自动控制原理课后习题答案第二章
自动控制原理_王万良(课后答案2
第2章习题2.1 列写如图题2.1所示电路中以电源电压U 作为输入,电容1C ,2C 上的电压1c U 和2c U 作为输出的状态空间表达式。
图题2.1答案:X L R LL M C R M C M C R M C C X ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−+−=211321321100)(& X y ⎥⎦⎤⎢⎣⎡=010001其中)(3221311C C C C C C R M ++=2.2 如图题2.2所示为RLC 网络,有电压源s e 及电流源s i 两个输入量。
设选取状态变量23121,,C C L u x u x i x ===;输出量为y 。
建立该网络动态方程,并写出其向量-矩阵形式(提示:先列写节点a ,b 的电流方程及回路电势平衡方程)。
图题2.2*答案:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s e i C L L R C C L L L RR 0001100100111x x x 12121321&&&U 3+-se[]111−−−=R y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +[]⎥⎦⎤⎢⎣⎡s s e i R 11 2.3 列写图题2.3所示RLC 网络的微分方程。
其中,r u 为输入变量,c u 为输出变量图题2.3答案:r c cc u u dt du RC dtu d LC =++22 2.4 列写图题2.4所示RLC 网络的微分方程,其中r u 为输入变量,c u 为输出变量。
图题2.4答案:r c cc uu dt du R L dtu d LC =++22 2.5 图题2.5所示为一弹簧—质量—阻尼器系统,列写外力)(t F 与质量块位移)(t y 之间)(t图题2.5答案:)()()()(22t f t ky dt t dy f dtt y d m =++ 2.6 列写图题2.6所示电路的微分方程,并确定系统的传递函数,其中r u 为输入变量,cu 为输出变量。
自动控制原理课后习题答案第二章
第二章2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。
分析首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。
对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。
证明:(a)根据复阻抗概念可得:即取A、B两点进行受力分析,可得:整理可得:经比较可以看出,电网络(a)和机械系统(b)两者参数的相似关系为2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1)(2)2-7 由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
图2-6 控制系统模拟电路解:由图可得联立上式消去中间变量U1和U2,可得:2-8 某位置随动系统原理方块图如图2-7所示。
已知电位器最大工作角度,功率放大级放大系数为K3,要求:(1) 分别求出电位器传递系数K0、第一级和第二级放大器的比例系数K1和K2;(2) 画出系统结构图;(3) 简化结构图,求系统传递函数。
图2-7 位置随动系统原理图分析:利用机械原理和放大器原理求解放大系数,然后求解电动机的传递函数,从而画出系统结构图,求出系统的传递函数。
解:(1)(2)假设电动机时间常数为Tm,忽略电枢电感的影响,可得直流电动机的传递函数为式中Km为电动机的传递系数,单位为。
又设测速发电机的斜率为,则其传递函数为由此可画出系统的结构图如下:--(3)简化后可得系统的传递函数为2-9 若某系统在阶跃输入r(t)=1(t)时,零初始条件下的输出响应,试求系统的传递函数和脉冲响应。
分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示,进而求解出系统的传递函数,然后对传递函数进行反变换求出系统的脉冲响应函数。
自动控制原理第二章习题解答
Z1 + Z2
R1 T1s +
1
+
1 C2
s
(T2
s
+
1)
R1C2 s + (T1s + 1)(T2 s + 1)
(b)以 K1 和 f1 之间取辅助点 A,并设 A 点位移为 x ,方向朝下;根据力的平衡原则,可列出如下原始方程:
K 2 (xi − x0 ) + f 2 (x&i − x&0 ) = f1 (x&0 − x&) (1)
+
C1C2
R
d 2u0 dt 2
整理得:
C1C2
R
d 2u0 dt 2
+
(C2
+
2C1 )
du0 dt
+ u0 R
=
C1C2 R
d 2ui dt 2
+ ui R
+
2C1
dui dt
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1) 2x&(t) + x(t) = t;
所以:
f1 f2 s2 + ( f1 + f2 )s +1
X 0 (s) =
f1 f2s2 + ( f1K2 + K1 f2 )s + K1K2
= K1K2
K 1
K2
X i (s) f1 f2s2 + ( f1K2 + K1 f1 + K1 f2 )s + K1K2
f1 f2 s2 + ( f1 + f2 )s +1+ f1
自动控制原理第二章习题答案详解
习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。
),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。
习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。
图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。
自动控制原理课后习题答案第二章
解:由图可得
联立上式消去中间变量U1与U2,可得:
2-8某位置随动系统原理方块图如图2-7所示。已知电位器最大工作角度,功率放大级放大系数为K3,要求:
(1) 分别求出电位器传递系数K0、第一级与第二级放大器得比例系数K1与K2;
(2) 画出系统结构图;
(3) 简化结构图,求系统传递函数。
证明:(a)根据复阻抗概念可得:
即 取A、B两点进行受力分析,可得:
整理可得:
经比较可以瞧出,电网络(a)与机械系统(b)两者参数得相似关系为
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式得模态。
(1)
(2)
2-7由运算放大器组成得控制系统模拟电路如图2-6所示,试求闭环传递函数Uc(s)/Ur(s)。
2-10试简化图2-9中得系统结构图,并求传递函数C(s)/R(s )与C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0与N(s)=0,画出各自得结构图,然后对系统结构图进行等效ቤተ መጻሕፍቲ ባይዱ换,将其化成最简单得形式,从而求解系统得传递函数。
解:(a)令N(s)=0,简化结构图如图所示:
可求出:
令R(s)=0,简化结构图如图所示:
所以:
(b)令N(s)=0,简化结构图如下图所示:
所以:
令R(s)=0,简化结构图如下图所示:
2-12 试用梅逊增益公式求图2-8中各系统信号流图得传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a)存在三个回路:
存在两条前向通路:
所以:
(3)简化后可得系统得传递函数为
自控原理习题解答(第二章)
[答2 ( 31 ) 1 ) ] (t) x(t) (t) Tx T sx(s) x (s) 1 1 1 T x (s) 1 T s 1 s T 1 t 1 T 1 1 T x ( t ) L x (s) L e 1 s T T
答2 4(c)
e y (s) e x (s) C2 1 1 I(s) R 1 R2 C1s C 2s R 2 C 1 C 2 s 2 C 1s 1 R 2 C1 C 2 s C1 2 (R1 R 2 )C1C 2 s C 2 s C1s (R1 R 2 )C1C 2 s C 2 C1 R 2 C1 C 2 s C1 (R1 R 2 )C1C 2 s C 2 C1 (R1 R 2 )C1C 2 s C 2 C1 R 2 C1 C 2 C1 s K d Td s C 2 C1 C 2 C1 K (R1 R 2 )C1C 2 s (R1 R 2 )C1C 2 s Td s 1 T s 1 1 1 C 2 C1 C 2 C1 为实际微分环节 惯性环节 1 I(s) (R 2 ) C 2s
X(s) G1 G1 H3 H2 H1
-
Y(s) G2
G3
G4 X(s)
G1
-
-
G2 H3
-
Y(s) G3 G4
-
H2
G4 H3
1 2e 2t e t cos 3t 3s2 2s 8 8 A s 1 2 s(s 2)(s 2s 4) s 0 2 4 3s2 2s 8 B (s 2) 2 2 s(s 2)(s 2s 4) s 2
自动控制原理第二章课后习题答案(免费)
⾃动控制原理第⼆章课后习题答案(免费)⾃动控制原理第⼆章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换(1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。
解:211(1)()(1)()0(0.8)(0.1)lim lim lim t z z z z f t z E z z z →∞→→-=-==--2-3* 已知()(())E z L e t =,试证明下列关系成⽴:(1)[()][];n z L a e t E a=证明:()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。
证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。
第2章-自动控制原理习题答案
习题2-1 试证明图2-1(a)的电网络与(b)的机械系统有相同的数学模型。
1C 1f 1(a)电网络(b)机械系统图2-1解:对于电网络系统有:电路中的总电流:dtu u d C R u u i o i o i )(11-+-=对o u :)()()(1211121222o i o i o i o i to u u C C R t u u C dt u u d C R R u u R idt C i R u -+-+-+-=+=⎰综上得:dtdu C R u R tC C C R R dt du C R u R t C C C R R i i o o 1211211212112112)()1(+++=++++对机械系统:并联部分受力:dtx x d f x x k F )()(211211-+-= 对串联部分的位移:)()()()(21212121212121212x x f f t x x f k dt x x d k f x x k k x -+-+-+-=整理得:dtdx k f x f f t f k k k dt dx k f x f f t f k k k 12122121212211212121)()1(+++=++++所以,两系统具有相同的数学模型2-5求图2-2中RC 电路和运算放大器的传递函数c ()/()i U s U s 。
1R1R(a) RC 电路 (b) RC 电路1R(c) RC 电路 (d) 运算放大器图2-2解:21212)()()R sCR R R R s u s u a r c ++=οο1)()()()()()()3122112322121121211231212112++++++++=S R C R C R C S R R C C R R C C SR C R C S R R C C R R C C s u s u b rc οο2121212)()()()R R S CR CR R R CS R s u s u c r c +++=οο21212112)()()()S LCR R R S CR R LR R LS s u s u d r c ++++=οο2-6求图2-3所示系统的传递函数C(s)/D(s)和E(s)/D(s)。
自动控制原理课后习题答案
R1R2C1C2d2du22(tt)(R1C1R2C2R1C2)dd2u(tt)u2(t) v(t)
R1C1ddV (tt)V(t)
输入
(b) 以电压u3(t)为输出量,列写微分方程为:
u1(t)
C1
R1 R2
C2
R1R2C 1C2d2d u32(tt)(R1C 1R2C2)dd3u (t)t(R1C21)u3(t)
y=x3+x4=G2x2+G4x2=(G2+G4)G1x1
y=(G2+G4)G1x1
G(s)=Y(s)/U(s)=(G2+G4)G1/(1+G3G2G1)
作业:2.59题 把图2.75改画为信号流图,并用Mason公式求u到y传递函数
方框图
u(S)
__
G1(s)
G5(s)
—
y(S)
G2(s)
—
G3(s)
essfls i0m se(s)1K K21K2
(b)当r(t)=1(t),f(t)=1(t)时的ess。 解:求输入误差传递函数,直接代数计算法:
根据电路定律写出单体微分方程式(2.2.2)和 (2.2.3)。把特征受控量uc(t)选作输出量,依 据式(2.2.2)和(2.2.3),消除中间量i(t) , 则可得到输入输出微分方程(2.2.4)。
3、利用Laplace变换求出传递函数
R
L
+
+
u(t) i(t)
输入
_
+ uc(t) _
y
输出
_
U(t)Ld dtiR i uC
自动控制原理课后习题答案
第二章作业 概念题:传递函数定义:
单输入输出线性定常系统的传递函数,定义为零初始条件下,系统输出 量的拉氏变换像函数与输入量的拉氏变换像函数之比。
黄家英自动控制原理第二版第二章习题答案
(2)欲使图B2.18(a)系统的输出Y(s)不受扰动D(s)的影响
G 3G 4 G1G 2G 3G 4 H1 G 3G 5 H 2 Y(s) D(s) 1 G 1G 2 H1 G 2G 3 H 2 G1G 5 H 3 G1G 2G 3G 4 H 3 Y(s) D(s) G 3G 4 G1G 2G 3G 4 H1 G 3G 5 H 2 1 G1G 2 H1 G 2G 3 H 2 G1G 5 H 3 G1G 2G 3G 4 H 3
2
6 s
代入初值整理 2s 2 12s 6 Y(s) 3 s 5s 2 6s
部分分式展开 4 5 1 Y(s) s3 s2 s
y(t ) 4e3t 5e2t 1 , t 0
B2.9 已知控制系统的微分方程(或微分方程组)为
式中r(t)为输入量,y(t)为输出量,z1(t)、z2(t)和z3(t) 为中间变量,τ 、β 、K1和K2均为常数。 试求:(a)各系统的传递函数Y(s)/R(s);(b)各系统含 有哪些典型环节?
R
E - G1
G1 -
G5
D
Y
G2
H2 H3
G3
G4
H1 G2 R E - G1 G1 G2 G5 D(s) G3 G4 Y
H2
H3
G5 R E - G1
-
1 1 G 1G 2 H 1
G2 G3
H2 H3
G4
Y
G5 G 2G 3
R
E - G1
-
1 1 G 1G 2 H 1
G2 G3 H2 H3
闭环传递函数为 0.5 s 3 + 0.5 s 2 + s + 1 s 3 + 3.5 s 2 - 0.5 s + 1 s 3 + s 2 + 2s + 2 3 2s + 7 s 2 - s + 2
自动控制原理参考答案-第2章
x 1 (t) x 2 (t)
m
x 1 (t)
f
F(t)
f1
k1 k2
M
k
m
x 2 (t)
题 2-4 图
弹簧-质量-阻尼器平移运动模型
(a)
⎧ d 2 x1 (t ) d [ x1 (t ) − x2 (t )] +k + f [ x1 (t ) − x2 (t )] = F (t ) M ⎪ 2 ⎪ dt dt ⎨ 2 2 2 ⎪k d [ x1 (t ) − x2 (t )] + f [ x (t ) − x (t )] = m d x2 (t ) 或F (t ) − M d x1 (t ) = m d x2 (t ) 1 2 ⎪ dt dt 2 dt 2 dt 2 ⎩ 2 ⎧ ⎪ Ms X 1 ( s) + ks[ X 1 ( s ) − X 2 ( s )] + f [ X 1 ( s ) − X 2 ( s )] = F ( s ) ⇒⎨ 2 2 2 ⎪ ⎩ks[ X 1 ( s ) − X 2 ( s )] + f [ X 1 ( s ) − X 2 ( s )] = ms X 2 ( s )或F ( s ) − Ms X 1 ( s ) = ms X 2 X ( s) ms 2 + ks + f ⇒ 1 = 2 F ( s ) s [ Mms 2 + ( M + m)ks + ( M + m) f ]
⇒
[iJLs 3 + (iJR + ifL) s 2 + (ifR + iCm Ce ) s ]Ω1 ( s ) = 2.73CmU 2 − 1.34 K1CmU 2 sU i ( s ) − ( Ls + R ) M c ( s )
自动控制原理第2章课后习题及解答
+
1 C2R2
uc
=
du
2 r
dt 2
+
2 CR
dur dt
+
1 C2R2
ur
(c) 由图解 2-2(c)可写出
Ur (= s) R1 [I1(s) + I2 (s)] + (Ls + R2 )I2 (s) (6)
1 Cs
I1
(s)
=
(Ls
+
R2
)I2
(s)
(7)
U c (s) = R2 I 2 (s)
第 2 章习题及解答
2-1 建立图 2-32 所示各机械系统的微分方程(其中 F (t) 为外力,x(t) 、y(t) 为位移; k 为弹性系数, f 为阻尼系数, m 为质量;忽略重力影响及滑块与地面的摩擦)。
图 2-32 系统原理图
解. (a)以平衡状态为基点,对质块 m 进行受力分析(不再
考虑重力影响),如图解 2-1(a)所示。根据牛顿定理可写出
2
2
X (s=)
e−s s2
(s
+
1) 2
−
e−3s s2
(2s
+
1) 2
(c) x(t) = a + (b − a)(t − t1 ) − (b − c)(t − t2 ) − c(t − t3 ) X (s) = 1 [a + (b − a)e−t1s − (b − c)e−t2s − ce−t3s ] s
k1k 2
k1 k2 k1
图解 2-3(a)
(b) 由图可写出
Uc (s) =
Ur (s)
R2
自动控制原理第二版课后答案第二章精选全文完整版
x kx ,简记为
y kx 。
若非线性函数有两个自变量,如 z f (x, y) ,则在
平衡点处可展成(忽略高次项)
f
f
z xv
|( x0 , y0 )
x y |(x0 , y0 )
y
经过上述线性化后,就把非线性关系变成了线性 关系,从而使问题大大简化。但对于如图(d)所示的 强非线性,只能采用第七章的非线性理论来分析。对于 线性系统,可采用叠加原理来分析系统。
Eb (s) Kbsm (s)
Js2 m(s) Mm fsm(s)
c
(s)
1
i
m
(s)
45
系统各元部件的动态结构图
传递函数是在零初始条件下建立的,因此,它只 是系统的零状态模型,有一定的局限性,但它有现 实意义,而且容易实现。
26
三、典型元器件的传递函数
1. 电位器
1 2
max
E
Θs
U s
K
U
K E
max
27
2. 电位器电桥
1
2
E
K1p1
K1 p 2
U
Θ 1
s
Θ
K1 p
Θ 2
s
U s
28
3.齿轮
传动比 i N2 N1
G2(s)
两个或两个以上的方框,具有同一个输入信号,并 以各方框输出信号的代数和作为输出信号,这种形
式的连接称为并联连接。
41
3. 反馈连接
R(s)
-
C(s) G(s)
H(s)
一个方框的输出信号输入到另一个方框后,得 到的输出再返回到这个方框的输入端,构成输 入信号的一部分。这种连接形式称为反馈连接。
自动控制原理_孟华_习题答案
自动控制原理课后习题答案第二章2.1 试分别写出图2.68中各无源电路的输入u r(t)与输出u c(t)之间的微分方程。
图2.68 习题2.1图解:(a)11r cu uiR-=,2()r cC u u i-=&&,122cui iR+=,12122121212c c r rR R R R RCu u Cu uR R R R R R+=++++&&(b)11()r cC u u i-=&&,121ru uiR-=,1221i i C u+=&,121cu i R u=+,121211122112121121()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&(c)11r cu uiR-=,112()rC u u i-=,1122ui iR+=,1121cu i dt uC=+⎰,121212222112122221()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。
图2.69(b)中X r(t)为输入,X c(t)为输出,均是位移量。
(a) (b)图2.69 习题2.2图解:(a)11r cu uiR-=,12()r cC u u i-=&&,12i i i+=,221cu idt iRC=+⎰,121211122212121122()()c c c r r rR R C C u R C R C R C u u R R C C u R C R C u u++++=+++&&&&&&(b)2121()cB x x K x-=&&,1121()()()r c r c cB x x K x x B x x-+-=-&&&&,121221212121211212()()c c c r r rB B B B B B B B Bx x x x x xK K K K K K K K K++++=+++&&&&&&2.3 试分别求出图2.70中各有源电路的输入u r (t )与输出u c (t )之间的微分方程。
自动控制原理答案(第二章)
第二章 控制系统的数学模型2-2 试求图示两极RC 网络的传递函数U c (S )/U r (S )。
该网络是否等效于两个RC 网络的串联?()r U s ()c U s R +-+-()a 11c s21c sR ()r U s ()c U s R +-+-()a 11c s21c sR 1()U s --1()U s解答:221221221212111222222121221.1111112211111()111()1()111()()1()111()()()()()11(),,1()1()1()()()c r c c c r r r R C S C S R u s C S C S C S a u s R R C C S R C R C R C S R R C S C S C SR R C S C S u s u s u s u s C S u s b u s R C S u s R C S u s u s u s R C S+++=∙=+++++++++====⨯=+++11221111R C S R C S ⨯++2121211221()1R R C C S R C R C S =+++ 故所给网络与两个RC 网络的串联不等效。
2-4 某可控硅整流器的输出电压U d =KU 2Φcos α式中K 为常数,U 2Φ为整流变压器副边相电压有效值,α为可控硅的控制角,设在α在α0附近作微小变化,试将U d 与α的线性化。
解答:.202002020cos (sin )()...sin sin )d u ku ku ku ku φφφφαααααααα=--+∆=-⋅∆=-d d 线性化方程:u 即u (2-9系统的微分方程组为12112323223()()()()()()()()()()()()x t r t c t dx t T K t x t dtx t x t K c t dc t T c t K x t dt =-=-=-+=式中1T 、2T 、1K 、2K 、3K 均为正的常数,系统地输入量为()r t ,输出量为()c t ,试画出动态结构图,并求出传递函数()()C s R s 。
自动控制原理 第二版 课后答案 (王划一 杨西侠 著) 国防工业出版社for FREE
(b)Βιβλιοθήκη (t ) kx (t ) u (t ) 2-4 (a) m x
(b) m (t ) x
k1 k 2 x (t ) u (t ) k1 k 2
(b)
2-10 (a)
G1 G2 C ( s) R( s ) 1 (G1 G2 )(G3 G4 ) (1 G1 )G 2 C ( s) R( s) 1 G2 ( H 1 H 2 ) G1G 2 G3 G1 H 1G3 C ( s) R( s ) 1 G 2 H 1 G 2 G3 H 3 G1G 2 G3 G1 H 1G3 H 1G3 H 3
2
带格式的: 行距: 多倍行距 1.25 字行 带格式的: 缩进: 首行缩 进: 2 字符, 行距: 多 倍行距 1.25 字行 带格式的: 字体: 小四, 降 低量 15 磅 带格式的: 缩进: 首行缩 进: 2 字符 带格式的: 字体: 小四, 降 低量 14 磅 删除的内容: 带格式的: 字体: 小四, 降 低量 15 磅 带格式的: 缩进: 首行缩 进: 21.75 磅 带格式的: 行距: 多倍行距 1.25 字行 带格式的: 缩进: 首行缩 进: 7 字符, 行距: 多 倍行距 1.25 字行 带格式的: 字体: 小四, 降 低量 5 磅 带格式的: 缩进: 首行缩 进: 7.5 字符, 行距: 多 倍行距 1.25 字行 带格式的: 缩进: 首行缩 进: 4 字符, 行距: 多 倍行距 1.25 字行 带格式的: 行距: 多倍行距 1.25 字行 带格式的: 字体: 小四, 降 低量 5 磅 带格式的: 字体: 小四, 降 低量 5 磅 带格式的: 缩进: 首行缩 进: 1.5 字符, 行距: 多 倍行距 1.25 字行 带格式的: 行距: 多倍行距 1.25 字行 带格式的: 字体: 小四, 降 低量 5 磅 带格式的: 字体: 小四 带格式的: 缩进: 首行缩 进: 0 字符, 行距: 多 倍行距 1.25 字行 带格式的: 行距: 多倍行距 1.25 字行 带格式的: 缩进: 首行缩 进: 0 字符 带格式的: 字体: 倾斜 带格式的: 字体: 倾斜, 下 标 带格式的: 缩进: 首行缩 进: 2 字符 带格式的 带格式的 ... [1] ... [2] 带格式的: 字体: 小四 带格式的 ... [3]
自动控制原理第三版课后答案
自动控制原理第三版课后答案 1. 课后习题答案。
1.1 第一章。
1.1.1 选择题。
1. A。
2. C。
3. B。
4. A。
5. D。
1.1.2 填空题。
1. 系统。
2. 控制。
3. 输入。
4. 输出。
5. 误差。
1.1.3 简答题。
1. 控制系统是指能够对某一对象进行控制的系统,包括反馈控制系统和前馈控制系统两种类型。
2. 控制系统的基本组成包括输入端、输出端、控制器和执行器四个部分。
3. 控制系统的闭环和开环是指系统是否具有反馈环节,闭环系统具有反馈环节,开环系统则没有。
1.2 第二章。
1.2.1 选择题。
1. B。
2. A。
3. D。
4. C。
5. B。
1.2.2 填空题。
1. 传递函数。
2. 时域。
3. 频域。
4. 线性。
5. 时不变。
1.2.3 简答题。
1. 传递函数是描述系统输入输出关系的函数,通常用H(s)表示。
2. 时域分析是指通过对系统的状态方程进行求解,得到系统的时域响应。
3. 频域分析是指通过对系统的传递函数进行频域分析,得到系统的频域特性。
2. 综合题。
2.1 第三章。
2.1.1 选择题。
1. D。
2. A。
3. B。
4. C。
5. D。
2.1.2 填空题。
1. 稳定。
2. 系统。
3. 极点。
4. 零点。
5. 阶跃响应。
2.1.3 简答题。
1. 稳定性是指系统在受到干扰或参数变化时,能够保持稳定的特性。
2. 极点和零点是描述系统传递函数特性的重要参数,极点决定系统的稳定性,零点则影响系统的动态响应特性。
2.2 第四章。
2.2.1 选择题。
1. B。
2. C。
3. A。
4. D。
5. B。
2.2.2 填空题。
1. PID。
2. 比例。
3. 积分。
4. 微分。
5. 控制。
2.2.3 简答题。
1. PID控制器是一种常用的控制器,由比例、积分和微分三部分组成,能够实现对系统的稳定控制。
2. 比例控制器的作用是根据当前误差的大小来调节控制量,积分控制器的作用是根据误差的历史累积值来调节控制量,微分控制器的作用是根据误差变化速度来调节控制量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 二 章
2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。
分析 首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。
对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。
证明:(a)根据复阻抗概念可得:
22212121122122112121122121221
11()1()1
11
o
i
R u C s R R C C s R C R C R C s R u R R C C s R C R C R C C s
R C s R C s
+
++++==
+++++
+
+
即
220012121122121212112222()()i i o i
d u du d u du
R R C C R C R C R C u R R C C R C R C u dt dt dt dt
++++=+++取A 、B 两点进行受力分析,可得:
o 112(
)()()i o i o dx dx dx dx f K x x f dt dt dt dt -+-=- o 22()dx dx
f K x dt dt -= 整理可得:
2212111221121212211222()()o o i i o i
d x dx d x dx f f f K f K f K K K x f f f K f K K K x dt dt dt dt ++++=+++
经比较可以看出,电网络(a )和机械系统(b )两者参数的相似关系为
11122212
11,,,K f R K f R C C :
:::
2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1) ;)()(2t t x t x =+&
(2))。
t t x t x t x ()()(2)(δ=++&
&&
2-7 由运算放大器组成的控制系统模拟电路如图2-6所示,试求闭环传递函数U c(s)/Ur(s)。
图2-6 控制系统模拟电路
解:由图可得
11111()1i o
o o
R U U C s U R R R C s
=
-
-+
2
20o U R U R =
21021
U U R C s =
联立上式消去中间变量U1和U2,可得:
12
3
23
112212()()o i o o U s R R U s R R C C s R C s R R -=-++
2-8 某位置随动系统原理方块图如图2-7所示。
已知电位器最大工作角度o
330m ax =θ,功率放大级放大系数为K 3,要求:
(1) 分别求出电位器传递系数K 0、第一级和第二级放大器的比例系数K 1和K 2; (2) 画出系统结构图;
(3) 简化结构图,求系统传递函数
)(/)(0s s i θθ。
图2-7 位置随动系统原理图
分析:利用机械原理和放大器原理求解放大系数,然后求解电动机的传递函数,从而画出系统结构图,求出系统的传递函数。
解:(1)
000
30180
/11330180m
E
K V rad π
θπ
=
=
=
⨯
3
13
301031010K -⨯==-⨯
3
2320102
1010K -⨯==-⨯
(2)假设电动机时间常数为Tm ,忽略电枢电感的影响,可得直流电动机的传递函数为
()()1m a m K s U s T Ω=
+
式中Km 为电动机的传递系数,单位为1
()/rad s V -g 。
又设测速发电机的斜率为
1
(/)t K V rad s -⋅,则其传递函数为 ()
()t t
U s K s =Ω
由此可画出系统的结构图如下:
(3)简化后可得系统的传递函数为
22301230123()
1
1()
1
o m m t
i m m
s T K K K K s s s K K K K K K K K K K θθ=+++
2-9 若某系统在阶跃输入r(t)=1(t)时,零初始条件下的输出 响应t
t e e t c --+-=21)(,试求
系统的传递函数和脉冲响应。
分析:利用拉普拉斯变换将输入和输出的时间域表示变成频域表示,进而求解出系统的传递函数,然后对传递函数进行反变换求出系统的脉冲响应函数。
解:(1)
1
()R s s =
,则系统的传递函数
211142()21(1)(2)s s C s s s s s s s ++=-+=
++++
2()42()()(1)(2)C s s s G s R s s s ++==
++
(2)系统的脉冲响应
()k t =21
1
124212
L [G(s)]L []L [1]()2(1)(2)12t t
s s t e e s s s s δ-----++==-+=-+++++
2-10 试简化图2-9中的系统结构图,并求传递函数C(s)/R(s )和C(s)/N(s)。
图2-9 题2-10系统结构图
分析:分别假定R(s)=0和N(s)=0,画出各自的结构图,然后对系统结构图进行等效变换,将其化成最简单的形式,从而求解系统的传递函数。
解:(a )令N (s )=0,简化结构图如图所示:
可求出:12112()
()1(1)G G C s R s H G G =
++
令R (s )=0,简化结构图如图所示:
3
G
2
G 1
H 1G
1
G
()N s
()s
所以:
3212112121(1)()()1G G G G H C s N s G G G G H -+=++ (b )令N (s )=0,简化结构图如下图所示:
所以:
12434
2434()1R s G G G G =++ 令R (s )=0,简化结构图如下图所示:
42434()1N s G G G G =
++
2-12 试用梅逊增益公式求图2-8中各系统信号流图的传递函 数C(s)/R(s)。
图2-11 题2-12系统信号流图
解:
(a ) 存在三个回路:312323431G H G G H G G H ∆=+++
存在两条前向通路:
1123451262,1,P G G G G G P G =∆==∆=∆
4G
N
C 23
G G +
12
G G 23
G G +
4G
R
C 23
G G +
所以:12345631343232()
()
1G G G G G C s G R s G H G G H G G H =+
+++ (b )9个单独回路:
12124236343454512345656734565718658718659841
,,,,,,,L G H L G H L G H L G G G H L G G G G G G H L G G G G G H L G G G H L G H G G H L G H H =-=-=-=-=-=-=-==
6对两两互不接触回路: 121323728292L L L L L L L L L L L L
三个互不接触回路1组:123L L L
4条前向通路及其余子式:
112345612734563718642418642P =G G G G G G ,=1 ; P =G G G G G , 2=1 ;P =-G H G G ,3=1+G H ; P =G G G , 4=1+G H ∆∆∆∆
所以,4
19
6123
1
1
()
()
1k
k
k a b c a P C s R s L L L L L L ==∆
=-+-∑∑∑。