计量经济学 自相关性

合集下载

计量经济学知识点总结

计量经济学知识点总结

计量经济学知识点总结1. 引言计量经济学是经济学的一个分支,它运用数学和统计学的方法来研究经济现象和经济理论。

计量经济学的研究对象包括经济数据的收集、整理和分析,以及对经济模型和经济政策的评估和检验。

本文将总结计量经济学的一些重要知识点。

2. 回归分析回归分析是计量经济学中最基础的方法之一。

它用来研究一个或多个自变量对一个因变量的影响程度和方向。

回归分析包括简单线性回归和多元线性回归。

简单线性回归假设自变量和因变量之间存在线性关系,用一条直线拟合数据。

多元线性回归则考虑多个自变量对因变量的影响,通过最小二乘法求解回归方程。

在回归分析中,参数估计的标准工具是OLS(Ordinary Least Squares)估计法。

OLS估计法用于最小化预测值与观测值的残差平方和,并得到回归系数的估计值。

3. 验证回归模型在应用回归模型之前,需要对模型进行验证。

通过检验回归模型的假设和具体形式,我们可以评估模型的有效性和适用性。

3.1 线性假设回归模型的核心假设之一是线性假设。

线性假设意味着自变量和因变量之间的关系是线性的。

我们可以通过残差分析和显著性检验来验证线性假设。

残差分析用于检验模型的残差是否具有随机性、无序列相关和常方差性。

一般来说,在线性假设下,残差应该满足以上条件。

通过观察残差的图形和假设检验,我们可以对模型的线性假设进行评估。

3.2 检验回归系数的显著性回归系数的显著性检验用于确定自变量对因变量的影响是否显著。

在回归模型中,我们希望得到对回归系数的置信区间和显著性水平的判断。

常用的显著性检验包括t检验和F检验。

t检验用于检验单个回归系数的显著性,而F检验则用于检验整个回归模型的显著性。

4. 模型选择与评估在回归分析中,模型选择和评估是重要的步骤。

选择一个合适的模型可以提高估计的准确性和解释力。

4.1 变量选择变量选择是指在多元回归分析中选择自变量。

我们可以通过相关系数矩阵、逐步回归和信息准则等方法进行变量选择。

计量经济学第六章自相关

计量经济学第六章自相关

计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。

自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。

1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。

自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。

因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。

2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。

假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。

自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。

数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。

3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。

一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。

若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。

3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。

高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。

通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。

3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。

异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。

因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。

4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。

南开大学计量经济学第6章自相关

南开大学计量经济学第6章自相关

经济模型中最常见的是一阶自回归形式。
T
ut ut1
依据 OLS 公式,模型 ut = 1 ut -1 + vt 中1 的估计公式是
aˆ1
=
t=2 T

ut12
t=2
若把 ut, u t-1 看作两个变量,则它们的相关系数是 ˆ =
T
ut ut1
t=2

T
T
ut 2
u t 1 2
(2)样本容量T
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 (3)原回归模型中解 23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 释变量个数k(不包括
《Econometrics》 《计量经济学》
攸频
nkeconometrics126 南开大学经济学院数量经济研究所
第六章 自相关
Autocorrelation
§6.1 基本概念、类型及来源 §6.2 自相关的后果 §6.3 自相关的检验(DW检验、LM检验) §6.4 自相关的修正(GLS) §6.5 案例
同理,Cov(ut, ut - s) = s Var(ut)
自相关的表现形式
§6.1.3 自相关的来源
(1)惯性 大多数经济时间数据都有一个明显的特点,即
具有惯性。 如:经济周期
棘轮效应
(2)设定偏误:模型中遗漏了显著的变量
例如:如果对羊肉需求的正确模型应为
Yt=b0+b1X1t+b2X2t+b3X3t+ut

自相关性习题及答案

自相关性习题及答案

自相关性一、名词解释1 序列相关性2 虚假序列相关3 差分法4 广义差分法5 自回归模型6 广义最小二乘法7 DW 检验8 科克伦-奥克特跌代法9 Durbin 两步法 10 相关系数二、单项选择题1、如果模型y t =b 0+b 1x t +u t 存在序列相关,则A.covx t , u t =0B.covu t , u s =0t ≠sC. covx t , u t ≠0D. covu t , u s ≠0t ≠s 2、DW 检验的零假设是ρ为随机误差项的一阶相关系数 A 、DW =0 B 、ρ=0 C 、DW =1 D 、ρ=13、下列哪个序列相关可用DW 检验v t 为具有零均值,常数方差且不存在序列相关的随机变量A .u t =ρu t -1+v tB .u t =ρu t -1+ρ2u t -2+…+v tC .u t =ρv tD .u t =ρv t +ρ2v t-1 +… 4、DW 的取值范围是A 、-1≤DW ≤0B 、-1≤DW ≤1C 、-2≤DW ≤2D 、0≤DW ≤4 5、当DW =4时,说明A 、不存在序列相关B 、不能判断是否存在一阶自相关C 、存在完全的正的一阶自相关D 、存在完全的负的一阶自相关6、根据20个观测值估计的结果,一元线性回归模型的DW =2.3;在样本容量n=20,解释变量k=1,显著性水平为0.05时,查得dl=1,du=1.41,则可以决断 A 、不存在一阶自相关 B 、存在正的一阶自相关 C 、存在负的一阶自 D 、无法确定7、当模型存在序列相关现象时,适宜的参数估计方法是A 、加权最小二乘法B 、间接最小二乘法C 、广义差分法D 、工具变量法 8、对于原模型y t =b 0+b 1x t +u t ,广义差分模型是指0t 1t t t 01t t t t-101t t-1t t-1b B. y =b x u C. y =b +b x uD. y y =b (1-)+b (x x )(u u )ρρρρ++++--+-9、采用一阶差分模型一阶线性自相关问题适用于下列哪种情况 A 、ρ≈0 B 、ρ≈1 C 、-1<ρ<0 D 、0<ρ<110、假定某企业的生产决策是由模型S t =b 0+b 1P t +u t 描述的其中S t 为产量,P t 为价格,又知:如果该企业在t-1期生产过剩,经营人员会削减t 期的产量;由此决断上述模型存在A 、异方差问题B 、序列相关问题C 、多重共线性问题D 、随机解释变量问题11、根据一个n=30的样本估计t 01t tˆˆy =+x +e ββ后计算得DW =1.4,已知在5%的置信度下,dl=1.35,du=1.49,则认为原模型A 、存在正的一阶自相关B 、存在负的一阶自相关C 、不存在一阶自相关D 、无法判断是否存在一阶自相关;12对于模型t 01t tˆˆy =+x +e ββ,以ρ表示e t 与e t-1之间的线性相关关系t=1,2,…T,则下列明显错误的是A 、ρ=0.8,DW =0.4B 、ρ=-0.8,DW =-0.4C 、ρ=0,DW =2D 、ρ=1,DW =0 13、同一统计指标按时间顺序记录的数据列称为A.横截面数据B.时间序列数据C.修匀数据D.原始数据 三、多项选择题1、DW 检验不适用一下列情况的序列相关检验 A 、高阶线性自回归形式的序列相关 B 、一阶非线性自回归的序列相关 C 、移动平均形式的序列相关D 、正的一阶线性自回归形式的序列相关E 、负的一阶线性自回归形式的序列相关 2、以dl 表示统计量DW 的下限分布,du 表示统计量DW 的上限分布,则DW 检验的不确定区域是A 、du ≤DW ≤4-duB 、4-du ≤DW ≤4-dlC 、dl ≤DW ≤duD 、4-dl ≤DW ≤4E 、0≤DW ≤dl3、DW 检验不适用于下列情况下的一阶线性自相关检验A 、模型包含有随机解释变量B 、样本容量太小C 、非一阶自回归模型D 、含有滞后的被解释变量E 、包含有虚拟变量的模型4、针对存在序列相关现象的模型估计,下述哪些方法可能是适用的 A 、加权最小二乘法 B 、一阶差分法 C 、残差回归法 D 、广义差分法 D 、Durbin 两步法5、如果模型y t =b 0+b 1x t +u t 存在一阶自相关,普通最小二乘估计仍具备 A 、线性 B 、无偏性 C 、有效性 D 、真实性 E 、精确性6、DW 检验不能用于下列哪些现象的检验 A 、递增型异方差的检验B 、u t =ρu t -1+ρ2u t -2+v t 形式的序列相关检验 C 、x i =b 0+b 1x j +u t 形式的多重共线性检验D 、t 01t 2t-1tˆˆˆy =+x +y +e βββ的一阶线性自相关检验 E 、遗漏重要解释变量导致的设定误差检验四、简答题1.简述DW 检验的局限性; 2.序列相关性的后果;3.简述序列相关性的几种检验方法;4.广义最小二乘法GLS 的基本思想是什么 5.解决序列相关性的问题主要有哪几种方法 6.差分法的基本思想是什么7.差分法和广义差分法主要区别是什么 8.请简述什么是虚假序列相关;9.序列相关和自相关的概念和范畴是否是一个意思 10.DW 值与一阶自相关系数的关系是什么 五、计算分析题1.根据某地1961—1999年共39年的总产出Y 、劳动投入L 和资本投入K 的年度数据,运用普通最小二乘法估计得出了下列回归方程:0.237 0.083 0.048 ,DW=0.858上式下面括号中的数字为相应估计量的标准误差;在5%的显著性水平之下,由DW 检验临界值表,得d L =1.38,d u =1.60;问;1 题中所估计的回归方程的经济含义;2 该回归方程的估计中存在什么问题 应如何改进 2.根据我国1978——2000年的财政收入Y 和国内生产总值X 的统计资料,可建立如下的计量经济模型:X Y ⨯+=1198.06477.5562.5199 22.72292R =0.9609,E S .=731.2086,F =516.3338,W D .=0.3474 请回答以下问题:(1) 何谓计量经济模型的自相关性(2) 试检验该模型是否存在一阶自相关,为什么 (3) 自相关会给建立的计量经济模型产生哪些影响(4) 如果该模型存在自相关,试写出消除一阶自相关的方法和步骤;临界值24.1=L d ,43.1=U d3.对某地区大学生就业增长影响的简单模型可描述如下t t t t t gGDP gGDP gPOP gMIN gEMP μβββββ+++++=4132110式中,为新就业的大学生人数,MIN1为该地区最低限度工资,POP 为新毕业的大学生人数,GDP1为该地区国内生产总值,GDP 为该国国内生产总值;g 表示年增长率;1如果该地区政府以多多少少不易观测的却对新毕业大学生就业有影响的因素作为基础来选择最低限度工资,则OLS 估计将会存在什么问题2令MIN 为该国的最低限度工资,它与随机扰动项相关吗3按照法律,各地区最低限度工资不得低于国家最低工资,哪么gMIN 能成为gMIN1的工具变量吗4 下表给出了美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据;年份 个人实际可支配收入 X个人实际 消费支出 Y年份 个人实际可支配收入X个人实际消费支出Y19601961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971157 162 169 176 188 200 211 220 230 237 247 256143 146 153 160 169 180 190 196 207 215 220 228 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989326 335 337 345 348 358 384 396 409 415 432 440295 302 301 305 308 324 341 357 371 382 397 406要求:1用普通最小二乘法估计收入—消费模型;t t u X Y ++=221ββ2检验收入—消费模型的自相关状况5%显著水平;3用适当的方法消除模型中存在的问题;5 在研究生产中劳动所占份额的问题时,古扎拉蒂采用如下模型模型1 t t u t Y ++=10αα模型2 t t u t t Y +++=2210ααα其中,Y 为劳动投入,t 为时间;据1949-1964年数据,对初级金属工业得到如下结果:模型1 t Y t0041.04529.0ˆ-=t = -3.9608R 2 = 0.5284 DW = 0.8252模型2 20005.00127.04786.0ˆt t Y t+-= t = -3.27242.7777 R 2= 0.6629 DW = 1.82 其中,括号内的数字为t 统计量;问:1模型1和模型2中是否有自相关; 2如何判定自相关的存在3怎样区分虚假自相关和真正的自相关;6下表是北京市连续19年城镇居民家庭人均收入与人均支出的数据; 北京市19年来城镇居民家庭收入与支出数据表单位:元2检验模型中存在的问题,并采取适当的补救措施预以处理;3对模型结果进行经济解释;7下表给出了日本工薪家庭实际消费支出与可支配收入数据要求:1建立日本工薪家庭的收入—消费函数;2检验模型中存在的问题,并采取适当的补救措施预以处理;3对模型结果进行经济解释;8下表给出了中国进口需求Y与国内生产总值X的数据;1985~2003年中国实际GDP、进口需求单位:亿元注:; 要求:1检测进口需求模型 t t t u X Y ++=21ββ 的自相关性;2采用科克伦-奥克特迭代法处理模型中的自相关问题;9 下表给出了某地区1980-2000年的地区生产总值Y 与固定资产投资额X 的数据; 地区生产总值Y 与固定资产投资额X 单位:亿元t t t 21 进行回归,并检验回归模型的自相关性;2采用广义差分法处理模型中的自相关问题;3 令1-=t t *t X /X X 固定资产投资指数,1-=t t *t Y /Y Y 地区生产总值增长指数,使用模型 t *t *t v LnX LnY ++=21ββ,该模型中是否有自相关计量经济学题库自相关答案六、 名词解释1.序列相关性:对于模型01122i i k ki i y x x x i ββββμ=+++++… 1,2,,i n =…随机误差项互相独立的基本假设表现为(,)0i j Cov μμ= ,,1,2,,i j i j n ≠=… 如果出现 (,)0i j Cov μμ≠ ,,1,2,,i j i j n ≠=…即对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性Serial Correlation;2.虚假序列相关:是指模型的序列相关性是由于省略了显著的解释变量而导致的; 3 差分法:差分法是一类克服序列相关性的有效方法,被广泛的采用;差分法是将原模型变换为差分模型,分为一阶差分法和广义差分法; 4 广义差分法:广义差分法可以克服所有类型的序列相关带来的问题,一阶差分法是它的一个特例;5 自回归模型:t t t y y μρ+=-16 广义最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例;7 DW 检验:德宾和瓦特森与1951年提出的一种适于小样本的检验方法;DW 检验法有五个前提条件略8科克伦-奥克特跌代法:是通过逐次跌代去寻求更为满意的ρ的估计值,然后再采用广义差分法;具体来说,该方法是利用残差t μ去估计未知的ρ;9 Durbin 两步法:当自相关系数ρ未知,可采用Durbin 提出的两步法去消除自相关;第一步对一多元回归模型,使用OLS 法估计其参数,第二步再利用广义差分;10.相关系数:度量变量之间相关程度的一个系数,一般用ρ表示;)()()(C j i j i Var Var ov μμμμρ=,10≤≤ρ ,越接近于1,相关程度越强,越接近于0,相关程度越弱;七、 单项选择题答案: 1D2B3A4D 5D6A7C8D9B10B11D12B13B 八、 多项选择题答案:1ABC 2BC 3BCD4BDE5AB6ABCDE 九、 判断题 1F2F3F4F 5F 6F十、 简答题1.简述DW 检验的局限性; 答:从判断准则中看到,DW 检验存在两个主要的局限性:首先,存在一个不能确定的..DW 值区域,这是这种检验方法的一大缺陷;其次:..DW 检验只能检验一阶自相关;但在实际计量经济学问题中,一阶自相关是出现最多的一类序列相关,而且经验表明,如果不存在一阶自相关,一般也不存在高阶序列相关;所以在实际应用中,对于序列相关问题—般只进行..DW 检验;2.序列相关性的后果;3.简述序列相关性的几种检验方法;4.广义最小二乘法GLS 的基本思想是什么 5.解决序列相关性的问题主要有哪几种方法 6.差分法的基本思想是什么7.差分法和广义差分法主要区别是什么 8.请简述什么是虚假序列相关;9.序列相关和自相关的概念和范畴是否是一个意思 10.DW 值与一阶自相关系数的关系是什么 十一、 计算分析题1.答案:1 题中所估计的回归方程的经济含义;该回归方程是一个对数线性模型,可还原为指数的形式为:3841.0451.1938.3Y K L -=∧,是一个C-D 函数,1.451为劳动产出弹性,0.3841为资本产出弹性;因为1.451+0.3841〉1,所以该生产函数存在规模经济; 2 该回归方程的估计中存在什么问题 应如何改进因为DW=0.858, d L =1.38,即0.858<1.38,故存在一阶正自相关;可利用GLS 方法消除自相关的影响;2.1何谓计量经济模型的自相关性答:如果对于不同的样本点,随机误差项之间不再是完全互相独立,而是存在某种相关性,则出现序列相关性;如存在:0,)(E 1i i ≠+μμ称为一阶序列相关,或自相关;2试检验该模型是否存在一阶自相关,为什么 答:存在; 3自相关会给建立的计量经济模型产生哪些影响答:1参数估计两非有效;2 变量的显著性检验失去意义;3模型的预测失效; 4如果该模型存在自相关,试写出消除一阶自相关的方法和步骤; 临界值24.1=L d ,43.1=U d答:1构造D.W 统计量并查表;2与临界值相比较,以判断模型的自相关状态; 3.答案:1由于地方政府往往是根据过去的经验、当前的经济状况以及期望的经济发展前景来定制地区最低限度工资水平的,而这些因素没有反映在上述模型中,而是被归结到了模型的随机扰动项中,因此 gMIN1 与μ不仅异期相关,而且往往是同期相关的,这将引起OLS 估计量的偏误,甚至当样本容量增大时也不具有一致性;2全国最低限度的制定主要根据全国国整体的情况而定,因此gMIN 基本与上述模型的随机扰动项无关;3由于地方政府在制定本地区最低工资水平时往往考虑全国的最低工资水平的要求,因此gMIN1与gMIN 具有较强的相关性;结合2知gMIN 可以作为gMIN1的工具变量使用; 练习题4参考解答:1收入—消费模型为tt X Y 0.93594287.9ˆ+-=Se = 2.5043 0.0075 t = -3.7650 125.3411R 2 = 0.9978,F = 15710.39,d f = 34,DW = 0.52342对样本量为36、一个解释变量的模型、5%显著水平,查DW 统计表可知,d L =1.411,d U = 1.525,模型中DW<d L ,显然消费模型中有自相关;3采用广义差分法e t = 0.72855 e t-1**9484.07831.3ˆtt X Y +-=)8710.1(=Se 0.0189t = -2.0220 50.1682R 2 = 0.9871 F = 2516.848 d f = 33 DW = 2.0972查5%显著水平的DW 统计表可知d L = 1.402,d U = 1.519,模型中DW = 2.0972> d U ,说明广义差分模型中已无自相关;同时,判定系数R 2、t 、F 统计量均达到理想水平;9366137285501783131...ˆ=--=β最终的消费模型为Y t = 13.9366+0.9484 X t练习题5参考解答:略 练习题6参考解答:1收入—消费模型为2ˆ79.9300.690(6.38)(12.399)(0.013)(6.446)(53.621)0.9940.575t tY X Se t R DW =+====2DW =0.575,取%5=α,查DW 上下界18.1,40.1,18.1<==DW d d U L ,说明误差项存在正自相关;3采用广义差分法使用普通最小二乘法估计ρ的估计值ρˆ,得 ).(t ).(Se e .e t t 7013178065701===-83019850416324434021010586690010362.DW .R ).().(t ).().(Se X ..Yˆ*t*t====+=DW =1.830,已知2,40.1<<=DW d d U U ;因此,在广义差分模型中已无自相关;据010.36)ˆ1(ˆ1=-ρβ,可得: 985.104657.01010.36ˆ1=-=β因此,原回归模型应为t t X Y 669.0985.104+=练习题7参考解答:略 练习题8参考解答:1进口需求模型为tt X ..Y ˆ2883069202356+-=Se = 785.1308 0.0285 t = -3.0017 10.1307 R 2= 0.8875,F = 102.6305,d f = 13,DW = 0.6307样本量n =15、一个解释变量的模型、1%显著水平,查DW 统计表可知,d L =0.811, d U = 1.054,模型中DW<d L ,显然进口需求模型中有自相关; 2采用科克伦-奥克特迭代法e t = 0.8264 e t-1 ,82640.ˆ=ρ令 ,Y .Y Y t t *t 182640--=,X .X X t t *t 182640--= 因为n =15, 样本容量较小,需采用普莱斯—温斯腾变换补充第一个观测值;4371011211.ˆX X *=-=ρ,749211211.ˆY Y *=-=ρ;*t Y 对*t X 回归,得 *t *t X ..Y ˆ4587020501450+-= ).(Se 9315651= 0.0953t = -2.2245 4.8153R 2 = 0.6408 F = 23.1871 d f = 13 DW = 1.2873模型中DW = 1.2873> d U ,说明广义差分模型中已无自相关;71548353826401205014501...ˆ-=--=β最终的进口需求模型为Y t = -835.7154+0.4587 X t。

计量经济学第5讲 自相关性

计量经济学第5讲 自相关性

数据的“编造” 3、数据的“编造”
在实际经济问题中,有些数据是通过已知数据 生成的。 因此,新生成的数据与原数据间就有了内在的 联系,表现出自相关性。 例如:季度数据 季度数据来自月度数据的简单平均,这 季度数据 种平均的计算减弱了每月数据的波动性,从而使 随机干扰项出现序列相关。 还有就是两个时间点之间的“内插 内插”技术往往 内插 导致随机项的自相关性。
如何得到矩阵 如何得到矩阵?
对的形式进行特殊设定后,才可得到其估计值。 如设定随机扰动项为一阶序列相关形式 i=ρi-1+εi 则 1 ρ ρ
σε ρ Cov (μ, ′) = μ 1 ρ 2 n 1 ρ
2
1
ρ n2
0 0 1 0 0
ρ = σ 2Ω 1
给定α,查临界值χα2(p),与LM值比较,做出判断, 实际检验中,可从1阶、2阶、…逐次向更高阶检验。
四、自相关性的解决方法 如果模型被检验证明存在自相关性,则 需要发展新的方法估计模型。 最常用的方法是广义最小二乘法 广义最小二乘法(GLS: 广义最小二乘法 Generalized least squares)和广义差分法 广义差分法 (Generalized Difference)。
不 能 确 定
4-dU <D.W.<4- dL 不能确定
负 相 关
0
dL
dU
2
4-dU 4-dL
当D.W.值在2左右时,模型不存在一阶自相关。 证明: 证明: 展开D.W.统计量:
D.W . = ~ ~ ~~ ∑ et 2 + ∑ et 21 2∑ et et 1
t =2 t =2 t =2 n n n
变换原模型: D-1Y=D-1X β +D-1 即 Y*=X*β + * (*) 该模型具有同方差性和随机误差项互相独立性: 该模型具有同方差性和随机误差项互相独立性

计量经济学:自相关

计量经济学:自相关

Yt = 1 + 2 X 2t + 3 X 3t + ut
而建立模型时,模型设定为: Yt = 1 + 2 X 2t + ut 则 X 3t 对 Y 的影响便归入随机误差项 ut 中,由 t 于 ut 在不同观测点上是相关的,这就造成了 在不同观测点是相关的,呈现出系统模式,此 时 ut 是自相关的。
St 1 2 P t 1 ut
6-12
原因5-模型设定偏误
如果模型中省略了某些重要的解释变量或者模型 函数形式不正确,都会产生系统误差,这种误差 存在于随机误差项中,从而带来了自相关。由于 该现象是由于设定失误造成的自相关,因此,也 称其为虚假自相关。
6-13
例如,应该用两个解释变量,即:
6-14
模型形式设定偏误也会导致自相关现象。如将 形成本曲线设定为线性成本曲线,则必定会导致
自相关。由设定偏误产生的自相关是一种虚假自
相关,可通过改变模型设定予以消除。
自相关关系主要存在于时间序列数据中,但是在
横截面数据中,也可能会出现自相关,通常称其
为空间自相关(Spatial auto correlation)。
体回归模型(PRF)的随机项为 如果自相关形式为 其中 为自相关系数, v 为经典误差项,即 t
E(vt ) 0 , Var(vt ) , Cov(vt , vt+s ) 0 , s 0
2
u1 , u2 ,..., un,
ut = ut -1 + vt
- 1< < 1
6-9
原因2- 经济活动的滞后效应
滞后效应是指某一指标对另一指标的影响不仅 限于当期而是延续若干期。由此带来变量的自 相关。 例如,居民当期可支配收入的增加,不会使居 民的消费水平在当期就达到应有水平,而是要 经过若干期才能达到。因为人的消费观念的改 变客观上存在自适应期。

中级计量经济学-考察时间序列自相关性的ARMA模型

中级计量经济学-考察时间序列自相关性的ARMA模型

rˆh l E rhl rh , rh1,
E c0 ahl 1ahl1 c0
eh l rhl rˆh l ahl 1ahl1
vareh l
1 12
2 a
总 结 : 对 于 MA(1) 模 型,超过1步的点预测 为rt的无条件均值,预 测误差的方差为rt的无 条件方差
,当l
1
0,当l 1
1,当l 0
1
1 12
,当l
1
MA2:l
0
1 12
2 2
0,02 当1l2122
2 2
,当l
2
总结:MA(q)的ACF会在滞后q期之后截尾,有限记 忆,利用此性质来确定MA模型的order
22
实际MA模型的应用
模型的选择 模型的估计 模型的检验 模型的预测 模型应用举例
6
AR(2)模型的性质(续)
ACF特征:l 1l1 2l2 l c1 x1l c2 x2l
如果 12 42 0 ,x1, x2 为实数,ACF为两个指数衰减的混合 如果 12 42 0 ,x1, x2 为虚数,ACF为逐渐衰弱的正弦余弦波
,表明商业周期的存在
7
AR(p)模型
23
MA模型的应用——模型选择
ACF与PACF
若ACF表现为一个衰减拖尾的形状(非截尾),基本 可以选择AR模型,再以截尾的PACF来确定order
若ACF在滞后期为q处截尾,即 q 0,但对于 l q则有l 0
则rt服从一个MA(q)模型
Information Criteria
24
表达式:
rt 0 1 rt1 p rt p at
11B pBp rt 0 at
特征方程

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

《计量经济学》中多重共线性、异方差性、自相关三者之间的联系与区别首先我们先来回顾一下经典线性回归模型的基本假设:1、为什么会出现异方差性我们可以从一下两方面来分析:第一,因为随即误差项包括了测量误差和模型中被省略的一些因素对因变量的影响;第二,来自不同抽样单元的因变量观察值之间可能差别很大。

因此,异方差性多出现在截面样本之中。

至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。

含义及影响:y=X β+ε,var(εi )var(εj ), ij ,E(ε)=0,或者记为212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭即违背假设3。

用OLS 估计,所得b 是无偏的,但不是有效的。

111(')'(')'()(')'b X X X y X X X X X X X βεβε---==+=+由于E(ε)=0,所以有E(b )=β。

即满足无偏性。

但是,b 的方差为1111121var(|)[()()'][(')''(')|] (')'['|](') (')'()(')b X E b b E X X X X X X X X X X E X X X X X X X X X X ββεεεεσ------=--===Ω其中212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭2、自相关产生的原因:(1)、经济数据的固有的惯性带来的相关 (2)、模型设定误差带来的相关 (3)、数据的加工带来的相关 含义及影响:cov(,)0,i j i j εε≠≠影响:和异方差一样,系数的ls 估计是无偏的,但不是有效的。

D -W 检验(Durbin -Watson )221212222121212222112112122211221122121()()()2()()222222(1)n i i i n i i n n n i i i i i i i n i i n n n i i i i i i i n n i i n i i i nn n i i i i nn i ie e d e e e e e e e e e e e e e e e e e e e e e e ρρ=-===-=-====-==-===∑-=∑∑+∑-∑=∑∑+∑-∑--=∑∑+=--∑∑+=--∑≈-其中2121n i i i n i ie e e ρ=-=∑=∑是样本一阶自相关函数。

计量经济学实验报告(自相关性)

计量经济学实验报告(自相关性)

实验6.美国股票价格指数与经济增长的关系——自相关性的判定和修正一、实验内容:研究美国股票价格指数与经济增长的关系。

1、实验目的:练习并熟练线性回归方程的建立和基本的经济检验和统计检验;学会判别自相关的存在,并能够熟练使用学过的方法对模型进行修正。

2、实验要求:(1)分析数据,建立适当的计量经济学模型(2)对所建立的模型进行自相关分析(3)对存在自相关性的模型进行调整与修正二、实验报告1、问题提出通过对全球经济形势的观察,我们发现在经济发达的国家,其证券市场通常也发展的较好,因此我们会自然地产生以下问题,即股票价格指数与经济增长是否具有相关关系?GDP是一国经济成就的根本反映。

从长期看,在上市公司的行业结构与国家产业结构基本一致的情况下,股票平均价格的变动跟GDP的变化趋势是吻合的,但不能简单地认为GDP 增长,股票价格就随之上涨,实际走势有时恰恰相反。

必须将GDP与经济形势结合起来考虑。

在持续、稳定、高速的GDP增长下,社会总需求与总供给协调增长,上市公司利润持续上升,股息不断增加,老百姓收入增加,投资需求膨胀,闲散资金得到充分利用,股票的内在含金量增加,促使股票价格上涨,股市走牛。

本次试验研究的1970-1987年的美国正处在经济持续高速发展的状态下,据此笔者利用这一时期美国SPI与GDP的数据建立计量经济学模型,并对其进行分析。

2、指标选择:指标数据为美国1970—1987年美国股票价格指数与美国GDP数据。

3、数据来源:实验数据来自《总统经济报告》(1989年),如表1所示:表1 4、数据处理将两组数据利用Eviews绘图,如图1、2所示:图1 GDP数据简图图2 SPI数据简图经过直观的图形检验,在1970-1987年间,美国的GDP保持持续平稳上升,SPI虽然有些波动,但波动程度不大,和现实经济相符,从图形上我们并没有发现有异常数据的存在。

所以可以保证数据的质量是可以满足此次实验的要求。

第五讲 自相关性

第五讲  自相关性

第5章 自相关性5.1 自相关性及其产生的原因5.1.1 什么是自相关性对于模型:t kt k t t t u x b x b x b b y +++++= 22110 (5.1.1)如果随机误差项的各期值之间存在着相关关系,即协方差0)())())(((),cov(≠=--=s t s s t t s t u u E u E u u E u E u u (s t ≠,k s t ,2,1,=)这时,称随机误差项之间存在自相关性或序列相关(Autocorrelation or serial correlation)。

随机误差项的自相关性可以有多种形式,其中最常见的类型是随机误差项之间存在一阶自相关性或一阶序列相关:0)(),cov(11≠=--t t t t u u E u u ,或者:)(1-=t t u f u 。

一阶自相关性可以表示为t t t v u u +⋅=-1ρ (5.1.2)其中ρ是t u 与1-t u 的一阶自相关系数,t v 是满足回归模型基本假定的随机误差项。

因为在大样本情况下,根据OLS 原理,ρ的OLS 估计式为:∑∑--=211ˆt t tuuu ρ(0)(=t u E )而t u 和1-t u 之间的相关系数r 为:∑∑∑--=2121t tt t uu u u r ≈ρˆ211=∑∑--t t tuu u (在大样本情况下,∑∑-≈212t t u u ) 因此,可以认为ρ是t u 与1-t u 的一阶自相关系数。

1≤ρ,1=ρ表示完全正自相关,t t t v u u +=-1;10〈〈ρ表示正自相关;0=ρ表示不存在自相关,t t v u =;01〈〈-ρ表示负自相关;1-=ρ表示完全负自相关,t t t v u u +-=-1。

自相关性的一般形式可以表示成:),,,(21p t t t t u u u f u ---= ,或者:t p t p t t t v u u u u ++++=---ρρρ 2211 (5.1.3)称之为p 阶自回归形式,或模型存在p 阶自相关。

计量经济学第六章自相关

计量经济学第六章自相关

计量经济学第六章自相关在计量经济学的学习中,自相关是一个重要且颇具挑战性的概念。

自相关,简单来说,就是指在时间序列或横截面数据中,观测值之间存在的某种相关性。

想象一下,我们在研究某个经济变量随时间的变化情况,比如一家公司的销售额。

如果在不同的时间段,销售额的变化不是相互独立的,而是存在一定的关联,这就可能出现了自相关现象。

自相关产生的原因多种多样。

其中一个常见的原因是经济变量的惯性。

例如,消费者的消费习惯往往具有一定的延续性,不会突然发生巨大的改变。

这就导致消费数据在不同时期可能存在相关性。

另一个可能的原因是模型设定的不准确。

如果我们在构建计量经济模型时,遗漏了某些重要的解释变量,那么残差项就可能包含这些被遗漏变量的影响,从而导致自相关。

自相关的存在会给我们的计量经济分析带来一系列问题。

首先,它会影响参数估计的有效性。

在存在自相关的情况下,传统的最小二乘法(OLS)估计得到的参数估计值不再是最优的,估计的方差也会被低估,这可能导致我们对参数的显著性做出错误的判断。

其次,自相关会使我们对模型的假设检验失效。

假设检验是基于一定的统计分布进行的,如果存在自相关,这些分布就不再适用,从而导致检验结果的不可靠。

那么,如何检测自相关呢?常用的方法有图形法、杜宾瓦特森(DurbinWatson)检验等。

图形法是通过绘制残差的序列图来直观地观察是否存在自相关。

如果残差呈现出某种周期性或趋势性,那么就可能存在自相关。

杜宾瓦特森检验则是一种基于统计量的检验方法。

它通过计算一个特定的统计量,并与临界值进行比较来判断是否存在自相关。

如果经过检测发现存在自相关,我们就需要采取相应的方法来处理。

一种常见的方法是广义最小二乘法(GLS)。

GLS通过对原模型进行变换,使得变换后的模型不存在自相关,从而得到更有效的参数估计。

另外,还可以使用一阶差分法。

这种方法将原变量的一阶差分作为新的变量进行回归分析,从而消除可能存在的自相关。

计量经济学练习 自相关

计量经济学练习 自相关

DW取值范围在(0,4)如果模型Y t=b0+b1X t+u t存在自相关,则cov(u s,u t)≠0(t≠s)根据20个观测值估计的结果,一元线性回归模型的DW=2.3。

在样本容量n=20,解释变量k=1,显著性水平为0.05时,查得dL=1,dU=1.41,则可决断不存在一阶自相关模型Y t=b0+b1X t+u t,以p表示ut与ut-1之间的线性相关关系,则下列明显错误的是P=-0.8,DW=-0.4设ut为随机误差项,则一阶线性自相关是指ut=pu t-1+v t自相关性,仍用OLS估计模型,则以下说法正确的是参数估计值是无偏非有效的下列引起自相关的原因中不正确的是解释变量之间的共线性对于某样本回归模型,求得DW统计量的值为1,则模型残差的自相关系数p近似等于0.5DW检验不适用于以下情况的自相关检验解释变量为随机变量样本容量太小非一阶自回归模型含有滞后的被解释变量检验自相关的方法是DW检验法图示检验法如果Y t=b0+b1X t+u t存在一阶自相关,普通最小二乘估计仍具备线性,无偏性如果模型存在自相关现象,则会引起参数估计的方差非有效变量的显著性检验失效预测失效当存在自相关时OLS估计量是有偏无效的×DW检验中,数值越小说明模型随机误差项的自相关度越小×解释变量与随机误差项相关,是产生自相关的主要原因×模型存在自相关时,若仍用OLS方法估计,就有可能低估参数的真实方差√当模型存在序列相关现象时,适宜的参数估计方法是广义差分法对于原模型Y t=b0+b1X t+u t,广义差分模型是指Y t-pY t-1=b0(1-p)+。

已知模型Y t=b0+b1X t+u t,用实际数据测得一阶自相关系数为0.6451,则广义差分被解释变量是Yt-o.6451Yt-1德宾两步法是将辅助回归式Yt=a0+a1Xt+a2Xt-1+a3Yt-1+vt 的哪个参数作为p的估计值Yt-1的参数a3针对存在序列相关现象的模型估计,下述哪些方法可能是最试用的一阶差分法durbin两步法广义差分法有关自相关的补救措施,正确的是广义差分形式受一阶自相关数影响广义差分法中的一阶自相关系数通过残差对残差滞后一期回归而得C-O迭代法通过不断的迭代获取更精确的一阶自相关系数消除自相关时,设定好模型的广义差分形式后,基于哪种原理用以下哪种方法估计广义差分模型的参数普通最小二乘法残差平方和最小当模型存在自相关问题,可以用广义差分法来进行补救√广义差分法,德宾两步法没有任何区别×截面数据中不会出现自相关×自相关性都会造成低估OLS估计量的真实方×用DW统计量估计自回归系数只适用于一阶自相关性√利用估计的自回归系数一定能消除自相关性×下列哪个选项描述的是一元线性回归模型Y t=β1+β2Xt+u t中的自相关性Cov(ut,us)≠0,t≠s如果一元线性回归模型中存在自相关性,则OLS估计不具有有效性(依然线性无偏)DW检验适用于下列哪种情况的检验正的一阶自回归形式的自相关DW值为1.3,dL=1.352,dU=1.489,那么原模型存在一阶正相关(DW<dL)如果一元线性回归模型Y t=β1+β2Xt+u t的DW值为0.46,那么广义差分模型的正确形式为Yt-0.77Yt-1=… (0.77=1-0.46/2)。

计量经济学第六章-自相关

计量经济学第六章-自相关

et et 1 ˆ • 定义 ρ 2 为样本的一阶自相关系数,作为 et
ˆ) 的估计量。则有, DW 2(1
• 因为-1 1,所以,0 能检出
正自相关 0
无自相关
负自相关
dL
dU
2
4- dU
4- dL
4
依据显著水平、变量个数(k)和样本大小(n) 一般要求样本容量至少为 15。
自相关也可能出现在横截面数据中,但主要出现在时 间序列数据中。
二、一阶自回归
线性回归模型 Yt=bo + b1Xt + ut 若 ut 的取值只与它的前一期取值有关,即 ut = f (ut-1 ) 则称为一阶自相关 经典经济计量学对自相关的分析仅限于一阶自 回归形式: ut = ut-1 +εt 为自相关系数 > 0 为正自相关 || 1 < 0 为负自相关

(3) 对上述各种拟合形式进行显著性检验,从而确定误差项 ut 存在哪一种形式的自相关。 回归检验法的优点是, (1)适合于任何形式的自相关检验, ( 2)若结论是存在自相关, 则同时能提供出自相关的具体形式与参数的估计值。缺点是计算量大。
四、偏相关系数检验 高阶自相关的形式为:
t 1t 1 2 t 2 p t p vt
这表明 ut 不存在 p 阶自相关。
LM 检验的步骤: 1、用 OLS 估计上述模型 2、得到的残差建立辅助回归式
et 1et 1 2 et 2 p et p vt
3、构造 LM 统计量,
LM p nR2 ~ 2 p
其中 n 表示原模型的样本容量。R 为辅助回归的可决系数。 其中 p 自回归阶数。 判别规则是,若 LM 2(p),接受 H0;若 LM > 2(p),拒绝 H0;

计量经济学知识点

计量经济学知识点

计量经济学知识点计量经济学是一门融合了经济学、统计学和数学的交叉学科,它运用数学和统计方法来分析经济数据,从而揭示经济现象之间的数量关系和规律。

以下将为您介绍一些计量经济学的重要知识点。

一、回归分析回归分析是计量经济学的核心方法之一。

简单线性回归模型是最基础的形式,它假设因变量(Y)与一个自变量(X)之间存在线性关系,可以用方程 Y =β₀+β₁X +ε 来表示。

其中,β₀是截距,β₁是斜率,ε 是随机误差项。

在进行回归分析时,我们需要估计参数β₀和β₁。

常用的估计方法是最小二乘法,其目标是使残差平方和最小。

通过计算得到的回归系数可以解释自变量对因变量的影响程度。

多元线性回归则是将简单线性回归扩展到多个自变量的情况,模型变为 Y =β₀+β₁X₁+β₂X₂+… +βₖXₖ +ε。

回归分析还需要进行一系列的检验,包括模型的拟合优度检验(如R²统计量)、变量的显著性检验(t 检验)和整体模型的显著性检验(F 检验)等。

二、异方差性异方差性是指误差项的方差不是恒定的,而是随着自变量的取值不同而变化。

这会导致最小二乘法估计的有效性受到影响。

为了检测异方差性,可以使用图形法(如绘制残差图)或统计检验方法(如怀特检验)。

如果发现存在异方差性,可以采用加权最小二乘法等方法进行修正。

三、自相关性自相关性指的是误差项在不同观测值之间存在相关性。

常见的自相关形式有正自相关和负自相关。

自相关性会使估计的标准误差产生偏差,影响参数估计的有效性和假设检验的结果。

常用的检测方法有杜宾瓦特森检验。

解决自相关问题可以采用广义差分法等方法。

四、多重共线性多重共线性是指自变量之间存在较强的线性关系。

这会导致回归系数估计值不稳定,难以准确解释变量的影响。

可以通过计算方差膨胀因子(VIF)来判断是否存在多重共线性。

解决多重共线性的方法包括删除相关变量、增大样本容量或使用岭回归等方法。

五、虚拟变量虚拟变量常用于表示定性的因素,例如性别、季节、地区等。

庞皓《计量经济学》笔记和课后习题详解(自相关)【圣才出品】

庞皓《计量经济学》笔记和课后习题详解(自相关)【圣才出品】

第6章 自相关6.1 复习笔记考点一:什么是自相关 ★★★1.自相关的概念自相关又称序列相关,是指总体回归模型的随机误差项u i 之间存在相关关系的一种现象。

在古典假定中假设随机误差项是无自相关的,即:Cov (u i ,u j )=E (u i u j )=0(i ≠j )。

如果该假定不能满足,就称u i 与u j 存在自相关,即不同观测点上的误差项彼此相关。

自相关系数可用来表示自相关的程度。

随机误差项u t 与滞后一期的u t -1的自相关系数ρ的计算公式为:1nt t u uρ-=∑式中u t -1是u t 滞后一期的随机误差项,因此上式计算的自相关系数ρ称为一阶自相关系数。

自相关系数ρ的取值范围为-1≤ρ≤1。

如果ρ<0,则u t 与u t -1间存在负相关关系;如果ρ>0,则u t 与u t -1间存在正相关关系;如果ρ=0,则u t 与u t -1不相关。

2.自相关产生的原因(见表6-1)表6-1 自相关产生的原因自相关关系主要存在于时间序列数据中,但是在横截面数据中也可能会出现,通常称横截面数据中出现的自相关为空间自相关。

多数经济时间序列在较长时间内都表现为上升或下降的趋势,因此大多表现为正自相关。

但就自相关本身而言,既有正相关也有负相关。

3.自相关的表现形式(1)一阶自相关随机误差项的一阶自相关形式为:u t=ρu t-1+v t(-1<ρ<1)。

其中,ρ为自相关系数;v t为满足古典假定的误差项,即E(v t)=0,Var(v t)=σ2,Cov(v t,v t+s)=0,s ≠0。

一阶自回归形式记为AR(1),相应的式中的ρ称为一阶自相关系数。

(2)m阶自相关如果一阶自相关中的随机误差项v t是不满足古典假定的误差项,即v t中包含有u t的成分,如包含有u t-2,…,u t-m的影响,则需将u t-2,…,u t-m包含在回归模型中,即:u t=ρ1u t -1+ρ2u t -2+…+ρm u t -m +v t 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
图5.3.3 正自相关
图5.3.4 负自相关
图示检验法可以借助于 Eviews 软件来实现。在方程窗口中点击 Resids 按钮,或者点击View\Actual,Fitted,Residual\Table,都可以得到 残差分布图。
5.3.2 德宾一沃森(Durbin-Watson)检验
DW检验假定条件是: 第一,解释变量x为非随机的;
对于模型:
低阶的 p=1 开始,直到 p=10 左右,若未能得到显著的检验 结果,可以认为不存在自相关性。
例 5.3.1
中国城乡居民储蓄存款模型 ( 自相关性检验 ) 。
表5.3.1列出了我国城乡居民储蓄存款年底余额(单位:亿元) 和GDP指数(1978年=100)的历年统计资料,试建立居民储蓄存 款模型,并检验模型的自相关性。 表5.3.1 我国城乡居民储蓄存款与GDP指数统计资料
当第s期偏相关系数的直方块超过虚线部分时,表明偏相关系
数>0.5,即存在s阶自相关性。从图5.3.9可以明显看出,我国 城乡居民储蓄存款模型存在着一阶和二阶自相关性。 ④ B-G 检验:在方程窗口中点击 View \ Residual Test \ Serial Correlation LM Test ,并选择滞后期为 2 ,屏幕将显 示以下信息,见表5.3.3。
连续性,所以往往存在序列相关性。
5.2 自相关性的后果
5.2.1 模型参数估计值不具有最优性
1.参数估计值仍是无偏的
2.参数估计值不再具有最小方差性
实际意义。
5.2.4 区间估计和预测区间的精度降低
5.3 自相关性检验
5.3.1 图示法
1.按时间顺序绘制残差图
图5.3.1 正自相关
图5.3.2 负自相关
5.3.4 高阶自相关性检验
1.偏相关系数检验
[命令方式] IDENT
RESID
[菜单方式] 在方程窗口中点击: View\Residual Test\Correlogram-Q-statistics
2 .拉格朗日乘数检验 (Lagrange Multiplicator 一 LM) 或布罗斯 — 戈弗雷(Breusch—Godfrey)检验
5.3.3 回归检验法
回归检验法适用对任一随机变量序列相关的检验,并能提供序列相关的具体 形式及相关系数的估计值。这一方法的应用分三步进行:
出回归估计式,再对估计式进行统计检验(F检验和t检验)。如果通过
检验发现某一个估计式是显著的(若有多个估计式显著就选择最为显著者),
表明随机误差项存在序列相关。
年份 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
存款余额y 5146.90 7034.20 9107.00 11545.40 14762.39 21518.80 29662.25 38520.84 46279.80 53407.47
GDP指数x 271.3 281.7 307.6 351.4 398.8 449.3 496.5 544.1 582.0 638.2
5.3.7所示)表明e呈现有规律的波动,预示着可能存在自相关性。
图5.3.7 残差图
运用GENR生成序列E,观察E,E(-1)图形(见图5.3.8)。
图5.3.8 E与E(-1)散布图
图中AC表示各期的自相关系数,PAC表示各期的偏自相关 系数,为了直观地反映相关系数值的大小,在图形左半部分别 绘制了相关系数和偏相关系数的直方图,其中虚线表示0.5。
1.经济变量惯性的作用引起随机误差项自相关 2.经济行为的滞后性引起随机误差项自相关 3.一些随机偶然因素的干扰引起随机误差项自相关 4.模型设定误差引起随机误差项自相关 5.观测数据处理引起随机误差项序列相关 一般经验告诉我们,对于采用时间序列数据作样本的计 量经济学问题,由于在不同样本点上解释变量以外的其他 因素在时间上的连续性,带来它们对被解释变量的影响的
年份 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
存款余额y 210.60 281.00 399.50 523.70 675.40 892.50 1214.70 1622.60 2237.60 3073.30 3801.50
GDP指数x 100.0 107.6 116.0 122.1 133.1 147.6 170.0 192.9 210.0 234.3 260.7
(1)绘制相关图,确定模型的函数形式。
图5.3.6
居民存款与GDP的散布图
(2)利用OLS法估计模型,并选择统计检验结果较好的模型。经过比 较、分析,取居民储蓄存款模型为双对数模型,估计结果见表5.3.2。
表5.3.2 估计结果
(3)检验自相关性 ①残差图分析:在方程窗口中点击 Resids 按钮,所显示的残差图(图
第四,模型中含有截距项; 第五,统计数据比较完整,无缺失项。适用于样本容量的样本情况 DW检验的基本原理和步骤为
由上述判断区域知,误差序列存在一阶正自相关。 使用DW检验时应注意以下几个问题: 第一,DW检验只能判断是否存在一阶线性自相关性,对于高阶自相关或非自 相关皆不适用。 第二,DW检验有两个无法判定的区域。 第三,这一方法不适用于对联立方程组模型中各单一方程随机误差项序列相 关的检验。
第五讲 自相关性
5.1 自相关性及其产生的原因
5.1.1 什么是自相关性
(a)非自相关的序列图
(b)非自相关的散点图
(c)正自相关的序列图
(d)正自相关的散f)负自相关的散点图
图5.1.1 时间序列及其当期与滞后一期变量的散点图
图5.1.2 自相关图
5.1.2 自相关性产生的原因
表5.3.3
估计结果
5.4 自相关性的解决方法
5.4.1 广义差分法
设线性回归模型
2.Durbin两步估计法
3.迭代估计或科克伦—奥克特(Cochrane-Orcutt)估计
具体步骤为
4.搜索估计法
5.4.3 广义差分法的EViews软件实现过程
具体步骤为 1.利用OLS法估计模型,系统将同时计算残差序列RESID。
相关文档
最新文档