遗传的细胞学基础

合集下载

遗传学-第2章_遗传的细胞学基础

遗传学-第2章_遗传的细胞学基础

内膜系统 细胞质
细胞壁成分 细胞增殖
真核生物的细胞由细胞膜、细胞质、细胞核三部分 组成 (一)细胞膜(质膜) 细胞膜是细胞外围的一层薄膜,主要由蛋白质和类 脂构成。 功能:能够有选择地通过某些物质。 在植物细胞的细胞膜外面,还有一层由纤维素和果 胶质组成的细胞壁(支持和保护作用)。
(二)细胞质(胞质) 细胞质是细胞膜内环绕着细胞核外围的原生质,呈胶体状 态。里面有许多蛋白质、脂肪等物质,细胞质中包含着各种 细胞器:线粒体、质体(植)、核糖体、内质网、高尔基体、 中心体(动)、溶酶体和液泡(植)。 其中,质体和液泡只有植物才具有,中心体只是动物细胞才具 有。 线粒体是动植物细胞中普遍存在的细胞器,是细胞内呼吸作用和 氧化作用的中心,是贮藏能量的场所。 质体包括叶绿体、有色体和白色体,其中最重要的是叶绿体, 是植物光合作用的场所。 核糖体是极其微小的细胞器,由RNA和蛋白质组成,是细胞中合 成蛋白质的主要场所。 内质网是运输蛋白质的合成原料和合成产物的通道。
线粒体
线粒体DNA
叶绿体
叶绿体DNA
电镜下内质网
电镜下粗面内质网
(三)细胞核(胞核)

除细菌和蓝藻(原核生物)之外,各种生物的 细胞内都有细胞核,细胞核由核膜、核液、核 仁和染色质(染色体)组成。

细胞核是遗传物质聚集的主要场所,对细胞发 育和性状遗传起着指导作用。
植物细胞和动物细胞的区别
上各个微小的区段。这些区段长度各不相同,各有不同的分子结
构,规定着不同性状的遗传。 提问:染色体、DNA、基因有何不同?
第三节 细胞分裂

细胞分裂是生物进行生长和繁殖的基础,亲代 的遗传物质就是通过细胞分裂向子代传递的。 19世纪末,Flemming W(1882)和Boveri T(1891)分别发现了有丝分裂和减数分裂,为遗 传的染色体学说提供了理论基础。

遗传的细胞学基础

遗传的细胞学基础

(1)Spermatogenesis and Oogenesis in an animal cell
2.4生活周期
有机体的生活周期是从合子形成到个体死亡 的过程中所发生的一系列事件的总和。真核生 物中,减数分裂产生单倍体细胞,在此过程中, 亲代的遗传物质通过染色体分离和交换产生新 的组合。单倍体细胞的融合产生几乎无穷的新 的遗传重组,因此,有机体的生活周期为遗传 物质的重组创造了机会。
2.2.4遗传的染色体学说
Sutton以及Boveri于1902—1903年间首先提出了 遗传的染色体学说(chromosome theory of inheritance) 推测:“父本和母本染色体的联会配对以及随后通过减数 分裂的分离构成了孟德尔遗传定律的物质基础。” 1903年,Sutton提出孟德尔的遗传因子是由染色体携带的, 因为: ①每一个细胞包含每一染色体的两份拷贝以及每一基因的两份 拷贝。 ②全套染色体,如同孟德尔的全套基因一样,在从亲代传递给 后代时并没有改变。 ③减数分裂时,同源染色体配对,然后分配到不同的配子中, 就如同一对等位基因分离到不同的配子中。
减数分裂的遗传学意义在于:
①只有一个细胞周期,却有两次连续的核分裂 。染色体及其DNA只复制一次(间期S期),细 胞分裂却有两次(减数分裂Ⅰ、Ⅱ)。 ②“减数”并不是随机的。所谓“减数”,实 质上是配对的同源染色体的分开。这是使有性 生殖的生物保持种族遗传物质(染色体数目) 恒定性的机制;同源染色体的分离决定了等位 基因的准确分离,为非同源染色体随机重组提 供了条件。
(2)染色体的结构
每个核小体包括一个组蛋白 八聚体(H2A、H2B、H3和H4各两 个分子)及缠绕在该核心表面的 200个碱基对左右的DNA。 DNA双螺旋在组蛋白八聚体分 子的表面盘绕1.75圈,其长度 约为146bp,负超螺旋,这种组 蛋白的核心颗粒大小约为5.5 nm×11 nm的扁球形。 相邻的两个核小体之间一般 由约55 bp的DNA连接,称为连 接区 DNA,在连接区部位结合 有一个组蛋白分子H1。

医学遗传学课件第二章遗传的细胞学基础

医学遗传学课件第二章遗传的细胞学基础
内10nm 组蛋白
外30nm
螺旋管是在组蛋白H1协助下,6个核小体 缠绕一圈形成的中空性管.
solenoid
3 .三级结构:超螺旋管 它是由螺旋管进一步盘曲而形成。将螺
旋管长度压缩了40倍。
4. 四级结构:染色单体, 超螺旋管进一步 折叠又被压缩了5倍。
(二) 染色体支架-放射环模型
前期I(双线期)
diplotene
前期I(终变期)
diakinesis
(2)中期I Metaphase I
equatorial plate
中期I
(3)后期I Anaphase I
1.同源染色体分离,四分体二分体 2.非同源染色体随机组合。
(4)末期 I Telophase I
metaphase I
(二) Y染色质
正常男性在间期细胞,用荧光染料 染色后,在核内出现一强荧光小体,直 径0.3um,称y染色质。
Y染色质
y染色体长臂远端部分为异染色质,被荧 光染料染色后发出荧光,女性中不存在, 细胞中y染色质数目与y染色体数目相同。
核性别:间期细胞核中染色质的性别差异。
第三节 人类性别决定的染 色体机制
anaphase I
telophase I interphase
2 . 第二次减数分裂 Meiosis II
1. 二分体单分体 2.非姐妹染色单体随机组合。
前期 II
中期 II
后期 II
末期 II
(一)、减数分裂 I
1.同源染色体配对 1.二价体四分体 1.联会复合体消失
联会
2.非姐妹染色单 2.同源染色体某
结构异染色质:在所有细胞 类型及各发育阶段中均处于 凝集状态。 兼性异染色质:是在某些类 型或阶段,原有的常染色质 凝聚并丧失转录活性后转变 而成的异染色质,可转化为 常染色质。

遗传的细胞学基础

遗传的细胞学基础

第一章遗传的细胞学基础一、细胞的结构和功能1、原核细胞:染色体→DNA/RNA细胞核→染色质:DNA2、真核细胞叶绿体:DNA细胞器线粒体:DNA核糖体:40% propro合成场所60% RNA二、染色质/染色体遗传物质主要存在于细胞核内染色质/染色体上染色质:在细胞尚未进行分裂的核中,可看到许多用碱性染料染色较深的纤细网状物染色体:细胞分裂时,核内出现的用碱性染料染色较深的结构,是遗传物质的主要载体。

异染色质(区):染色很深的区段常染色质(区):染色很浅的区段,转录活跃(核酸的紧缩程度及含量不同,异染色质的复制时间总是迟于常染色质)异固缩现象染色体的形态:染色体的形态表现形式(臂比):中间着丝点染色体(等臂):V近中着丝点染色体:L近端着丝点染色体:近似棒状端着丝点染色体:棒状颗粒状染色体:颗粒状同源染色体:形态、结构相同非同源染色体:形态、结构不同染色体组型分析(核型分析):根据染色体长度、着丝点位置、臂比、随体有无等特点,对各对同源染色体进行分类、编号,研究一个细胞的整套染色体1、染色体分子结构(1)原核生物染色体:与真核生物相比,原核生物的染色体要简单得多,其染色体通常只有一个核酸分子(DNA或RNA)(2)真核生物染色体2、染色质的基本结构DNA: 30%(重量)染色质RNA: 少量组蛋白:1H1、2H2A、2H2B、2H3和2H4 (重量相当于DNA)非组蛋白:少量染色质基本结构单位:核小体:2H2A、2H2B、2H3、2H4 --- 八聚体连接丝:串联两个核小体1H1:结合于连接丝与核小体的接合部位3、染色体的高级结构染色体→染色单体—1DNA+pro —染色质线是单线在细胞分裂过程中染色质线到底是怎样卷缩成为一定形态结构的染色体?现在认为至少存在三个层次的卷缩:核小体→螺旋管→超螺旋管→染色体卷缩机理不清楚4、染色体数目就一物种,其染色体数目是恒定的表1-3 (P15) :熟记主要生物的染色体数A染色体:正常染色体B染色体:额外染色体、超数染色体、副染色体三、细胞的分裂与细胞周期间期:G1, S, G21、细胞周期分裂期M:核分裂、胞质分裂第一类基因主要控制细胞周期中的关键蛋白质或酶合成细胞周期基因控制第二类基因直接控制细胞进入各个时期(控制点-失控-肿瘤)2、有丝分裂无丝分裂(直接)细胞分裂有丝分裂有丝分裂过程:前期、中期、后期、末期各时期的主要特点,特别是DNA量的变化染色体计数时期,举例说明有丝分裂遗传学意义:形成的二子细胞与母细胞的遗传组成、染色体数量与质量完全相同,保证物种的连续性和稳定性多核细胞:核分裂、质不分裂特殊有多倍染色体:染色体分裂,核不分裂(核内有丝分裂)丝分裂多线染色体:染色线连续复制,染色体不分裂3、细胞的减数分裂减数分裂(成熟分裂)主要特点:1)前期I 联会2)两次分裂:第一次减数,第二次等数减数分裂遗传学意义:1)精子(n) +卵细胞(n)= 2n,保证染色体数目恒定性、物种相对稳定性2)非姊妹染色单体间交换、后期I 同源染色体随机分离,创造变异、生物进化四、配子的形成和受精无性生殖(繁殖),1、生殖方式有性生殖(繁殖)2、雌雄配子的形成重点说明高等动植物雌雄配子形成性母细胞与配子数目的关系,雌雄配子体及性细胞3、植物授粉与受精自花授粉:同一花朵或同株异花授粉方式异花授粉:不同植株间受精:雄配子+雌配子→合子精核(n)+卵细胞(n) →胚(2n) 双受精精核(n)+2极核(n) →胚乳(3n)4、直感现象花粉直感(胚乳直感):3n胚乳果实直感:种皮、果皮(由母体发育而来)5、无融合生殖营养的无融合生殖单倍配子体:孤雌生殖,孤雄生殖无融合结子二倍配子体不定胚单性结实:子房不经受精发育成果实(无籽果实)作用:创造单倍体、固定杂种优势五、生活周期生活周期:生物个体发育的全过程世代交替:有性世代/无性世代,配子体世代/孢子体世代低等植物(红色面包霉),注意单倍体世代与二倍体世代高等植物(种子植物)高等动物(果蝇)。

遗传的细胞学基础

遗传的细胞学基础

二、有丝分裂过程 有丝分裂包含两个紧密相连的过程: 有丝分裂包含两个紧密相连的过程:先是细胞 核分裂,即核分裂为两个;后是细胞质分裂, 核分裂,即核分裂为两个;后是细胞质分裂,即细 胞分裂为二,各含有一个核。 胞分裂为二,各含有一个核。 细胞分裂是一个连续的过程,但为了便于描述 细胞分裂是一个连续的过程, 起见,一般把核分裂的变化特征分为四个时期, 起见,一般把核分裂的变化特征分为四个时期,前 核分裂的变化特征分为四个时期 期、中期、后期和未期。 中期、后期和未期。 现把这4个时期描述如下: 现把这 个时期描述如下: 个时期描述如下
细胞周期: 细胞周期: G1期:第一个间隙,主要进行 期 第一个间隙, 细胞体积的增长,并为DNA 合 细胞体积的增长,并为 成作准备。 成作准备。不分裂细胞则停留 也称为G0 期。 在G1 期, 也称为 S 期:DNA 合成时期,染色体 合成时期, 数目在此期加倍。 数目在此期加倍。 G2期:DNA 合成后至细胞 期 分裂开始之前的第二个间隙, 分裂开始之前的第二个间隙, 为细胞分裂作准备。 为细胞分裂作准备。 M期:细胞分裂期。 期 细胞分裂期。
染色质
染色体:是细胞分裂时出现的, 染色体:是细胞分裂时出现的,易被碱性染料染色的丝状 或棒状小体,由核酸和蛋白质组成, 或棒状小体,由核酸和蛋白质组成,染色体是生物遗传物 质的主要载体。 质的主要载体。图:
复习染色体的形态特征和数目 复习染色体的形态特征和数目 1.形态 形态: 形态 (1).组成 着丝粒、长臂和短臂; 组成:着丝粒 长臂和短臂; 组成 着丝粒、 (2).着丝点对于细胞分裂时染色体向两极牵引具有决定性作用; 着丝点对于细胞分裂时染色体向两极牵引具有决定性作用; 着丝点对于细胞分裂时染色体向两极牵引具有决定性作用 次缢痕、 是识别特定染色体的重要标志; (3).次缢痕、随体是识别特定染色体的重要标志; 次缢痕 随体是识别特定染色体的重要标志 (4).某些次缢痕具有组成核仁的特殊功能。 某些次缢痕具有组成核仁的特殊功能。 某些次缢痕具有组成核仁的特殊功能 2.大小 大小: 大小 (1).各物种差异很大,染色体大小主要指长度, 各物种差异很大,染色体大小主要指长度, 各物种差异很大 同一物种染色体宽度大致相同: 同一物种染色体宽度大致相同: 植物: 长约0.20-50mm, 植物 长约 m 物要大些: 物要大些: 宽约0.20-2.00mm。 m。 宽约 (2).高等植物中单子叶植物的染色体一般比双子叶植 高等植物中单子叶植物的染色体一般比双子叶植 高等植物中单子叶植物的染色体一般

第五讲 遗传的细胞学基础

第五讲 遗传的细胞学基础

都是染色体复制一次,细胞连续分裂两 次,子细胞染色体数减半
(三)受精作用
1、定义
指卵细胞和精子相互识别、 融合成为受精卵的过程。
2、过程
精子(N)和卵子(N)相遇 顶体反应 释放顶体酶,溶解卵丘
细胞之间的物质
精子穿越透明带,接触卵黄膜
透明带反应:阻止后来精子进入透明带
精子为卵黄膜的微绒毛抱合,精子外膜与卵黄膜融合
原始生殖细胞
初级性母细胞
初级性母细胞
减数第一次分裂
次级性母细胞 减数第二次分裂
成熟生 殖细胞
①减数第一次分裂
前期: 同源染色体联会形成四分体 同源染色体的非姐妹染色单体之间可能发生交 叉、互换
初级精母细胞
染色体交叉互换的照片和示意图
中期: 四分体整齐排列在细 胞中央的赤道板上
后期: 同源染色体彼此分离,(着丝点不分裂)非 同源染色体自由组合,细胞内的染色体平分 为种类和数目相同的两组,分别向细胞的两 极移动。
精子进入卵子内 卵黄膜封闭作用:阻止其他精子进入 精子尾部脱落,形成精原核; 次级卵母细胞被激活,完成MⅡ,形成雌原核
雌、雄原核充分发育,彼此接触,合并成合子(2N)
3、实质 ——来自精子(父方)和卵子(母方)的遗传 物质汇合到一起。 减数分裂和受精作用维持了每种生物前后代
体细胞中染色体数目的恒定性。
(四)有性生殖使后代变异性更大 原因: 在减数分裂中,非同源染色体间的自由组合 同源染色体的非姐妹染色单体间的 交叉互换
——导致基因重组,使个体产生的配子多种多样
在受精作用中,多种多样的卵细胞与多种多样的精子
之间随机结合
意义:提高了生物的适应性, 加快了生物进化的速度。
第一次分裂后期,非同源染色体自由组合: 引起非同源染色体上 非等位基因自由组合 2 A B

遗传的细胞学基础学

遗传的细胞学基础学
第二章 遗传的细胞学基础
#O1
第一节 细胞的结构和功能
1
根据细胞的基本结构和进化程度,可把细胞分为两大类:原核细胞和真核细胞。
2
细胞是结构和生命活动的基本单位。
3
病毒、噬菌体非细胞生物。其他均由细胞构成。
4
原核细胞的结构 原核细胞(Prokaryatic cell): 如细菌、兰藻、绿藻等这类细胞属原核细胞。 由原核细胞组成的生物为原核生物。
染色质或染色体:在细胞核内,能被碱性染料染色的纤细的网状物质,为核糖核蛋白复合体。
染色质和染色体是同一种物质在不同时期的不同存在形式。
植物细胞与动物细胞的差异? 植物细胞有细胞壁、液泡、叶绿体,动物细胞没有,但有中心体。
第二节(真核生物)染色体的形态和数目 一、染色体的形态特征 ㈠染色体的形态结构:在细胞分裂中期,染色体变得最短最粗,用普通的光学显微镜就可以看到染色体的形态特征。根据细胞学观察, 每个染色体都有一个着丝粒和被 着丝粒分开的两个臂,有些 染色体末端有随体 和随体相连的为次缢痕。
08
后期:着丝点一分为二,染色单体变成2条染色体
09
末期:染色体移向两级,核膜核仁出现,细胞质分裂。
10
染色体数目的变化:染色体数不变
有丝分裂的特征和遗传学的意义
1
特征:染色体、细胞同步分裂,亲-子细胞之间染色体数目一致。
2
意义:2点
3
第四节 减数分裂
#O1
1.概念:
2. 减数分裂的特点 配对、联会、交叉、交换 包括两次分裂: 第一次分裂染色体减数,这次分裂的前期较复杂,又可细分为五期(细线期→偶线期→粗线期→双线期→终变期) 第二次分裂染色体等数。
01
02

生物技术091遗传学复习重点

生物技术091遗传学复习重点

第一章遗传的细胞学基础1.胚乳直感:植物经过了双受精,胚乳细胞是3n,其中2n来自极核,n来自精核,如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感。

2.果实直感:植物的种皮或果皮组织在发育过程中由于花粉影响而表现父本的某些性状,称为果实直感。

3.植物的双受精:植物被子特有的一种受精现象。

当花粉传送到雌雄柱头上,长出花粉管,伸入胚囊,一旦接触助细胞即破裂,助细胞也同时破坏。

两个精核与花粉管的内含物一同进入胚囊,这时1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。

同时另1精核(n)与两个极核(n+n)受精结合为胚乳核(3 n),将来发育成胚乳。

这一过程就称为双受精。

4.植物的10个花粉母细胞可以形成:多少花粉粒?多少精核?多少管核?又10个卵母细胞可以形成:多少胚囊?多少卵细胞?多少极核?多少助细胞?多少反足细胞?答:植物的10个花粉母细胞可以形成:花粉粒:10×4=40个;精核:40×2=80个;管核:40×1=40个。

10个卵母细胞可以形成:胚囊:10×1=10个;卵细胞:10×1=10个;极核:10×2=20个;助细胞:10×2=20个;反足细胞:10×3=30个。

5.玉米体细胞里有10对染色体,写出叶、根、胚乳、胚囊母细胞、胚、卵细胞、反足细胞、花药壁、花粉管核(营养核)各组织的细胞中染色体数目。

答:⑴. 叶:2n=20(10对)⑵. 根:2n=20(10对)⑶. 胚乳:3n=30⑷. 胚囊母细胞:2n=20(10对)⑸. 胚:2n=20(10对)⑹. 卵细胞:n=10⑺. 反足细胞n=10⑻. 花药壁:2n=20(10对)⑼. 花粉管核(营养核):n=106.有丝分裂和减数分裂意义在遗传学上各有什么意义在遗传学上?答:有丝分裂在遗传学上的意义:多细胞生物的生长主要是通过细胞数目的增加和细胞体积的增大而实现的,所以通常把有丝分裂称为体细胞分裂,这一分裂方式在遗传学上具有重要意义。

遗传学第二章遗传的细胞学基础ppt课件

遗传学第二章遗传的细胞学基础ppt课件

质的RNA聚集而成,还可能存在
类脂和少量的DNA。

○功能:主要的遗传物质
所在地,所以承担主要的遗传功
能。
第二章 遗传的细胞学基础
细胞、动物与植物之比较
细胞壁 细胞膜 鞭毛 内质网 微丝 中心体 高尔基体 细胞核 线粒体 叶绿体 染色体 核糖体 溶酶体 过氧化物酶体 液泡
细菌 有(蛋白聚糖)
有 有的有
(4) 某些次缢痕具有组 成核仁的特殊功能。
第二章 遗传的细胞学基础
甘肃农业大学动物科技学院
• 蚕豆:有丝分裂中期染色体(排列于赤道面上)。箭头示 两条大染色体。
第二章 遗传的细胞学基础
二、染色体的组成及结构
(一)染色质的化学组成
➢染色质=蛋白质+DNA ➢组蛋白: H1 2H2A 2H2B 2H3 2H4
第二章 遗传的细胞学基础
5.类别 各生物的染色体不仅形态结构相对稳定,而且其数目
成对。 * 同源染色体:形态和结构相同的一对染色体; * 异源染色体:这一对染色体与另一对形态结构不同的
染色体,互称为异源染色体。
第二章 遗传的细胞学基础
6.染色体组型分析(核型分析) 根据染色体长度、着丝点位置、长短臂比、随体有无

细胞核拉长,缢裂成两部分,接着胞质分裂→2个子细胞,看不到
纺锺丝。细菌等原核生物、高等植物一些专化组织或病变组织中发生。

如:小麦茎节基部和蕃茄叶腋发生新枝处,以及一些肿瘤和愈伤
细胞发生无丝分裂;近年也观察到植物的正常组织也常发生无丝分裂,植物
薄壁组织细胞、木质部细胞、绒毡层细胞和胚乳细胞等,动物胚的胎膜、填
等特点进行分类和编号。这种对生物细胞核内全部染色体 的形态特征所进行的分析,称为染色体组型分析。

医学遗传学 第二章 遗传的细胞学基础 知识点

医学遗传学 第二章 遗传的细胞学基础 知识点

第二章遗传的细胞学基础染色质(chromatin):间期细胞核内能被碱性染料染色的物质。

由DNA,组蛋白,非组蛋白及少量rna组成,是间期细胞遗传物质存在的形式。

染色质有利于遗传信息的复制和表达。

染色体(chromosome):在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是DNA螺旋化的的最高形式。

染色体有利于遗传物质的平均分配。

染色质的类型:常染色质:细胞间期核内纤维折叠盘曲程度小,分散度大,染色较浅且具有转录活性。

异染色质:细胞间期核内纤维折叠盘曲程度紧密,分散度小,呈凝集状态,染色较深且不具有转录活性。

异染色质包括:结构异染色质:指各类细胞的全部发育过程中都处于凝缩状态。

大多数位于着丝粒区、端粒区、次缢痕及y染色体长臂远端三分之二区段,一般不具有转录活性。

兼性异染色质:只在某些特定细胞类型或一定发育阶段,细胞原来的常染色质凝缩并丧失基因转录活性变为异染色质。

性染色质:是x/y染色体某一区段的DNA形成的特殊染色结构。

一定是异染色质。

x染色质:也叫x小体或Barr小体。

Lyon假说:实质:失活的x染色体。

特点:随机,永久,完全失活。

x染色质的数目等于x染色体的数目-1。

x染色体失活的意义--剂量补偿作用。

女性x连锁基因杂合子表达异常。

女性嵌合体。

后世补充:失活的X染色体并非整条,结构异常的X染色体优先失活。

y染色质:由y染色体长臂远端三分之二区段在男性间期细胞核中所形成的异染色质。

y染色体的数目等于y染色质的数目。

人类染色体的形态结构:着丝粒(主缢痕),长臂q,短臂p,端粒,副缢痕,随体。

人类染色体的类型:中央着丝粒,亚中央着丝粒,近端着丝粒。

核型:一个体细胞中的全部染色体按其大小,形态特征顺序排列所构成的图像。

核型分析:将待测细胞的核型进行染色体数目,形态特征的分析。

确定其是否与正常核型完全一致。

核型的记录格式(非显带):染色体总数+(,)+性染色体构成。

例如46,xx。

丹佛体制分组:A-G(形态依次减小)。

遗传的细胞学基础

遗传的细胞学基础
第二章 遗传的细胞学基础
问题
(1) 遗传物质是如何从亲代→子代 传递的?
(2)双亲的基因如何实现重组? (3)基因通过什么媒介实现性状的表达?
第一节 细胞的结构和功能
一、原核细胞
1、细胞组成: 细胞壁:蛋白聚糖等; 细胞膜:磷脂、蛋白质等; 细胞质:核糖体等; 核区(拟核):DNA或RNA;
2、原核生物: 各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物 (prokaryote)。
二、真核细胞
真核细胞(eukaryotic cell):有真正的核(由核 膜包裹着遗传物质)及各种由膜包裹的细胞器
真核生物:具有真核细胞的生物,所有高等动植 物;单细胞藻类、真菌和原生动物等。
真核细胞的组成
细胞壁
生物→细胞
细胞膜
细胞质
原生质
内质网 线粒体 叶绿体 液泡 溶酶体 高尔基体 核糖体 中心体
5.核型分析:
核型分析:对生物细胞核内全部染色体的形态特 征所进行的分析
根据染色体长度、着丝点位置、长短臂比、 随体有无等特点进行编号。
10µ
水稻和玉米在细胞减数分裂的粗线期的染色体长度
染色体编号 1 2 3 4 5 6 7 8 9 10 11 12
水稻
全长(微米) 长臂/短臂
79.0
1.72
核糖体(ribosome)
核糖体(ribosome)
细胞核
细胞核(nuclear)由核膜(nuclear membrane)、 核液(nuclear sap),核仁(nucleolus)和染色质 (chromatin)四部分组成。
三、各类型细胞之间的比较
动物细胞结构:
植物细胞结构:
原核细胞与真核细胞的区别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 和八核胚囊。成熟的八核胚囊即雌配子体,其中3个为反足细胞、2个 极核、2个助细胞和1个卵细胞。
雌配子体: 即成熟胚囊
1个卵细胞(n) 2个极核(n) 2个助细胞(n) 3个反足细胞(n)
雄配子体: 即,成熟的花粉粒
2个精细胞(n) 1个营养核(n)
11/152
高等植物 雌雄配子 形成
二、植物的授粉与受精
即雄配子体,包括2个精核和1个营养核
• 2. 雌配子体的形成
• 在雌蕊子房里着生胚珠,在胚珠的珠心里分化出胚囊母细胞(或大 孢子母细胞)。胚囊母细胞经过减数分裂形成呈直线排列的4分孢子, 其中近珠孔端的3个大孢子自然解体,而远离珠孔端的1个大孢子继续 发育,经过连续的3次有丝分裂,依此形成二核胚囊、四核胚囊
图2-12高等动物雌雄配子形成的过程
(二)、植物性细胞的形成
• 1. 雄配子体的形成

在幼小的雄蕊花药内,首先分化出孢原细胞,经有丝分裂后分化为
花粉母细胞(或小孢子母细胞)。花粉母细胞经过减数分裂形成4个小孢
子。每一个小孢子发生一次有丝分裂后形成二核花粉粒,包括营养核
和生殖核。随后生殖核又经过一次有丝分裂后形成成熟的三核花粉粒,
• 生物的生殖方式可分为无性生殖
(asexual reproduction)和有性生殖 (sexual reproduction)和无融合生殖。 • 无性生殖——通过亲本营养体的分割 而产生后代,又称为营养体生殖。如利 用根、茎、芽、枝条等进行的繁殖。 • 有性生殖——通过亲本产生的雌雄配 子结合成合子,再进一步分裂、分化、 发育而成为新个体的生殖方式。
• (二) 果实直感
• 种皮或者果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则称为果实直感。例如,棉花纤维是由 种皮细胞延伸的。在一些杂交试验中,当代棉籽的发育常 因父本花粉的影响,而使纤维长度、纤维着生密度表现出 一定的果实直感现象。
三、直感现象
胚乳直感(xenia):3n胚乳直接表现父 本的某些性状
• 1. 精子的发生

高等动物雄性生殖腺中有精原细胞,染色体数目为2n,生长分化
为初级精母细胞(2n),经减数分裂Ⅰ产生两个次级精母细胞(n), 再经
减数分裂Ⅱ产生四个精细胞(n),经一系列变化形成精子。
• 2.卵子的发生
• 雌性生殖腺中有卵原细胞(2n),它生长分化为初级卵母细胞(2n), 经减数分裂Ⅰ产生大小悬殊的两个细胞,大的是次级卵母细胞(n), 小的是第一极体(n),次级卵母细胞再经减数分裂Ⅱ又产生大小不同 的两个细胞,大的为卵细胞(n),小的为第二极体(n),一个初级卵母 细胞经减数分裂只形成一个有功能的卵细胞
• 卵式生殖:是大小不同,在形态,结构和运动 能力等方面也出现了明显的差异的两性配子 结合成为合子,再发育成新个体。
• 雌配子是大的,呈卵形,无鞭毛的,称为卵 子。
• 雄配子较小,细长,有的具有鞭毛,称为精 子。
• 精子和卵子融合称为受精,受精后的合子称 为受精卵,再由受精卵发育成个体。
• (一)动物性细胞(配子)的发生

植物双受精:
成熟的花粉粒落在雌蕊柱头上,花粉粒萌发出花粉管,穿 过花柱、子房和 珠孔,伸入胚囊,一个精核(n)与卵细胞(n) 受精结合为合子(2n),将来发育成胚,另一精核(n)与两个极 核(n)受精结合为胚乳核(3n),将来发育成胚乳的过程。
通过双受精后发育成种子,种子的主要组成部分 是胚,胚乳和种皮。胚和胚乳都是通过受精而形成的, 但种皮或果皮,它们都是母本花朵的营养组织,与双 受精过程并没有联系。一个正常种子胚,胚乳和种皮 的染色体数目分别为2n,3n和2n 。
• (一)授粉 pollination:成熟的花粉粒 落到柱头上并开始萌发的过程。
• 自花授粉 • 异花授粉(风媒、虫媒) • 常异花授粉
• 受精 fertilization:雌雄配子融合成 为合子的过程。
二、受精
受精:雄配子 (精子) 与雌配子 (卵细胞) 融合为一个合子。 授植粉物过在受程精就前是有指一成个授熟粉的的花过粉程粒落在雌蕊柱头上。
玉米 白粒♀×♂黄粒 →当代种子黄色
果实直感(metaxenia):2n种皮或果皮 由于花粉影响而表现父本的某些性状
• 根据雌雄配子间的差异程度,可分为:同配生 殖,异配生殖和卵式生殖三类。
• 同配生殖:是指结合的配子在形态,结构, 大小,运动能力等方面相同,配子间经表面 识别蛋白进行识别和交配成为合子,再发育 成新个体。
• 异配生殖:是形态结构相同,但大小不同的 配子间,或形态和大小无差异,但交配型上 有差异的配子间相互结合成为合子,再发育 成新个体。
母体组织的 一部分(2n)
• 胚(2n) • 胚乳(3n)
受精产物
• (三)、直感现象
• (一) 胚乳直感(花粉直感)
• 如果在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感。一些单子叶植物 的种子会出现这种现象,如用玉米黄粒的植株花粉给白粒 的植株花丝授粉,当代所结子粒即表现父本的黄粒性状。
16/152
被子植物的双受精
• 1898年俄国科学家纳瓦兴发现了被子植物 的双受精现象 double fertilization。
• 一个精核与卵细胞融合成合子(2n) • 一个精核与2个极核融合形胚乳、种皮、果皮
• 果皮:由子房壁发育而来 • 种皮:来自胚珠的珠被
授粉方式可分为两大类: 1、自花授粉--同一朵花内或同株上花朵间的授粉。 2、异花授粉--不同株的花朵间授粉。
14/152
• (二) 受精
• 授粉后,花粉粒在柱头上萌发,长出花粉管,穿过花柱、 子房、珠孔进入胚囊,花粉管延伸时,营养核走在最前面, 花粉管进入胚囊一旦接触助细胞即破裂,助细胞同时被破 坏,两个极核及内含物同时进入胚囊。这时,一个精核与 卵细胞结合形成合子-胚(2n);同时另一个精核与两个极 核结合形成胚乳核-胚乳(3n),这一过程称为双受精。通 过双受精,最后发育成种子,种子胚是二倍体(2n),胚乳 是三倍体(3n),种子外围种皮、果皮为二倍体(2n),是由 珠被和子房壁形成,因而果皮属于母体组织,与双受精无 关。
相关文档
最新文档