正受到越来越多的关注。

直驱式永磁同步风力发电机(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator, DDPMSG)作为一种新型风力发电技术,以其高效率、高可靠性以及低维护成本等优点,逐渐成为风力发电领域的研究热点。

本文旨在对直驱式永磁同步风力发电机组的建模及其控制策略进行深入研究。

文章将介绍直驱式永磁同步风力发电机的基本结构和工作原理,为后续建模和控制策略的研究奠定基础。

接着,文章将详细阐述直驱式永磁同步风力发电机组的数学建模过程,包括机械部分、电气部分以及控制系统的数学模型,为后续控制策略的设计提供理论支持。

在控制策略方面,本文将重点研究直驱式永磁同步风力发电机组的最大功率点跟踪(Maximum Power Point Tracking, MPPT)控制和电网接入控制。

最大功率点跟踪控制旨在通过调整发电机组的运行参数,使风力发电机组在不同风速下都能保持最佳运行状态,从而最大化风能利用率。

电网接入控制则关注于如何确保发电机组在并网和孤岛运行模式下的稳定运行,以及如何在电网故障时实现安全可靠的解列。

本文还将探讨直驱式永磁同步风力发电机组的控制策略优化问题,以提高发电机组的运行效率和稳定性。

通过对控制策略进行优化设计,可以进一步减少风力发电机组的能量损失,提高风电场的整体经济效益。

本文将对直驱式永磁同步风力发电机组的建模及其控制策略进行总结,并展望未来的研究方向和应用前景。

通过本文的研究,可以为直驱式永磁同步风力发电机组的实际应用提供理论指导和技术支持,推动风力发电技术的持续发展和优化。

二、直驱式永磁同步风力发电机组的基本原理直驱式永磁同步风力发电机组(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator,简称DD-PMSG)是一种将风能直接转换为电能的装置,其基本原理基于风力驱动、机械传动、电磁感应和电力电子控制等多个方面。

直驱永磁风力发电系统概述_1352537_张昌鸣

直驱永磁风力发电系统概述_1352537_张昌鸣

直驱永磁风力发电系统概述摘要:在直驱永磁发电系统中,风速影响输出电压的幅值和频率,不能直接并网。

本文概述了一种控制方法,通过对逆变器的控制实现输出电压对电网电压的跟踪,达到并网要求;基于最大风能追踪控制原理,通过对变频器的调节控制改变风机转速,实现风力机最佳效率运行。

本文也简单讨论了风能的应用范围、经济性及未来发展前景。

关键词:风力发电;直驱永磁发电机;最大风能捕获;风能的应用和发展0引言可再生能源的开发和利用从七十年代开始进入飞速发展时期。

一是上世纪七十年代的石油危机后,经济和能源压力迫使人们寻找关于能源的新的解决途径,二是近十几年来基于化石燃料的传统能源体系引发的环境问题愈发严重,寻找新能源不仅关乎经济和能源需求,更关系着未来人类社会的前进方向。

如煤炭、石油、天然气等传统能源之所以能较早被作为能源广泛使用,一方面是储量相对丰富,更重要的原因是能源使用过程中输出稳定可靠,且较容易由一种能量形式(如热)转化成另一种能量形式(如电)而进行广泛传输。

而如今的新能源面临的最大问题就是能量的转化难、不可控、不稳定,因此新能源利用的关键之一就是采用更加精准的控制手段,提升能量利用效率。

本文试以较为常见的风能发电为例,简单阐述新能源应用中控制系统的作用。

1风力发电机控制系统目前存在的风力发电机组有恒速恒频和变速恒频两种类型。

恒速恒频风力发电机组无法有效地利用不同风速时的风能,而变速恒频风力发电机组可以在很大的风速范围内工作,更有效地利用风能,其中应用比较广泛的技术之一是直驱永磁风力发电系统。

根据最大风能追踪控制原理,当风力机浆叶不变时,对于一个特定的风速v,风力机只有运行在一个特定的转速ωm 下才会有最高的风能转换效率,要想追踪最大限度地获得风能,就必须在风速变化时及时调节风轮机的转速n(在直驱永磁风力发电系统中,即为发电机的转速),这就是变速恒频发电技术的主要思想。

通过变速恒频发电技术,理论上可以使风力发电机组在输出功率低于额定功率之前,输出最佳功率,效率最高。

直驱式永磁同步风力发电机组简介

直驱式永磁同步风力发电机组简介

直驱式永磁同步风力发电机组简介
直驱式永磁同步发电机采用永磁体外转子结构,相比较同功率的风力发电机组,尺寸和外径相对较小。

直驱永磁同步发电机组是风带动叶轮直接驱动转子转动,靠增加磁极的对数使发电机的额定转速下降达到转速调节的目的。

由于发电机组不需要增速齿轮箱,一般故障现象如润滑油泄漏,齿轮箱过载,机械损大等问题也减少很多,直接降低客户后期的运维成本。

直驱式永磁同步风力发电机组可以通过变桨系统来控制风力发电机组输出的最大功率,同时也会控制有功功率的上升变化率功能。

当风电场的风速急剧上升时,通过控制变桨的角度,风力发电机组不会出现因功率急剧上升载荷突然增大引起风机安全事故的情况。

同时永磁风力发电机组具备机端电压控制控制功能,机组具备有一定的无功调节能力,当系统出现电压波动时,可以控制和稳定机端电压。

直驱永磁同步发电机采用全功率变流器来实现并网,初始发电机发出交流电的电压和频率还有相位都不稳定。

需要通过整流单元整流变成直流电,经过电压升高,将电能输送到直流母排上,通过逆变单元把直流电逆变成能够和电网相匹配的电能。

变流器机侧和网侧有各有独立的控制器,各个系统之间通过控制器通讯进行数据交换和控制。

直驱电机工作原理

直驱电机工作原理

直驱电机工作原理
直驱电机是一种特殊的电机,其工作原理和传统电机有所不同。

直驱电机的工
作原理主要包括电磁场产生、转子运动和功率输出三个方面。

首先,直驱电机的工作原理涉及到电磁场的产生。

在直驱电机中,通常会采用
永磁体或电磁铁产生磁场。

当电流通过线圈时,会在线圈周围产生磁场,这个磁场会与永磁体或电磁铁产生的磁场相互作用,从而产生电磁力。

这种电磁力是直驱电机产生转矩的基础。

其次,直驱电机的工作原理还涉及到转子的运动。

在直驱电机中,通常会采用
转子直接与负载相连的方式,省去了传统电机中的传动装置。

当电流通过线圈产生电磁力时,会驱动转子产生转动,从而带动负载进行工作。

这种直接驱动的方式使得直驱电机具有了更高的效率和更快的响应速度。

最后,直驱电机的工作原理还包括功率输出。

通过电磁场产生和转子运动,直
驱电机可以将电能转化为机械能,从而实现对负载的驱动。

直驱电机在工业生产中广泛应用,例如在机床、风力发电机、电动汽车等领域都有着重要的地位。

总的来说,直驱电机的工作原理是通过电磁场产生、转子运动和功率输出三个
方面相互作用,实现对负载的驱动。

这种工作原理使得直驱电机具有了更高的效率、更快的响应速度和更可靠的运行特性,因此在现代工业中得到了广泛的应用。

直驱式风力发电机知识

直驱式风力发电机知识

是我们初中学的磁极数,一个发电机是有南北极的(货是正负极),就是指的这个,但是3相的就不是了,你可以通过数住绕组的个数来辨别是多少级数,或者说发电机的转速也可以看出来是多少级数以50HZ为例,2级的就是3000转,4级就3000/2,1500转这样就好理解了直驱永磁风力发电机组特点直驱式风力发电机(Direct-driven Wind Turbine Generators),是一种由风力直接驱动发电机,亦称无齿轮风力发动机,这种发电机采用多极电机与叶轮直接连接进行驱动的方式,免去齿轮箱这一传统部件。

由于齿轮箱是目前在兆瓦级风力发电机中属易过载和过早损坏率较高的部件,因此,没有齿轮箱的直驱式风力发动机,具备低风速时高效率、低噪音、高寿命、减小机组体积、降低运行维护成本等诸多优点。

直驱式(无齿轮)风力发电机始于20多年前,由于电气技术和成本等原因,发展较慢。

随着近几年技术的发展,其优势才逐渐凸现。

德国、美国、丹麦都是在该技术领域发展较为领先的国家,其中德国西门子公司开发的(直驱式)无齿轮同步发电机安装在世界最大的挪威风力发电场,最高效率达98%。

1997年的风机市场上出现了兼具无齿轮、变速变桨距等特征的风力发电机,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,容量从330千瓦至2兆瓦,由德国ENERCONGmbH公司制造,它们的研制始于1992年。

2000年,瑞典ABB公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Wind former,容量3兆瓦、高约70米、风扇直径约90米。

2003年,在Okinawa电力公司开始运行的MWT-S2000型风力发电机,是日本三菱重工首度完全自行制造的2兆瓦级风机,采用小尺寸的变速无齿轮永磁同步电机,新型轻质叶片。

目前,国内多家企业也开始进军直驱式风力发电机领域,湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,2兆瓦直驱式永磁风力发电整机机组已试车成功;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合推出的兆瓦直驱变桨风力发电也将于2008年二季度完成样机;具有自主知识产权的新疆金凤科技股份公司、哈尔滨九州电气公司也分别研制出兆瓦直驱式风力发电机。

直驱永磁同步式发电机原理

直驱永磁同步式发电机原理

直驱永磁同步式发电机原理
直驱永磁同步式发电机是一种利用永磁材料和直驱技术的发电机,其原理基于电磁学和磁学的基本原理。

以下是直驱永磁同步式发电机的基本工作原理:
1.永磁同步发电机结构:直驱永磁同步式发电机通常由转子和定
子两部分组成。

转子上嵌有永磁体,这些永磁体通常是稀土磁体,如钕
铁硼(NdFeB)。

定子上则布置有线圈。

2.永磁场产生:当转子旋转时,永磁体在转子上产生一个稳定的
磁场。

这个永磁场是由永磁体的磁性质所提供的,它可以保持在整个转
子旋转过程中不变。

3.电磁感应:定子上的线圈被永磁体的磁场穿过,根据法拉第电
磁感应定律,感应出电动势。

线圈上的导体通过这个感应电动势产生电
流。

4.直驱技术:直驱指的是发电机的转子直接与风力发电机的转子
(通常是风力涡轮机)相连接,而不需要传统的齿轮箱。

这减少了机械
部件,提高了传动效率,并减少了维护成本。

5.输出电能:通过调节定子上的电流,可以获得所需的输出电
能。

输出电流的交流特性可以通过逆变器进行转换,以匹配电网或存储
系统的要求。

直驱永磁同步式发电机的主要优点包括效率高、维护成本低、启动转矩大等特点。

这种发电机常用于风力发电系统,其中直驱技术可以提高整个风力涡轮系统的可靠性和效率。

基于直驱式永磁同步风力发电机输出有功功率的控制

基于直驱式永磁同步风力发电机输出有功功率的控制

基于直驱式永磁同步风力发电机输出有功功率的控制一、控制策略1.基本原理实现最大风能跟踪的要求是在风速变化时及时调整风力机转速,使其始终保持最佳叶尖速比运行,从而可保证系统运行于最佳功率曲线上。

对风力机转速的控制可通过风力机变桨距调节,也可通过控制发电机输出功率进行调节。

由于风力机变桨距调节系统结构复杂,调速精度受限,因此可通过控制发电机输出有功功率调节发电机的电磁转矩,进而调节发电机转速。

由永磁同步发电机的功率关系可知式中Pem 、Pm、P——发电机电磁功率、风力机输出机械功率、机械损耗;P s 、PCus、PFes——发电机定子输出有功功率、定子铜耗、定子铁耗。

为实现最大风能跟踪控制,应根据风力机转速实时计算风力发电机输出的最佳功率指令信号Popt ,令式(7-8)中Pm=Popt,由式(7-3)和式(7-8)可得到发电机的最佳电磁功率和定子有功功率指令为按照有功功率指令控制发电机输出的有功功率可使风力机按式(7-3)的规律实时捕获最大风能,从而实现发电机的最大风能跟踪控制。

2.电机侧变换器控制策略采用永磁同步发电机和双PWM变换器构成发电系统,该系统由永磁同步发电机、电机侧变换器、直流侧电容和电网侧变换器构成。

电机侧变换器的主要作用是控制发电机输出的有功功率以实现最大风能跟踪控制。

由于直驱式永磁同步发电机多以低速运行,因此可采用多对极表贴式永磁同步发电机。

目前针对该类电机常采用转子磁场定向的矢量控制技术,假设dq坐标系以同步速度旋转,且q 轴超前于d轴,将d轴定位于转子永磁体的磁链方向上,可得到电机的定子电压方程为式中Rs 、Ls——发电机的定子电阻和电感;u sd 、usq、isd、isq——d、q轴定子电压和电流;ωs——同步电角速度;ψ——转子永磁体磁链。

其电磁转矩可表示为式中p——电机极对数。

通常控制定子电流d轴分量为零,由式(7-11)可知,发电机电磁转矩仅与定子电流q轴分量有关。

永磁直驱风力发电机组并网发电原理

永磁直驱风力发电机组并网发电原理

永磁直驱风力发电机组并网发电原理风力发电是以永磁直驱风力发电机组为基础,利用风力驱动风力发电机组发电,并将其发出的电能接入电网的技术。

利用当前的技术,让永磁直驱风力发电机组达到发电要求是可行的。

首先,永磁直驱风力发电机组中的永磁发电机的特性是风力直接由风扇驱动,没有外部润滑油,也不需要外部调速设备,能够直接转换风力能量到机械和电能,从而使发电量有更多的可控性。

其次,由于永磁直驱风力发电机组的发电特性,它具有较大的输出电力,出力范围宽,发电稳定,调节性强,维护成本低,维修简单的特点,可以满足大规模风力发电系统的发电要求。

永磁直驱风力发电机组的工作原理永磁直驱风力发电机组是由永磁发电机、叶片、叶轮、结构框架以及其他相关电控设备组成的新型高效发电装置,其工作原理如下:当风向和风速稳定时,风力发电机组中的叶片会受到风力驱动而转动,从而驱动永磁发电机的转子运行。

随着转子的转动,永磁发电机的定子上的线圈会感受到变化的磁场,并产生变化的电场,形成交流电能,将其发出的电能接入电网。

永磁直驱风力发电机组的优势永磁直驱风力发电机组具有多种优势:首先,永磁直驱风力发电机组的发电量大,发电出力范围广,最大发电量可以达到200兆瓦;其次,永磁直驱风力发电机组具有较强的发电稳定性,其发电量可以在一定幅度内控制;再次,永磁直驱风力发电机组无需外部调速设备,能够直接转换风力能量到机械和电能,具有较强的调节性;最后,永磁直驱风力发电机组使用简单,维护成本低,工程实施周期短,可以有效提高风能发电的用户参与度。

总结永磁直驱风力发电机组是一种新型的高效发电装置,它具有较大的输出电力,出力范围宽,发电稳定,调节性强,维护成本低,维修简单等优势,可以高效转换风力能量,满足大规模风力发电系统的发电要求。

因此,永磁直驱风力发电机组并网发电技术的发展将对促进风能发电的发展具有重要的作用。

MW级直驱永磁同步风力发电机设计

MW级直驱永磁同步风力发电机设计

MW级直驱永磁同步风力发电机设计首先,永磁同步发电机是一种利用磁场相互作用原理直接将风能转换为电能的装置。

它具有体积小、重量轻、转速高、功率密度大的优势,因此在MW级风力发电系统中得到广泛应用。

其基本原理是利用永磁体的磁场与定子线圈的磁场相互作用,产生电磁感应,进而将风能转化为电能。

在设计MW级直驱永磁同步风力发电机时,有几个关键要点需要重点考虑。

首先是选择适合的永磁材料和磁路设计。

永磁材料的选择直接关系到发电机的磁场强度和效率,一般常用的材料有钕铁硼和钴等。

同时,磁路设计要合理,以增强磁场的均匀度和稳定性。

其次是转子结构和散热设计。

MW级直驱永磁同步风力发电机的转子受到巨大的力矩和离心力的作用,因此需要选择合适的材料和结构来保证其强度和刚度。

同时,由于转子功率密度大,会产生大量的热量,因此散热设计至关重要,以确保发电机的长期稳定工作。

此外,MW级直驱永磁同步风力发电机的控制系统也需要精心设计。

风力发电机的转速和输出功率与风速之间存在复杂的非线性关系,因此需要采用先进的控制算法来实现最大化发电效率。

此外,还需要考虑到电网连接和功率调节等方面的要求。

在设计MW级直驱永磁同步风力发电机时,还面临着一些挑战。

首先是系统的可靠性和可维护性。

由于风力发电机的工作环境恶劣,容易受到风力、温度等因素的影响,因此需要设计稳定可靠的系统来应对各种突发状况。

其次是成本和效益的平衡。

虽然MW级直驱永磁同步风力发电机具有高效率和高功率密度的优势,但其制造和维护成本也相对较高,需要综合考虑投资回报周期等因素。

总之,MW级直驱永磁同步风力发电机的设计是一项复杂的工程,需要考虑多个因素,包括永磁材料选择、磁路设计、转子结构和散热设计、控制系统以及系统的可靠性和成本效益等。

只有合理、全面地考虑这些因素,才能设计出高效可靠的MW级直驱永磁同步风力发电机系统。

风力永磁发电机工作原理

风力永磁发电机工作原理

风力永磁发电机工作原理风力永磁发电机是一种利用风能产生电能的装置。

其工作原理如下:1. 风能转换:当风经过发电机的叶片时,会给叶片施加一个力,使得叶片开始旋转。

2. 旋转转子:叶片的旋转通过传递给转子,使得转子开始旋转。

转子通常由一组永磁体组成,这些永磁体产生一个强磁场。

3. 磁场感应:转子旋转时,磁场会产生变化,这会导致发电机的定子中的线圈中感应出电流。

根据法拉第电磁感应定律,当磁场变化时,导线中会产生感应电势。

4. 电能输出:感应电势在定子线圈上形成电流,这个电流可以被输出使用。

通过以上工作原理,风力永磁发电机将风能转化为电能,提供给电网使用或储存。

这种发电机具有结构简单、高效率和可靠性高的特点,逐渐成为可再生能源领域中的重要技术。

风力永磁发电机的工作原理可以进一步详细解释如下:1. 风能转换:风力无论是通过风轮、风车或风叶,通过捕捉风力将其转化为机械能。

对于风力发电机来说,通常采用三个或更多的叶片,叶片受到风的推动而旋转。

2. 旋转转子:当叶片开始旋转时,它们通过一个轴将旋转的动力传递给发电机的转子。

转子是风力发电机的核心部件,通常由一组永磁体组成。

这些永磁体产生一个持续的磁场。

3. 磁场感应:转子的旋转使得磁场也随之旋转。

这个可变的磁场会通过磁感应作用影响到发电机的定子。

定子通常由一组线圈组成,这些线圈包裹在铁芯中。

当磁场变化时,定子线圈中会产生感应电流。

4. 电能输出:通过感应电流,发电机将机械能转化为电能。

这些感应电流通过电线传输到负载中,可以用来驱动家庭或工业设备,或被接入电网供电。

在风力永磁发电机中,永磁体的使用可以提高发电机的效率,因为永磁体产生的磁场强度较高,使得发电机在相对较低的转速下就能产生足够的电能。

此外,由于永磁体自身没有电阻,因此不需要额外的电能来维持磁场,进一步提高了发电机的效率。

永磁直驱式风力发电机的工作原理

永磁直驱式风力发电机的工作原理

永磁直驱式风力发电机的工作原理概述风力发电是一种绿色、可再生的能源形式,近年来逐渐受到人们的重视,并已经成为了不同国家的电力部门战略的一部分。

最新的风力发电机设计中普遍采用永磁直驱式风力发电机作为核心动力。

本文将介绍永磁直驱式风力发电机的工作原理。

永磁直驱式风力发电机永磁直驱式风力发电机简单来说就是将风能转化成电能的装置,它通过天线承受风力并转化为动能,转化后的能量被永磁直驱电机接收并被转换为可用的电能。

那么它是如何工作的呢?下面是详细解释。

工作原理永磁直驱式风力发电机利用叶轮旋转过程中的风能驱动转子旋转,发电机将叶轮的旋转转换为磁场的旋转,通过系统上的电路转变成直流电并输出。

磁场的产生永磁体作为最基本的部分,它产生的磁场为转子在正常工作时的磁场。

对于永磁直驱式风力发电机,主要采用了永磁体的磁场以产生转矩、增大效率。

在转子内部固定有许多磁钢,其成对固定在转子和定子上的相邻表面,形成有序且闭合环路的磁力线。

磁场的产生使得产生能量和承载载荷的磁力线逐渐发生变化,从而增加或减小空间磁场的强度。

磁场的转化将空间磁场转换为电力的方式很简单,利用部分转子上的线圈共同作用于磁场时,会产生一个电动势,然后流经线圈释放出的能量就作为输出电能传输至整个风力电站的主轴。

线圈位置设计在直驱发电机中,由于转子上的线圈应该共同作用于磁场,因此它们应该被两两固定在相对位置。

这样,就能产生一个比较强大而稳定的磁场。

对于风力发电机中的整个系统,转子中线圈的数量应该根据总发电机负载确定。

永磁直驱式风力发电机的运行是由风轮将风能转换为机械能,进而通过驱动永磁直驱电机的转子带动电机作业的。

转子的磁铁产生的磁场信息被转换成电动势以及电流,这些能量被输出到电池组上再进入电网供应电量。

理解永磁直驱式风力发电机的工作原理至关重要,他对于整个系统的运行效率和能量获取能力都具有重要的影响。

直驱式风力发电机原理及发电机组概述

直驱式风力发电机原理及发电机组概述

直驱式风力发电机原理及发电机组概述二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。

下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。

使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。

不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。

近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。

低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。

近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。

采用永磁体技术的直驱式发电机结构简单、效率高。

永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。

下图是一个内转子直驱式风力发电机组的结构示意图。

其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。

外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。

本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。

盘式永磁直驱式风力发电机的定子与转子都呈平面圆盘结构,定子与转子轴向排列,有中间转子、中间定子、多盘式等结构,本栏有对中间转子与中间定子直驱式风力发电机的专门介绍,下图是一个中间定子直驱盘式风力发电机组的结构示意图。

永磁直驱风力发电机技术综述

永磁直驱风力发电机技术综述

永磁直驱风力发电机技术综述发表时间:2018-07-02T11:27:53.600Z 来源:《电力设备》2018年第7期作者:左禾[导读] 摘要:风能是一种清洁的可再生能源,其分布面广,开发利用潜力巨大,而风力发电则是最为常规的风能利用技术。

(西安中车永电捷力风能有限公司陕西西安 710000)摘要:风能是一种清洁的可再生能源,其分布面广,开发利用潜力巨大,而风力发电则是最为常规的风能利用技术。

永磁直驱风力发电机采用永磁体作为励磁系统,由风轮直接驱动发电机,是风力发电机的主要发展方向,通常采用径向气隙以及轴向气隙结构,包括减小起动转矩、冷却和散热设计、永磁体的固定以及发电机的防雷设计等关键技术。

文章就永磁直驱风力发电机技术进行相关分析。

关键词:永磁直驱;风力发电机;技术应用1 风力发电机1.1 风力发电机含义风力发电机主要是一种电力设备,其能够把风能转为机械功,从而带动转子旋转,最后输出交流电。

在广义上,风能也作为太阳能,因此,风力发电机也是以大气为介质、太阳为热源的热能利用发电机。

1.2 风力发电机原理风力发电原理说来很简单,但做起来很难,其利用风去带动风车叶片使叶片旋转,再通过增速机提高叶片旋转速度,以此促使发电机进行发电。

风力发电相较于柴油发电要好很多,因为其利用自然能源。

风力发电不能够作为备用电源,但其使用寿命长,可长期利用。

1.3 风力发电机类型(1)异步型,包括笼型异步发电机和绕线式双馈异步发电机。

(2)同步型,包括永磁同步发电机和电励磁同步发电机。

(3)水平轴,目前利用最多的风力发电机类型。

(4)垂直轴,新型的风力发电机。

与水平轴风力发电机相比,其效率较高,且没有噪音,维护简单,中小型发电机首选。

1.4 永磁直驱风电机组的结构组成永磁直驱风力发电机组没有齿轮箱,风轮直接驱动发电机,亦称无齿轮风力发电机,采用永磁体代替励磁线圈,减少了励磁损耗。

此外,永磁电机无需从电网吸收无功功率来建立磁场,由于没有励磁装置,减少了很多电气设备,从而使机组具有可靠、高效、方便安装和维护等很多优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--
你好,你的这个问题问的比较广。

我大概给你阐述下,对于现在国内国外大型水平轴风力发电机组,有双馈机和永磁直驱发电机。

永磁直驱发电机顾名思义是在传动链中不含有增速齿轮箱。

ﻫ总所周知,一般发电机要并网必须满足相位、幅频、周期同步。

而我国电网频率为50hz这就表示发电机要发出50hz 的交流电。

学过电机的都知道。

转速、磁极对数、与频率是有关系的n=60f/p。

ﻫ所以当极对数恒定时,发电机的转速是一定的。

所以一般双馈风机的发电机额定转速为1800r/mi n。

而叶轮转速一般在十几转每分。

这就需要在叶轮与发电机之间加入增速箱。

而永磁直驱发电机是增加磁极对数从而使得电机的额定转速下降,这样就不需要增速齿轮箱,故名直驱。

而齿轮箱是风力发电机组最容易出故障的部件。

所以,永磁直驱的可靠性要高于双馈。

ﻫ对于永磁直驱发电机的磁极部分是用钕铁硼的永磁磁极,原料为稀土。

ﻫ风轮吸收风能转化为机械能通过主轴传递给发电机发电,发出的电通过全功率变流器之后过升压变压器上网。

ﻫ不知道有木有解释清楚。

还有什么不清楚可以继续追问,知无不言。

风力发电机也在逐步的永磁化。

采用永磁风力发电机,不仅可以提高发电机的效率,而且能在增大电机容量的同时,减少体积,并且因为发电机采用了永磁结构,省去了电刷和集电环等易耗机械部件,提高了系统的可靠性,这也是风电发电机的发展趋势之一。

ﻫ风力机的直驱化也是当前的一个热点趋势。

目前大多风电系统发电机与风轮并不是直接相连,而是通过变速齿轮相连,这种机械装置不仅降低了系统的效率,增加了系统的成本,而且容易出现故障,是风力发电急需解决的瓶颈问题。

直驱式风力发电机可以直接与风轮相连,增加了系统的稳定性,同时增大了电机的体积和设计制造以及控制的难度。

直驱型风力发电系统是采用风轮直接驱动多极低速永磁同步发电机发电,通过功率变换电路将电能转换后并入电网,相对于双馈型发电系统,直驱式发电机采用较多的极对数,使得在转速较低时,发电机定子电压输出频率仍然比较高,完全可以在电机的额定等级下工作,并且其定子输出电压通过变流器后再和电网相接,定子频率变化并不会影响电网频率。

在直驱风力发电系统中风机与发电机直接耦合,省去了传统风力发电系统中的国内难以自主生产且故障率较高的齿轮箱这一部件,减少了发电机的维护工作,并且降低了噪音。

另外其不需要电励磁装置,具有重量轻、效率高、可靠性好的优点。

直驱永磁发电机与双馈异步发电机技术相比,由于不需要转子励磁,没有增速齿轮箱,效率要比双馈发电机高出20%以上,年发电量要比同容量的双馈机型高;
增速齿轮箱故障较高,维护保养成本高,直驱永磁发电机不需要齿轮箱,易于维修
保养;直驱永磁发电机采用全功率的交-直-交变频技术,与电网隔离,具有低电压穿越能力,对电网友好;ﻫ直驱永磁发电机的缺点是稀土永磁材料成本高,导致整机成本相对较高,永磁材料在高温、震动和过电流情况下,有可能永久退磁,致使发电机整体报废,这是直驱永磁发电机的重大缺陷。

--。

相关文档
最新文档