二维悬臂梁有限元分析

合集下载

二维梁单元的有限元分析

二维梁单元的有限元分析

Problem Description:Determine the nodal deflections, reaction forces, and stress for the truss system shown below (E = 200GPa, A = 3250mm2)Important:Convert all dimensions and forces into SI units.You can either build your model by using ABQUS/CAE ordirectly write your input file. Submit the input file according to the temp format.Run the job twice by with or without considering geometricnonlinearity and do a comparison.List the results of the analysis and plot the deformed shape.PART 1:Without considering geometric nonlinearity, we can get the deformed shape of2D Truss Structure as follow :Fig 1 The deformed shape of 2D Truss Structure without geometric nonlinearity We get the result of analysis of 2D Truss Structure without nonlinearity by using ABQUS/CAE. The reaction forces for truss system are summarized in table 1.Table 1 The reaction forces for truss system without geometric nonlinearityThe displacements and the Mises stresses for truss system are showed in table 2.Table 2 The Mises stress and displacement for truss system without geometric nonlinearity PRAT2:With considering geometric nonlinearity, we can get the deformed shape of2D Truss Structure as follow ::Fig 2 The deformed shape of 2D Truss Structure with geometric nonlinearityThe reaction forces for truss system with geometric nonlinearity areTable 3 The reaction forces for truss system with geometric nonlinearityThe displacements and Mises stresses for truss system are showed inTable 4 The Mises stress and displacements for truss system with geometric nonlinearityWe can find lots of differences between the results without considering geometric nonlinearity and the results with considering geometric nonlinearity. The largest difference of all is the displacement. There are distinctly exterior difference between Fig 1 and Fig 2. The result without considering geometric nonlinearity showed the larger displacements than that with considering geometric nonlinearity. And the accurate difference of data is showed in table 2 and table 4.。

ansys-二维悬臂梁有限元分析

ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述1.1 基本研究目的(1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。

(2) 熟悉有限元建模、求解及结果分析步骤和方法。

(3) 利用ANSYS软件对梁结构进行有限元计算。

(4) 研究不同泊松比对同一位置应力的影响。

1.2 基本问题提出图1.1 模型示意图如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。

当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。

采用二维模型,3*0.09m。

2 软件知识学习2.1 软件的使用与介绍软件介绍:ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。

ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。

因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

用有限元法对悬臂梁分析的算例算例

用有限元法对悬臂梁分析的算例算例

用有限元法对悬臂梁分析的算例算例:如下图所示的悬臂梁,受均布载荷q =1N /mm 2作用。

E =2.1×105N /mm 2,μ=0.3厚度h =10mm 。

现用有限元法分析其位移及应力。

梁可视为平面应力状态,先按图示尺寸划分为均匀的三角形网格,共有8×10=80个单元,5×ll =55个节点,坐标轴以及单元与节点的编号如图。

将均布载荷分配到各相应节点上,把有约束的节点5l 、52、53、54、55视作固定铰链,建立如图所示的离散化计算模型。

程序计算框图:(续左)程序中的函数功能介绍及源代码1.LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym)――该函数用于计算平面应力情况下弹性模量为E、泊松比为NU、厚度为t、第一个节点坐标为(xi,yi)、第二个节点坐标为(xj,yj)、第三个节点坐标为(xm,ym)时的线性三角形元的单元刚度矩阵.该函数返回6×6的单位刚度矩阵k.2.LinearTriangleAssemble(K,k,i,j,m)――该函数将连接节点i,j,m的线性三角形元的单元刚度矩阵k集成到整体刚度矩阵K。

每集成一个单元,该函数都将返回2N×2N的整体刚度矩阵K.3.LinearTriangleElementStresses(E,NU,t,xi,yi,xj,yj,xm,ym,u)-- 该函数计算在平面应力情况下弹性模量为E、泊松比为NU、厚度为t、第一个节点坐标为(xi, yi)第二个节点坐标为(xj,yj)、第三个节点坐标为(xm,ym)以及单元位移矢量为u时的单元应力。

该函数返回单元应力矢量。

函数源代码:function y = LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym)A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;%三角形单元面积,单元节点应该按逆时针排序,保证每个三角形单元的面积都为正值(也可作为一个小函数:LinearTriangleElementArea)betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);%B为应变矩阵,其中betai=yi-ym,betaj=ym-yi,betam=yi-yj.gammai=xm-xj, gammaj=xi-xm, gammam=xj-xi.D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];%D为弹性矩阵,分为平面应力问题和平面应变问题对于平面应力问题D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];对于平面应变问题E1=E/(1-NU*NU),NU1=NU/(1-NU)y = t*A*B'*D*B;%单元刚度矩阵function y = LinearTriangleAssemble(K,k,i,j,m)K(2*i-1,2*i-1) = K(2*i-1,2*i-1) + k(1,1); K(2*i-1,2*i) = K(2*i-1,2*i) + k(1,2);K(2*i-1,2*j-1) = K(2*i-1,2*j-1) + k(1,3); K(2*i-1,2*j) = K(2*i-1,2*j) + k(1,4);K(2*i-1,2*m-1) = K(2*i-1,2*m-1) + k(1,5); K(2*i-1,2*m) = K(2*i-1,2*m) + k(1,6);K(2*i,2*i-1) = K(2*i,2*i-1) + k(2,1); K(2*i,2*i) = K(2*i,2*i) + k(2,2);K(2*i,2*j-1) = K(2*i,2*j-1) + k(2,3); K(2*i,2*j) = K(2*i,2*j) + k(2,4);K(2*i,2*m-1) = K(2*i,2*m-1) + k(2,5); K(2*i,2*m) = K(2*i,2*m) + k(2,6);K(2*j-1,2*i-1) = K(2*j-1,2*i-1) + k(3,1); K(2*j-1,2*i) = K(2*j-1,2*i) + k(3,2);K(2*j-1,2*j-1) = K(2*j-1,2*j-1) + k(3,3); K(2*j-1,2*j) = K(2*j-1,2*j) + k(3,4);K(2*j-1,2*m-1) = K(2*j-1,2*m-1) + k(3,5); K(2*j-1,2*m) = K(2*j-1,2*m) + k(3,6);K(2*j,2*i-1) = K(2*j,2*i-1) + k(4,1); K(2*j,2*i) = K(2*j,2*i) + k(4,2);K(2*j,2*j-1) = K(2*j,2*j-1) + k(4,3); K(2*j,2*j) = K(2*j,2*j) + k(4,4);K(2*j,2*m-1) = K(2*j,2*m-1) + k(4,5); K(2*j,2*m) = K(2*j,2*m) + k(4,6);K(2*m-1,2*i-1) = K(2*m-1,2*i-1) + k(5,1); K(2*m-1,2*i) = K(2*m-1,2*i) + k(5,2);K(2*m-1,2*j-1) = K(2*m-1,2*j-1) + k(5,3); K(2*m-1,2*j) = K(2*m-1,2*j) + k(5,4);K(2*m-1,2*m-1) = K(2*m-1,2*m-1) + k(5,5); K(2*m-1,2*m) = K(2*m-1,2*m) + k(5,6);K(2*m,2*i-1) = K(2*m,2*i-1) + k(6,1); K(2*m,2*i) = K(2*m,2*i) + k(6,2);K(2*m,2*j-1) = K(2*m,2*j-1) + k(6,3); K(2*m,2*j) = K(2*m,2*j) + k(6,4);K(2*m,2*m-1) = K(2*m,2*m-1) + k(6,5); K(2*m,2*m) = K(2*m,2*m) + k(6,6);K;%对号入座,如前所述,每集成一次都将返回2N×2N的整体刚度矩阵K.此题为110×110 function y = LinearTriangleElementStresses(E,NU,t,xi,yi,xj,yj,xm,ym,u)A = (xi*(yj-ym) + xj*(ym-yi) + xm*(yi-yj))/2;betai = yj-ym;betaj = ym-yi;betam = yi-yj;gammai = xm-xj;gammaj = xi-xm;gammam = xj-xi;B = [betai 0 betaj 0 betam 0 ;0 gammai 0 gammaj 0 gammam ;gammai betai gammaj betaj gammam betam]/(2*A);D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2];%平面应力和平面应变问题两种情况y = D*B*u;%单元应力计算主程序源代码E=21e7;NU=0.3;t=0.01;stifflike5=LinearTriangleElementStiffness(E,NU,t,0.4,0.08,0.36,0.08,0.36,0.06,1) %选取2个基本单元,调用M文件stifflike1=LinearTriangleElementStiffness(E,NU,t,0.4,0.08,0.36,0.06,0.4,0.06,1) K=sparse(110,110); %creat a xishu matrix for total stiff创建一个稀疏矩阵for i=1:49if rem(i,5)%模取余,bool型变量,非零即为真j=i;K=LinearTriangleAssemble(K,stifflike5,j,j+5,j+6);%节点编号K=LinearTriangleAssemble(K,stifflike1,j,j+6,j+1);endend%将每个单元刚度矩阵集成到总刚中K=full(K);%转化稀疏矩阵 k=K(1:100,1:100);k=[K,zeros(100,10);zeros(10,100),eye(10)];k=sparse(k);%利用边界条件简化基本方程Q=sparse(2:10:92,1,[-200,-400,-400,-400,-400,-400,-400,-400,-400,-400,],110,1);%外部荷载,此处不包括约束条件,通过形函数确定,是不是可以理解为梁的两端为中间的一半呢?d=k\Q;%高斯消元法,比克莱姆法则在计算速度上有绝对的优势!x=0:0.04:0.4;plot(x,d(106:-10:6))%基本绘图命令grid%带网格y=zeros(80,3);q=0;for i=1:49switch rem(i,5)case 1j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.08;xm=0.36;ym=0.06;xn=0.4;yn=0.06;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 2j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];xl=0.4;yl=0.06;xm=0.36;ym=0.04;xn=0.4;yn=0.04;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 3j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.04;xm=0.36;ym=0.02;xn=0.4;yn=0.02;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 4j=2*i;u=[d(j-1) d(j) d(j+11) d(j+12) d(j+1) d(j+2)];u=u';xl=0.4;yl=0.02;xm=0.36;ym=0;xn=0.4;yn=0;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;otherwiseq=q+3;endendq=4;for i=1:49switch rem(i,5)case 1j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.08;xm=0.36;ym=0.08;xn=0.36;yn=0.06;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 2j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.06;xm=0.36;ym=0.06;xn=0.36;yn=0.04;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 3j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.04;xm=0.36;ym=0.04;xn=0.36;yn=0.02;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)'; xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;case 4j=2*i;u=[d(j-1) d(j) d(j+9) d(j+10) d(j+11) d(j+12)];u=u';xl=0.4;yl=0.02;xm=0.36;ym=0.02;xn=0.36;yn=0;y(i+q,:)=LinearTriangleElementStresses(E,NU,t,xl,yl,xm,ym,xn,yn,u)';xl=xl-0.04;xm=xm-0.04;xn=xn-0.04;otherwiseq=q+3;endend %y(i+q,:)这是实现什么的?没见过这种用法,算法上应该就是通过节点位移实现指定单元的内力,这部分本人看的也晕晕的,望高人指点N=y(73:80,1)结果图及数据输出悬臂梁轴线挠度图:一单元的单元刚阵1.0e+006 *0.8077 0 0 -0.4038 -0.8077 0.40380 2.3077 -0.3462 0 0.3462 -2.30770 -0.3462 0.5769 0 -0.5769 0.3462-0.4038 0 0 0.2019 0.4038 -0.2019-0.8077 0.3462 -0.5769 0.4038 1.3846 -0.75000.4038 -2.3077 0.3462 -0.2019 -0.7500 2.5096五单元的单元刚阵1.0e+006 *00.050.10.150.20.250.30.350.4x/m w /m0.5769 0 -0.5769 0.3462 0 -0.34620 0.2019 0.4038 -0.2019 -0.4038 0-0.5769 0.4038 1.3846 -0.7500 -0.8077 0.34620.3462 -0.2019 -0.7500 2.5096 0.4038 -2.30770 -0.4038 -0.8077 0.4038 0.8077 0-0.3462 0 0.3462 -2.3077 0 2.3077根部73-80各单元应力计算结果如下(n/m2):1.0e+007 *2.1119 -0.0621 -2.2816 -4.8824 5.0479 2.4065 0.0352 -2.3753。

悬臂梁有限元分析验证

悬臂梁有限元分析验证

悬臂梁有限元分析验证XXX-XXX学年第二学期)XXX大学研究生课程论文课程论文题目:悬臂梁有限元分析验证课程名称有限元法课程类别□学位课□非学位课任课教师所在学院学科专业姓名学号提交日期注意事项:1、以上各项由研究生认真填写;2、研究生课程论文应符合一般学术规范,具有一定学术价值,严禁网上下载或抄袭;凡检查或抽查不合格者,一律取消该门课程成绩和学分,并按有关规定追究相关人员责任;3、论文得分由批阅教师填写(见封底),并签字确认;批阅教师应根据作业质量客观、公正的在文后签写批阅意见;4、原则上要求所有课程论文均须用A4纸打印,加装本封面封底,左侧装订;5、课程论文由各学院(部)统一保存,以备查用。

4、卷纸不够写,可另附纸。

摘要:本文通过有限元软件MSC.Patran建立悬臂梁模型,通过对悬臂梁的1D,2D,3D有限元受均布载荷时的应力云图与位移云图作比较,为有限元建模时对梁单元做简化提供验证依据。

关键词:悬臂梁应力位移一提出问题计算矩形截面梁在受均布载荷图1 1D模型应力云图图2 1D模型位移云图结果分析:通过结果云图可以看1D模型应力值在约束点最大值为1.33e7 Pa,最大位移在悬臂梁的自由端其最大值为4.33e-4 m。

计算结果与理论计算结果一致,证明了1D梁单元有限元模型计算的正确性。

2)应力分布由理论计算可得,最大应力为1.33e7Pa,由应力图可得最大应力为1.33e7 Pa,二者基本上相一致;由理论计算,最大挠度为0.423mm,由位移图可得最大桡度为0.433mm,二者基本上相一致。

2D模型分析运用Patran建立有限元模型,划分网格,对其进行约束与加载,并且定义其材料,定义属性,进行分析。

其结果应力云图,与位移云图如下:图4 2D 应力分布云图图5 2D位移云图结果分析:通过结果云图可以看2D模型应力值在约束点最大值为1.13e7 Pa,最大位移在悬臂梁的自由端其最大值为4.34e-4 m。

悬臂梁—有限元ABAQUS线性静力学分析报告实例

悬臂梁—有限元ABAQUS线性静力学分析报告实例

线性静力学分析实例——以悬臂梁为例线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。

在ABAQUS 中,该类问题通常采用静态通用(Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。

线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。

这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。

在一般的分析中,应尽量选用精度和效率都较高的二次四边形/ 六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。

对于复杂模型,可以采用分割模型的方法划分二次四边形/ 六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/ 四面体单元进行网格划分。

悬臂梁的线性静力学分析1.1 问题的描述一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1 所示,求梁受载后的Mises 应力、位移分布。

材料性质:弹性模量 E 2e3 ,泊松比0.3均布载荷:F=103N图1-1 悬臂梁受均布载荷图1.2 启动ABAQUS启动ABAQUS有两种方法,用户可以任选一种1)在Windows 操作系统中单击“开始” -- “程序” --ABAQUS 6.10 -- ABAQUS/CA。

E(2)在操作系统的DOS窗口中输入命令:abaqus cae 。

启动ABAQUS/CA后E ,在出现的Start Section (开始任务)对话框中选择Create Model Database 。

1.3 创建部件在ABAQUS/CA顶E 部的环境栏中,可以看到模块列表:Module:Part ,这表示当前处在Part (部件)模块,在这个模块中可以定义模型各部分的几何形体。

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结悬臂梁是工程力学中常见的结构,其受力和弯曲变形问题一直是研究的焦点。

本文将对悬臂梁受力和弯曲变形问题的分析与计算方法进行总结。

一、悬臂梁的受力分析在工程实践中,悬臂梁常常承受着外部力的作用,因此对其受力进行准确的分析至关重要。

悬臂梁的受力分析主要包括弯矩和剪力的计算。

1. 弯矩的计算悬臂梁在受力时会产生弯矩,弯矩的计算可以通过弯矩方程进行。

弯矩方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯矩的表达式。

2. 剪力的计算悬臂梁在受力时还会产生剪力,剪力的计算同样可以通过力的平衡原理和材料的本构关系进行推导。

剪力方程可以通过对悬臂梁上各点的力平衡和材料的剪切应力-剪切应变关系进行分析得到。

二、悬臂梁的弯曲变形分析除了受力分析外,悬臂梁的弯曲变形也是需要考虑的重要问题。

弯曲变形是指悬臂梁在受力作用下产生的弯曲形变,主要表现为悬臂梁的中性面发生偏移和悬臂梁上各点的位移。

1. 弯曲形变的计算弯曲形变的计算可以通过弯曲方程进行。

弯曲方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯曲形变的表达式。

2. 中性面的偏移和位移的计算中性面的偏移和位移是悬臂梁弯曲变形的重要表现形式。

中性面的偏移可以通过弯曲方程和几何关系进行计算,位移可以通过位移方程进行计算。

通过这些计算,可以得到悬臂梁上各点的位移和中性面的偏移情况。

三、悬臂梁的计算方法总结为了更准确地分析和计算悬臂梁的受力和弯曲变形问题,工程力学中提出了一系列计算方法。

常见的计算方法包括静力学方法、力学性能方法和有限元方法等。

1. 静力学方法静力学方法是最常用的计算方法之一,它基于力的平衡原理和材料的本构关系进行分析和计算。

通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到悬臂梁的受力和弯曲变形情况。

悬臂梁有限元优化分析

悬臂梁有限元优化分析

悬臂梁优化分析班级:姓名:学号:指导老师:目录一、条件分析 (1)二、分析步骤 (1)(一)前处理阶段: (1)(二)求解阶段 (3)(三)后处理阶段 (4)(四)优化阶段 (9)三、优化结果 (13)(一)读取优化结果列表 (13)(二)选择优化结果 (13)(三)代入结果分析 (14)四、整理命令流 (14)参考文献 (17)一、条件分析由题可知:悬臂梁中的平均应力小于MPa 30,且梁的挠度小于1厘米。

而且横截面积约束条件为:cm X cm 2.1651≤≤,cm X cm 2.41202≤≤。

(考虑学号系数),连杆的材料属性为:杨氏模量Pa E 91012.30⨯=,泊松比为0.3。

由于梁的长度一定,若要使梁的重量最小,则要求体积最小,进而可知要求横截面积,所以可确定体积是所求目标,因此可确定:设计变量cm X cm 2.1651≤≤ cm X cm 2.41202≤≤状态变量平均应力MPa 30≤σ 挠度cm 1<δ目标函数体积V二、分析步骤1. 定义工作文件名和工作标题(1) 执行[Utility Menu]\File\change Jobname 。

弹出对话框,输入panjiafeng12,并选择复选框,单击“OK ”按钮。

(2) 执行[Utility Menu]\File\Change Title 。

弹出的对话框,输入panjiafeng12,单击“OK ”按钮。

(一)前处理阶段:1. 初始化设计变量执行[Utility Menu]\File\Parameters\Scalar Parameter,弹出对话框,输入X1=0.1cm ,X2=0.3cm 。

2.定义单元类型,面积,转动惯量执行[Utility Menu]\Preprocessor\Element Type\Add\Edit\Delete 弹出对话框,选择Structural Beam 中的2D elastic 3 单击“OK ”单击“Close ”。

悬臂梁有限元分析

悬臂梁有限元分析

问题描述:悬臂梁承载示意图如图所示,q=1N/mm2,厚度t=1mm,E=2.1E5N/mm2,u=0.3。

受均布载荷作用的悬臂梁有限元分析求解过程:1.定义工作文件名和工作标题1)选择Utility Menu︱File︱Change Jobname命令,出现Change Jobname对话框,在[/FILNAM]Enter new jobname文本框中输入工作文件名plate,并将New log and error files 设置为Yes,单击OK 按钮关闭该对话框。

2)选择Utility Menu︱File︱Change Title命令,出现Change Title对话框,在[/TITLE]Enter new title文本框中输入plate,单击OK按钮关闭该对话框。

2.定义单元类型1)选择Main Menu︱Preprocessor︱Element Type︱Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现Library of Element Types对话框。

在Library of Element Types列表框中选择Solid,4node 42,在Element type reference number文本框中输入1,如图所示,单击OK按钮关闭该对话框。

定义板厚:单机Options...|select K3:Plane Strs w/thk|OK,如图所示。

3.定义材料性能参数1)选择Main Menu︱Preprocessor︱Material Props︱Material Models命令,出现Define Material Model Behavior对话框。

2)在Material Models Available一栏中依次单击Structural、Linear、Elastic、Isotropic选项(如图3.5所示),出现Linear Isotropic Properties for Material Number 1对话框,在EX文本框中输入2.1E5,在PRXY文本框中输入0.3,如图所示,单击OK按钮关闭该对话框。

悬臂梁的受力分析

悬臂梁的受力分析

悬臂梁的受力分析实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。

实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析如下图所示悬臂梁,其端部的抗弯刚度为33EIl ,在其端部施加力F ,可得到其端部挠度为:33Fl EI ,设其是半径为0.05米,长为1米,弹性模量11210E =⨯圆截面钢梁,则其可求出理论挠度值3443Fl ERωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表:F 100000 200000 300000 400000 500000 ω(m )0. 033950. 0679060. 1018590. 13581230. 16976542有限元软件(ansys )计算: (1)有限元模型如下图:模型说明,本模型采用beam188单元,共用11个节点分为10个单元,在最有段施加力为F计算得到端部的挠度如下表所示,F 100000 200000 300000 400000 500000S(端部位移)-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01得到梁端部在收到力为100kN时Y方向的位移云图:将理论计算结果与ansys分析结果比较如下表:力F(N)100000 200000 300000 400000 500000 理论值0. 03395 0. 067906 0. 101859 0. 1358123 0. 1697654 实验值-0.34079E-01-0.680158E-01-1.020237E-01-1.360136E-01-1.700395E-01相对误差0.37% 0.16% 0.16% 0.15% 0.16%通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。

悬臂梁的有限元分析

悬臂梁的有限元分析

工程地质数值模拟成绩考核——昆明理工大学本科生课程*****学院:国土资源工程学院科系:地科系专业:勘查111学号:************2014年11 月8 日悬臂梁的有限元分析1.问题概述。

悬臂梁为矩形截面的钢梁,长10m宽1m、高2m,不计梁的自重,弹性模量为220GPa,泊松比为0.2,在悬臂端作用一集中荷载P=1200kN。

试分析该悬臂梁的内力和变形情况。

2.启动ANSYS程序。

(1)在【开始】菜单中依次选取【所有程序】/【ANSYS8.0】/【ConfigureANSYSProducts】选项,打开【ANSYS8.0Launcher】对话框。

(2)选中【FileManagement】选项卡,输入目录名:“D:\ANSYSFX\zhang1\Exam01\ANSYSjs”,输入项目名:“Z101Beam”。

(3)单击按钮运行程序,进入ANSYS使用界面。

3.定义材料、实常数和单元类型。

(1)在【ANSYSMainMenu】菜单中依次选取【Preprocessor】(前处理)/【ElementType】/【Add/Edit/Delete】选项,打开单元类型对话框。

单击按钮,打开单元类型库对话框,在右侧两个列表框中分别选取【Beam】选项和【2Delastic3】选项(简称为Beam3单元,以后叙述中记为【Beam】-【2Delastic3】单元,类似的情况记法相同),如图1-16所示。

单击按钮,再单击【ElementType】对话框中的按钮。

图1-16【LibraryofElementTypes】对话框(2)在【ANSYSMainMenu】菜单中依次选取【Preprocessor】/【RealConstants】/【Add/Edit/Delete】选项,打开实常数对话框,如图1-17所示。

单击按钮,打开Beam3实常数对话框,按照提示输入相应的面积、惯性矩和梁高参数,如图1-18所示。

悬臂梁的有限元分析

悬臂梁的有限元分析

悬臂梁的有限元分析I. 内容综述悬臂梁的有限元分析是结构工程领域中的一个重要课题,它是一种数值计算方法,通过将连续的结构分解成许多小单元,然后对每个单元进行分析,最终得到整个结构的性能指标。

这种方法可以有效地模拟结构的变形和应力分布情况,为设计和优化提供可靠的依据。

在实际应用中,悬臂梁的有限元分析需要考虑多种因素,如材料属性、几何形状、载荷条件等。

因此在进行分析时,需要选择合适的模型和网格尺寸,并对边界条件进行合理设定。

此外由于悬臂梁的结构特点,其在不同位置的受力情况也有所不同,因此需要对各个部位进行分别分析。

悬臂梁的有限元分析是一项复杂而重要的工作,只有通过合理的建模和分析方法,才能得到准确的结果,并为实际工程提供有效的指导。

A. 研究背景和意义悬臂梁作为一种常见的结构形式,广泛应用于建筑、桥梁、机械等领域。

然而在实际应用过程中,由于各种因素的影响,悬臂梁的结构性能可能会发生退化,导致结构的安全性受到威胁。

因此对悬臂梁的有限元分析具有重要的研究意义。

有限元分析是一种基于数学模型的工程分析方法,通过将复杂的结构分解为若干个简单的单元,利用计算机模拟这些单元在受力作用下的变形和应力分布,从而预测结构的响应。

近年来随着计算机技术和数学方法的不断发展,有限元分析在工程领域中的应用越来越广泛,已经成为工程设计和施工的重要工具。

对于悬臂梁这种特殊结构,有限元分析不仅可以帮助我们了解其在不同工况下的性能表现,还可以为优化结构设计、提高结构强度和刚度提供理论依据。

此外通过对悬臂梁的有限元分析,我们还可以更好地了解其在使用过程中可能出现的缺陷和损伤,从而为预防事故、保障人员安全提供技术支持。

悬臂梁的有限元分析研究具有很高的实用价值和理论意义,对于推动工程技术的发展、提高人类生活质量具有重要作用。

B. 研究目的和方法本研究旨在通过有限元分析方法,对悬臂梁进行分析,以探究其在不同荷载下的应力分布情况。

我们将采用ANSYS软件进行模拟计算,并通过对计算结果的分析,得出悬臂梁的最大应力、最小应力以及平均应力等关键指标。

悬臂梁应力分析有限元程序设计

悬臂梁应力分析有限元程序设计

题目:悬臂梁应力分析有限元程序设计毕业设计(论文)外文摘要本科毕业设计(论文)第Ⅰ页共Ⅰ页目录1 引言 (1)2 有限元理论 (2)2.1 有限元法产生的动因分析 (2)2.2 有限元的发展历程 (3)2.3 有限元分析的研究特点 (4)2.4 有限元法的分析过程 (4)2.5 有限元的发展趋势 (6)3 悬臂梁应力分析有限元程序开发 (9)3.1 Matlab语言指南 (9)3.1.1 Matlab语言简介 (9)3.1.2 Matlab的优点 (10)3.2 悬臂梁应力分析程序设计 (11)3.2.1平面问题的4节点矩形单元描述 (11)3.2.2 平面问题4节点矩形单元的MATLAB程序 (16)3.2.3 悬臂梁应用举例 (20)结束语 (34)致谢 (35)参考文献 (36)1 引言悬臂梁在工程力学受力分析中,是一种比较典型的简化模型。

在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。

根据有限元法的基本原理和解决问题的基本思路,对悬臂梁所受的应力进行有限元分析有着重要的作用。

尽管目前已有不少从国外引进的大型通用程序,但由于这些程序通用性很强,语句多,要求计算内存大,在计算具体问题时往往占用机时多,计算成本高,在PC微机广泛普及的今天,编制一些便于推广应用的专用程序无论对于工业设计还是教学实践都是具有一定意义的。

目前,悬臂梁结构在实际工程中被得到广泛的应用,是一种较为常用的结构,尤其在机械设计、建筑设计中更是常见。

悬臂梁结构在实际的使用过程中,经常要承受各种集中载荷、分布载荷、弯矩和扭矩的作用,在梁的任意一处都有可能产生较大的应力和变形,从而使得悬臂梁结构破坏或失效。

悬臂梁的强度及刚度是否满足要求将关系到整个设备的安全使用[1]。

因此,在对悬臂梁结构设计的过程中,如何对悬臂梁的应力进行分析,具有工程实用价值和现实意义。

有限元分析是用来决定复杂机械结构中的应力和变形的一种非常有效的方法,当前用计算机进行的应力分析几乎全部都是以有限元理论为基础的。

悬臂梁ansys有限元分析求最大挠度

悬臂梁ansys有限元分析求最大挠度

悬臂梁ansys有限元分析求最大挠度(一) 悬臂梁ansys 有限元分析求最大挠度问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度?解:弯矩方程:221)()(x l q x M --=微分方程: 221'')(x l q y EI z-=积分求解:DCx qx qlx x ql y EI Cqx qlx x ql y EI z z +++-=++-=4322322'2416125.0615.05.0由边界条件:0;0,0''====A A A y y x θ 得:C=0,D=0I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。

q=ρ*g*a*h*l材料力学公式求:Y=EI85gahl^ρ=5.733mmq EILANSYS 模拟求:Y=5.5392mm,详细见下步骤ANSYS 软件设置及其具体过程如下:步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。

(单位默认为m)步骤2:材料属性设置。

密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。

设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。

在左面施加固定约束(三个方向固定)步骤5::求解。

在solve下solve current LS。

步骤6:后处理查看。

在result中plot result,查看nodes displacement。

List查看文本,观察nodes的最大位移点。

二维悬臂梁有限元分析

二维悬臂梁有限元分析

二维悬臂梁有限元分析二维悬臂梁有限元分析是一种常用的工程结构分析方法,在工程设计和研究中具有重要的应用价值。

本文将从有限元分析的原理和步骤、模型建立、载荷及边界条件、材料特性、求解方案以及结果分析等方面进行论述,探讨二维悬臂梁有限元分析的相关内容。

首先,有限元分析是一种通过将工程结构离散化为有限个小单元,利用单元的力学性质和相邻单元之间的相互作用关系,以数值解的方式求解结构的力学行为的方法。

二维悬臂梁有限元分析的步骤包括建立有限元模型、施加载荷和边界条件、确定材料特性、选择求解方案以及分析结果。

其次,模型建立是有限元分析的关键步骤之一、对于二维悬臂梁,可以采用梁单元进行建模。

梁单元是一种可以描述梁的位移、应变和应力的基本单元,具有两个节点和四个自由度。

通过将悬臂梁划分为多个梁单元,并将其节点连接起来建立悬臂梁有限元模型。

接下来,需要施加适当的载荷和边界条件。

载荷是指在悬臂梁上施加的外部力或力矩,可以是均布载荷、集中力、集中力矩等形式。

边界条件是指限制悬臂梁位移的条件,例如支座的固定或约束。

在二维悬臂梁中,通常将一端固定,即将该节点的两个位移约束为零。

选取合适的求解方案对于二维悬臂梁有限元分析非常关键。

常见的求解方案包括静态分析和动态分析。

静态分析适用于悬臂梁在静力加载下的弯曲和变形分析,动态分析适用于悬臂梁在动力加载下的响应分析。

根据具体问题的需求,选择适当的求解方案进行计算。

最后,需要对计算结果进行分析和评估。

通过数值计算得到的位移、应变和应力等结果,可以用于评估悬臂梁的强度和刚度等性能指标。

同时,也可以通过对结果的灵敏度分析,确定影响悬臂梁性能的关键因素,为工程设计提供参考。

综上所述,二维悬臂梁有限元分析是一种重要的工程结构分析方法。

通过有限元分析,可以预测悬臂梁的力学行为,为工程设计和结构优化提供依据。

然而,为了保证分析结果的准确性,需要合理地选择模型、载荷和边界条件、材料特性,以及采用适当的求解方案,对计算结果进行合理的解释和评估。

悬臂梁的有限元建模与优化分析

悬臂梁的有限元建模与优化分析

书托架的有限元建模与优化分析1. 题目概况:考虑如图1所示的木制悬臂梁结构,该梁为矩形截面,承受如图所示的集中载荷。

为满足产品性能及安全性要求,书托架的平均应力不能超过30MPa,且最大变形必须小于1cm,另外由于空间上的约束,其截面尺寸必须满足如下限制条件:5cm《X1《15cm,20cm《X2《40cm,请设计书托架的横断面尺寸,并使梁的重量最小。

习题文件名: Bracket。

图1-1 悬臂梁的示意图2. 题目分析:根据目标函数建立模型:最小化W=ρgabL假设材料密度为常数,该问题就成为一个求最小体积的问题:最下化V=abL本题约束条件:σ《30MPaδ《1cm5cm《X1《15cm20cm《X2《40cm3. 前处理阶段3.1 进入ANSYS(版本ANSYS11.0)程序→Ansys 11.0 Product Launcher →jobname: Bracket→Run3.2 初始化设计变量(长宽面积关于Z轴的惯性矩)实用程序菜单:Parameter →Scalar Parameter →X1=0.05 X2=0.2 AREA=X1*X2 IZZ=(X1*(X2**3))/12 →Accept →Close3.3 定义单元的类型、材料属性与实常数主菜单: Preprocessor →Element Type →Add/Edit/Delete →BEAM3 →OK →Close主菜单: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:3.0e7 →OK →Close主菜单: Preprocessor →Real Constants →Add/Edit/Delete →Add→OK →AREA:AREA IZZ:IZZ HEIGHT:X2 →OK →Close3.4生成几何模型3.4.1生成特征点主菜单: Preprocessor →Modeling →Create →Nodes →On Working Plane →依次输入三个点的坐标:input:1(0,0),2(2.5,0),3(5,0) →OK3.4.2定义单元主菜单: Preprocessor →Modeling →Create →Elements →Auto Numbered →Thru Nodes →点击1(0,0),2(2.5,0) →Apply →点击2(2.5,0),3(5,0) →OK4. 求解阶段4.1定义边界条件主菜单: Solution →Define Loads →Apply →Structural →Displacement →On Nodes →pick the 点1(0,0)→OK →select ALL DOF →OK4.2定义负荷主菜单: Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →pick the 点2(2.5,0)→OK →select FY 500 →Apply →pick the 点3(5,0)→OK →select FY 500 →OK4.3 分析计算主菜单: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK5. 后处理阶段主菜单:General Postproc →List Results →Sorted Listing →Sort Nodes→UY →OK实用程序菜单:Parameters →Get Scalar Data →Result datas :Global measures →DOF USUM DELTAMAX MAX →OK主菜单:General Postproc →Element Table →Define Table →Geometry →VOLU :VOLU →OK主菜单:General Postproc →Element Table →Define Table →By sequence num :SMAX_I NMISC,1 →OK主菜单:General Postproc →Element Table →Define Table →By sequence num :SMAX_J NMISC,3 →OK主菜单:General Postproc →Element Table →Sum of Each etem →OK (结果如下)SUM ALL THE ACTIVE ENTRIES IN THE ELEMENT TABLETABLE LABEL TOTALVOLU 0.500000E-01SMAX_I 0.150000E+08SMAX_J 0.375000E+07实用程序菜单:Parameters →Get Scalar Data →Result datas : Elem table sums →OK →VOLU: VOLUME →OK主菜单:General Postproc →Element Table →List Results →Sorted Listing →Sort Elems →SMAX_I Yes→OK实用程序菜单:Parameters →Get Scalar Data →Result datas :Global measures →SMAX_I MAX →OK主菜单:General Postproc →Element Table →List Results →Sorted Listing →Sort Elems →SMAX_J Yes→OK实用程序菜单:Parameter →Scalar Parameter →SMAX=SMAX_I>SMAX_J→Accept →Close实用程序菜单:File →Write DB log file →opt.db →OK6. 优化阶段主菜单:Design opt →Analysis File →Assign →opt.db →OK主菜单:Design opt →Design variables →x1,0.05,0.15→OK主菜单:Design opt →Design variables →x2,0.2,0.4→OK主菜单:Design opt →State variables →DELTAMAX,0,0.01→OK主菜单:Design opt →State variables →SMAX,0,0.01→OK主菜单:Design opt →Objective →VOLUME→OK主菜单:Design opt →Objective →Method/tool→First-order →100 →OK主菜单:Design opt →run →OK(结果如下)SET 3(INFEASIBLE)DELTAMAX(SV) > 1.1393SMAX (SV) 0.93750E+06X1 (DV) 0.15000X2 (DV) 0.40000VOLUME (OBJ) 0.300007. 结果分析结果显示,在最大截面积时(X1=0.15,X2=0.4),应变仍大于题目要求,因此应加大截面积或减少荷载8. 退出系统实用程序菜单: File→Exit…→Save Everything→OK。

ANSYS悬臂梁的自由端受力的有限元计算[1]

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算一、计算目的1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。

2、熟悉有限元建模、求解及结果分析步骤和方法。

3、利用ANSYS软件对梁结构进行有限元计算。

4、梁的变形、挠曲线等情况的分析。

5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。

6、载荷施加在不同的节点上对结果的影响。

二、计算设备PC,ANSYS软件(版本为11.0)三、计算内容悬臂梁受力模型如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。

梁的截面为正方形,边长为10[mm]。

梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。

四、计算步骤(以梁单元为例)1、分析问题。

分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。

当然,建立合适的壳单元模型和实体单元模型也是可以的。

故拟采用这三种不同的方式建立模型。

以下主要阐述采用梁单元的模型的计算步骤。

2、建立有限元模型。

a)创建工作文件夹并添加标题;在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。

启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均以BEAM为前缀。

偏好设定为结构分析,操作如下:GUI: Main Menu > Preferences > Structuralb)选择单元;进入单元类型库,操作如下:GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add…对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

有限元法手算求解悬臂梁内力

有限元法手算求解悬臂梁内力

题目信息:已知一悬臂梁,其受荷情况及尺寸如右图所示,72210/,0.25E kN m ν=⨯=,厚度100t mm =,试用有限单元法计算其应力分布,并将有限元结果与材料力学结果进行对比。

解析:手算八节点六单元模型1 结构离散化将悬臂梁划分成六个三角形单元,单元节点以铰接的方式互相连接,节点和单元编号如图1.1所示。

图1.1 节点和单元编号2 位移模式图1.1中单元①在局部坐标下的坐标如图1.2所示。

图1.2 单元①在局部坐标三节点单元索取的多项式位移模式为:123456............(1)u x yv x yαααααα=++⎧⎨=++⎩ 将3、2、1节点的坐标代入位移方程中,可解得:33312222211110101111101,11,10222001010u u u u u u u u u ααα===∆∆∆将1α、2α、3α代入式(1)中,可解得:()()()()()()3333222211113333222211111212u a b x c y u a b x c y u a b x c y u v a b x c y v a b x c y v a b x c y v ⎧=++++++++⎡⎤⎣⎦⎪⎪∆⎨⎪=++++++++⎡⎤⎣⎦⎪⎩∆ 其中23122131232111,,,(3,2,1),1122a x y x yb y yc x x m =-=-=-∆=⨯⨯= .因此,解得:3211232131200010101000a x y x yb y yc x x =-=⨯-⨯=⎧⎪=-=-=⎨⎪=-=-=⎩ 2133121323100100000101a x y x y b y y c x x =-=⨯-⨯=⎧⎪=-=-=⎨⎪=-=-=⎩ 1322313212311001011011a x y x yb y yc x x =-=⨯-⨯=⎧⎪=-=-=-⎨⎪=-=-=-⎩ 3 单元刚度矩阵单元的形函数为:()()()33332222111110021002112N a b x c y x x N a b x c y y y N a b x c y x y ⎧=++=++=⎪∆⎪⎪=++=++=⎨∆⎪⎪=++=--⎪∆⎩则应变矩阵为:[]333333333001010000201N x b N B c y c b N N yx ⎡⎤∂⎢⎥∂⎢⎥⎡⎤⎡⎤⎢⎥∂⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥∂∆⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥∂∂⎢⎥∂∂⎣⎦[]222222222000010001210N x b N B c y c b N N y x ⎡⎤∂⎢⎥∂⎢⎥⎡⎤⎡⎤⎢⎥∂⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥∂∆⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥∂∂⎢⎥∂∂⎣⎦[]111111*********001211N x b N B c y c b N N yx ⎡⎤∂⎢⎥∂⎢⎥-⎡⎤⎡⎤⎢⎥∂⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥∂∆⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥∂∂⎢⎥∂∂⎣⎦弹性矩阵为:[]72110410321101010115413000028E D νννν⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⨯⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦应力矩阵为:[][][]()2,(1,2,3)211122i i i i i i i i b c ES D B b c i c b ννννν⎡⎤⎢⎥⎢⎥===⎢⎥-∆⎢⎥--⎢⎥⎣⎦即[]7731080321410010201541503308S ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥=⨯=⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦[]7721002432410011008151533008S ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥=⨯=⨯⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦[]771114823214101102815415333388S ⎡⎤--⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=⨯--=⨯--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥--⎢⎥⎣⎦求单元刚度矩阵:[][][]iiij im eT jijj jm mi mjmm k k k K B S t k k k k k k ⎡⎤⎢⎥=∆=⎢⎥⎢⎥⎣⎦其中:[][][]()21122,(,3,2,1)114122r s r s r s r s T rs r r r s r s r s r s b b c c b c c b Et k B S t r s c b b c c c b b ννννννν--⎡⎤++⎢⎥=∆==⎢⎥---∆⎢⎥++⎢⎥⎣⎦代入数据求得单元刚度矩阵为:[](1)68002820330330330332102008281583321152338511K --⎡⎤⎢⎥--⎢⎥⎢⎥--=⨯⎢⎥--⎢⎥⎢⎥----⎢⎥----⎣⎦同理可求得其他各单元的刚度矩阵均为:[]()6800282033033033033210(2,3,4,5,6)2008281583321152338511i K i --⎡⎤⎢⎥--⎢⎥⎢⎥--=⨯=⎢⎥--⎢⎥⎢⎥----⎢⎥----⎣⎦4 整体刚度矩阵将单元刚度矩阵(6阶方阵)扩大成16阶方阵,除原有9个子矩阵外,其它子矩阵各元素均为零。

悬臂梁的有限元建模与变形分析

悬臂梁的有限元建模与变形分析

悬臂梁的有限元建模与变形分析摘要:应用有限元软件对矩形截面的悬臂梁受均匀载荷时采用三种不同的模型进 行分析,并且比较其有限元结果与理论结果, 从而得之有限元分析需要进行合理 的分析,建立合适的模型,才可以得到正确的结果。

关键词:建模,有限元1计算分析模型如图1-1所示,左边完全约束,右边不约束。

图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m ):NameH Profle-1 Shapes Rectangulara: 0.05匚 ancel图1-2矩形截面—P 1 1 1-----------+ -------------------------- 1 1 11in ■ab: 0.3OK I► 1图1-3圆形截面"TEcfftName: Profile-3ihape:]r: OJN日m电;Profrle-2Shape: CircularOK匚ancel2理论计算模型取右端研究OK Cancel图1-4圆形截面qx = 1 .0e5 X XaxW z2000000.05 =2.67 e8Pa 50000400000 12 El 3 El带入y m ax 8.5e - 3m3有限元计算结果u, U2 +0.000e+00 -721Se-Q4 -1.44^-03 -2.165e-O3*3.609e-03 -4 331e-03 •5 0S2e-O3 ”5 774e-C3 -6 4^e.€-O3-7.218e-03 -7 939e-C3图1-5矩形截面变形位移图沢0.36Uj U2+0.000e +00 -7.400e*04 -1.480e-03 -2.220e-03 -2.960e-03 -3,700e-03 -4.440e-03 -5.180e-03 --5,920103-6.660e-03 -7.400e-03 -S.140e-03 -8.e80e-039o±l:teb-i匹 5亡庄 J : SwiThit-- 帚flcfWrU*■: LA Ji加■OWB 'LV : “ Otf^^KknSr-Jlc-I'KW'- -e.iSfltTfll图1-7 2D 四边形单元变形位移图M MwP.<rPt<.m LffW vnrxr ■Av 5 ^5%' 応 *Cil*+09lL.'3i+G^ 严” I*+1.1讥 7三七时用 jg+03 + I +' JH+ 匕已75(?+U' +< S08«+07 + A 汕2电+07 +二:打知+" + F 3y>+iM图1-6矩形截面应力图盂眾sst 盂srws 力聖匕一^-•、戈Wpr-KODB; Job-222.odb Abaqui/Etandard 6.t0-l Tiie Apr LO LG:53:04 GMT+OS:OD MOiN图1-9 2D 三角形单元变形位移图Sj MisesSNEGf (fraction ■ -1.0) (Avg; 75%)+2.2226+03 +203了e+OS 十 L.S52e+0S + 1.667e+03 + 1.432e40e + 1.2976+03 i-l.lL2e+0S 4-9.2656+07 +7.4-156+07 +5.564^4 07 +3.7136+07 ■i -L.S62e+07 4-1.1246+05益八\醸' %B o.8^-ao#.jt<i33/zci >DHM ,^DVIK -C.H]1 I K A II H CH1 dUm mz1 k::Cbii r hMO图1-8四边形单元应力图J 亠T- +0. OOOe+00L -6.538e-04--1.3006-03 -1.961 £-03 -2£i5e -03 -3.269e-03 -3.923e-03 -4.577e-03 -5.2316-03 -5.gS4e-03 -6.S33e-03 -7.192e-03 -7.S46e-03n戈c 冷心:绻3Y A GDB : Job-333.odb Abaqus/S^andar(3 6J0-L Tue10 1 e :55:43 GMT+OS : 00 201;JUK 3KH i jrK>±iKR i:±CtJ*INt -- ij^d3tl«_W U =E ftta -^rap/; -P 3.9#9r-qiS, M JECSSNEG, (a-dcoon = -1.0) (Aifgi 7 5%) 3沪2则 197c+0e 99S 狂辺■&田趺+oe 芳口"OS 讶机*讯+9和+ 7.993e->07 FS.996e+07+X-. 001^*07 +4J|.4t*Ot图1-10 3D 单元应力图叫憑z、、2图1-9 2D 三角形单元应力图5, Mises(Avg : 7S<^)■i -G.37Je+06 ■kS.S43e+06 4-S.312e!+06 4^4.7004+06 H.4.24^i+06 +3-7 lSe+06 +3. ia7e+0& +2.656e+0& 4-2. 125e+05 + 1.5环+06 41.062e+0& +5.3口e+05 + 1.7 盘 e+02—7+ !--n■Uj U214-0.000$+00-1.62Oe-O5-3.240e-05-4.050^-05-4.S60e-05-5.669e-05-6.479e-'O5-7.2S9e-O5 a-®.099e-05-e.909e-05-9.719e-05二、结论理论1D2D四边形2D三角形3D单元最大应力(Mpa26726022224063.74最大挠度(mm8.58.78.887.848.099e-3由上面可以看出理论计算值与1D和2D计算结果基本吻合,而与三维结果差异巨大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 研究目的与问题阐述1.1 基本研究目的(1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。

(2) 熟悉有限元建模、求解及结果分析步骤和方法。

(3) 利用ANSYS软件对梁结构进行有限元计算。

(4) 研究不同泊松比对同一位置应力的影响。

1.2 基本问题提出图1.1 模型示意图如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。

当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。

采用二维模型,3*0.09m。

2 软件知识学习2.1 软件的使用与介绍软件介绍:ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。

ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。

因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。

软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。

前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。

该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

3 研究方法与过程3.1 研究方法论证经过查找相关资料,讨论研究后,确定了两种方案解决这一问题,对于方法一,可能比较简单,但是在最后确定固定点时准确度不够;对于方法二,虽然操作过程有点繁琐,但是在最后的节点选择上就会很准确,有利于研究结论的正确性与有效性;故本次研究采用方法二。

3.2 研究法方法一简要介绍(1) Utility Menu→File→Clear&Start New(2) Utility Menu→File→Change Jobname(3) Utility Menu→ File→ Change Title(4) Main Menu→Preprocessor→Element Type→Add/Edit/Delete(5) Main Menu→Preprocessor→Material props→Material Models→Linear(线性)→Elastic(弹性)→Isotropic(各向同性)(6) Main Menu→Preprocessor→Modeling→Create→Areas→Rectangle→By Dimensions(7) Main Menu→Preprocessor→Meshing →MeshAttributes→All Areas(8) Main Menu→Preprocessor→Meshing →SizeCntrls→SmartSize→Basic(9) Main Menu→Preprocessor→Meshing →Mesh→Area→Free ANSYS(10) Main Menu→Solution→Define Load(定义载荷)→ Apply(加载)→Structural (结构)→Displacement(位移)→On Ondes(11) Main Menu→Solution→Define Load(定义载荷)→ Apply(加载)→Structural (结构)→Force/Moment(力/力矩)→On Ondes(12) ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK(13) ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape…→select Def + Undeformed →OK(14) Main Menu→General Postproc→Plot Results(绘制结果)→Contour Plot(绘制等值图)→Nodal Solu(节点解)→Nodal Solution(节点解)→Elastic Strain (弹性应变)→Y-Component of elastic strain(弹性应变Y分量)(15) ANSYS Main Menu: General Postproc → Query Results →Subgrid Solu →选择Stress → X-Component of stress →OK 在应力分布图中,选择一固定节点,点OK即可测出相应Y方向上应力。

3.3 主要研究方法二介绍3.3.1 过滤菜单(1) ANSYS Main Menu: Preferences →select Structural → OK注:过滤菜单如图3.1所示图3.1 过滤菜单3.3.2 实体建模(1) ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入4个点的坐标:input:1(0,0,0)→Apply → 2(3000,0,0)→Apply → 3(3000,90,0) →Apply → 4(0,90,0) →OK注:在实体建模中,建立四个方位点,首先建立点1,如图3.2所示,然后选择Aplly应用,再依次输入点2、3、4方位。

图3.2 建立方位点(2) 由4个关键点组成面ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPs →依次拾取4个点→OK注:在拾取关键点是要按顺序依次拾取,拾取完点击OK即可,如图3.3所示。

图3.3 依次拾取关键点组成图形3.3.3 划分网格(1) 定义单元类型Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window) →Options→selelt K3: Plane Strsw/thk → Close (the Element Type window)此处选用Solid Quad 4node 42。

注:选择单元类型,如图3.4所示。

图3.4 单元类型选择(2) 定义实常数ANSYS Main Menu: Preprocessor →Real Constants →Add →select Type 1→ OK→input THK:90 →OK →Close (the Real Constants Window) 注:定义悬臂梁的厚度,即在THK框中输入90(mm),如图3.5所示。

图3.5 定义悬臂梁宽度(3) 定义材料(弹性模量,泊松比)ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:3.01e6, PRXY:0.2 →OK注:定义材料弹性模量及泊松比,EX为弹性模量,PRXY为泊松比,在第一次定义时在PRXY框中输入0.2,以后同理,依次输入0.25、0.3、0.35、0.4,如图3.6所示。

图3.6 定义弹性模量及泊松比(4) 指定单元属性ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool →Element Attributes →(select) Global→ Set →OK注:指定单元属性,依次点Set,Ok即可,如图3.7所示。

图3.7 指定单元属性(5) 网格密度设置Mesh Tool →Size Controls → select Lines→ Set →拾取长边的两条线→OK → input NDIV:6 →Apply →拾取短边的两条线→OK → input NDIV:2 →OK分别等份划分长和宽注:划分长,6等分,如图3.8所示。

图3.8 6等分长注:划分宽,2等分,如图3.9所示。

图3.9 2等分宽(6) 划分网格Mesh Tool →Mesh : select Areas→ Shape:Quad→Free → Mesh → Pick All →Close( the Mesh Tool window)注:释放网格,如图3.10所示。

图3.10 释放网格(7) 显示单元与节点编号Utility Menu:Plotctrls→Numbering →选项NODE Node numbers为On →在Elem/Attrib numbering选择Element numbers →OK注:显示单元与节点,为以后应力分析打下基础,如图3.11,图3.12所示。

图3.11 显示节点操作图3.12 节点显示示意图3.3.4 求解(1) 施加位移边界条件与加载1)给节点1、10施加x和y方向的约束(即约束左边)ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement → On Nodes →拾取节点1、10 →OK →select Lab2:ALL OFF → OK 注:悬臂梁固定一端,此处选择左端固定,如图3.13所示。

图3.13 固定悬臂梁左端2)给节点8施加y方向载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →拾取节点8→OK →Lab: FY, Value: -5e3→OK注:给悬臂梁右端施加方向向下,大小为5000N的力,如图3.14所示,综合效果图如图3.15所示。

相关文档
最新文档