研究生数理统计之方差分析
研究生数理统计实验报告(方差分析+回归分析)
《数理统计》实验报告学院:班级:学号:姓名:日期:实验成绩:评阅人:实验一:单因素方差分析一.实验内容在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。
问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?二.实验步骤1.打开excel(2010版),输入数据2.点击“数据”→数据分析→单因素分析3.输出结果三.实验结果从上述软件结果可知,p-value为0.0001<0.01,所以在1%的显著性水平下,拒绝原假设,即三组居民在“对亚运会的总态度得分”上有显著的差异。
实验二:双因素方差分析(无交互作用)一.实验内容从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产量,观测到的产量如表6-31所示。
试进行产量是否依赖于机器类型和操作者的方差分析。
二.实验步骤1.打开excel(2010版),输入数据2.点击“数据”→数据分析→无重复双因素分析3.输出结果三.实验结果因操作者因素的P-value值为0.0122,在5%显著性水平下,差异显著;机器因素的P-value值为0.0004,在1%显著性水平下,差异显著,说明产量依赖于机器类型和操作者。
可以通过培训操作者提高其工作效率,或者选择高效率的机器来提高总产量。
实验三:双因素方差分析(有交互作用)一.实验内容为了从3种不同原料和3种不同温度中选择使酒精产量最高的水平组合,设计了两因素实验,每一水平组合重复4次,结果如下表,试进行方差分析。
二.实验步骤1.打开excel(2010版),输入数据2.点击“数据”→数据分析→有重复双因素分析3.输出结果三.实验结果因原料因素的P-value值为0.0000,所以在1%显著性水平下,原料对产量影响显著;温度因素的P-value值为0.0001,所以在1%显著性水平下,温度对产量影响显著;原料*温度因素的P-value值为0.0861,所以在10%显著性水平下,原料和温度的交互作用对产量影响显著。
概率论与数理统计第九章 方差分析
第九章方差分析在生产过程和科学实验中,我们经常遇到这样的问题:影响产品产量、质量的因素很多.例如,在化工生产中,影响结果的因素有:配方、设备、温度、压力、催化剂、操作人员等.我们需要通过观察或试验来判断哪些因素对产品的产量、质量有显著的影响.方差分析(Analysis of variance)就是用来解决这类问题的一种有效方法.它是在20世纪20年代由英国统计学家费舍尔首先使用到农业试验上去的.后来发现这种方法的应用范围十分广阔,可以成功地应用在试验工作的很多方面.第一节单因素试验的方差分析在试验中,我们将要考察的指标称为试验指标,影响试验指标的条件称为因素.因素可分为两类,一类是人们可以控制的;一类是人们不能控制的.例如,原料成分、反应温度、溶液浓度等是可以控制的,而测量误差、气象条件等一般是难以控制的.以下我们所说的因素都是可控因素,因素所处的状态称为该因素的水平.如果在一项试验中只有一个因素在改变,这样的试验称为单因素试验,如果多于一个因素在改变,就称为多因素试验.本节通过实例来讨论单因素试验.1.数学模型例9.1某试验室对钢锭模进行选材试验.其方法是将试件加热到700℃后,投入到20℃的水中急冷,这样反复进行到试件断裂为止,试验次数越多,试件质量越好.试验结果如表9-1.表9-1试验的目的是确定4种生铁试件的抗热疲劳性能是否有显著差异.这里,试验的指标是钢锭模的热疲劳值,钢锭模的材质是因素,4种不同的材质表示钢锭模的4个水平,这项试验叫做4水平单因素试验.例9.2考察一种人造纤维在不同温度的水中浸泡后的缩水率,在40℃,50℃, (90)的水中分别进行4次试验.得到该种纤维在每次试验中的缩水率如表92.试问浸泡水的温度对缩水率有无显著的影响?表9-2 (%)单因素试验的一般数学模型为:因素A 有s 个水平A 1,A 2,…,A s ,在水平A j (j =1,2,…,s )下进行n j (n j ≥2)次独立试验,得到如表9-3的结果:表9-3x 11 x 12 … x 1s x 21 x 22 … x 2s … … … … 11n x 22n x … s n s xT ·1 T ·2 … T ·s1x • 2x • … s x •μ1 μ2 … μs假定:各水平A j (j =1,2,…,s )下的样本x ij ~N (j ,),i =1,2,…,n j ,j =1,2,…,s ,且相互独立. 故x ij -μj 可看成随机误差,它们是试验中无法控制的各种因素所引起的,记x ij -μj =εij ,则⎪⎩⎪⎨⎧==+=.,),0(~,,,2,1;,,2,1,2相互独立各ij ij j ij j ij N s j n i x εσεεμ (9.1) 其中μj 与σ2均为未知参数.(9.1)式称为单因素试验方差分析的数学模型.方差分析的任务是对于模型(9.1),检验s 个总体N (μ1,σ2),…,N (μs ,σ2)的均值是否相等, 即检验假设012112:;:,,,s s H H μμμσσσ===⎧⎨⎩不全相等. (9.2) 为将问题(9.2)写成便于讨论的形式,采用记号μ=11sj j j n n μ=∑,其中n =1sjj n=∑,μ表示μ1,μ2,…,μs 的加权平均,μ称为总平均.δj =μj -μ, j =1,2,…,s ,δj 表示水平Aj 下的总体平均值与总平均的差异.习惯上将δj 称为水平A j 的效应.利用这些记号,模型(9.1)可改写成:x ij =μ+δj +εij ,x ij 可分解成总平均、水平A j 的效应及随机误差三部分之和120,~(0,),.1,2,,;1,2,,.sj j j ijij j n N i n j s δεσε=⎧=⎪⎨⎪==⎩∑各相互独立 (9.1)′假设(9.2)等价于假设012112:0;:,,,s s H H δδδδδδ====⎧⎨⎩不全零.(9.2)′ 2.平方和分解我们寻找适当的统计量,对参数作假设检验.下面从平方和的分解着手,导出假设检验(9.2)′的检验统计量.记S T =211()jn sijj i xx ==-∑∑, (9.3)这里111jns ij j i x x n ===∑∑,S T 能反应全部试验数据之间的差异.又称为总变差.A j 下的样本均值 11jn j iji jx xn •==∑. (9.4)注意到2222()()()()2()()ij ij j j ij j j ij j j x x x x x x x x x x x x x x ••••••-=-+-=-+-+--,而 1111()()()()jj n n ssij j j j ij j j i j i x x x x x x x x ••••====⎡⎤--=--⎢⎥⎣⎦∑∑∑∑=11()0.j n sj ij j j j i x x x n x ••==⎛⎫--= ⎪ ⎪⎝⎭∑∑记 S E =211()jn sijj j i xx •==-∑∑, (9.5)S E 称为误差平方和;记 S A =22111()()jn ssjj j j i j xx n x x ••===-=-∑∑∑, (9.6)S A 称为因素A 的效应平方和.于是S T =S E +S A . (9.7)利用εij 可更清楚地看到S E ,S A 的含义,记111jns ij j i n εε===∑∑为随机误差的总平均,11jn j iji jn εε•==∑, j =1,2,…,s .于是S E =221111()()jjn n ssijj ij j j i j i xx εε••====-=-∑∑∑∑; (9.8)S A =2211()()ssj jj j j j j n xx n δεε••==-=+-∑∑. (9.9)平方和的分解公式(9.7)说明.总平方和分解成误差平方和与因素A 的效应平方和.(9.8)式说明S E 完全是由随机波动引起的.而(9.9)式说明S A 除随机误差外还含有各水平的效应δj ,当δj 不全为零时,S A 主要反映了这些效应的差异.若H 0成立,各水平的效应为零,S A 中也只含随机误差,因而S A 与S E 相比较相对于某一显著性水平来说不应太大.方差分析的目的是研究S A 相对于S E 有多大,若S A 比S E 显著地大,这表明各水平对指标的影响有显著差异.故需研究与S A /S E 有关的统计量.3.假设检验问题当H 0成立时,设x ij ~N (μ,σ2)(i =1,2,…,n j ;j =1,2,…,s )且相互独立,利用抽样分布的有关定理,我们有22~(1)AS s χσ-, (9.10) 22~()ES n s χσ-, (9.11)F =()(1)AEn s S s S -- ~F (s -1,n -s ). (9.12)于是,对于给定的显著性水平α(0<α<1),由于P {F ≥F α(s -1,n -s )}=α, (9.13)由此得检验问题(9.2)′的拒绝域为F ≥F α(s -1,n -s ).(9.14)由样本值计算F 的值,若F ≥F α,则拒绝H 0,即认为水平的改变对指标有显著性的影响;若F <F α,则接受原假设H 0,即认为水平的改变对指标无显著影响. 上面的分析结果可排成表9-4的形式,称为方差分析表.当F ≥F 0.05(s -1,n -s )时,称为显著, 当F ≥F 0.01(s -1,n -s )时,称为高度显著.在实际中,我们可以按以下较简便的公式来计算S T ,S A 和S E .记T ·j =1jn iji x=∑, j =1,2,…,s ,T ··=11jn sijj i x==∑∑,即有22221111222211,,.j jn n s s T ij ij j i j i s s j A j j j j j E T AT S x nx x n T T S n x nx n n S S S ••====••••==⎧=-=-⎪⎪⎪⎪=-=-⎨⎪⎪=-⎪⎪⎩∑∑∑∑∑∑ (9.15) 例9.3 如上所述,在例9.1中需检验假设H 0:μ1=μ2=μ3=μ4;H 1:μ1,μ2,μ3,μ4不全相等.给定α=0.05,完成这一假设检验.解 s =4,n 1=7,n 2=5,n 3=8,n 4=6,n =26.S T =22211(4257)69895926jn sij j i T x n ••==-=-∑∑=1957.12, S A =2221(4257)697445.4926sj j j T T n n •••=-=-∑=443.61, S E =S T -S A =1513.51.得方差分析表9-5.表9-5因 F (3,22)=2.15<F 0.05(3,22)=3.05. 则接受H 0,即认为4种生铁试样的热疲劳性无显著差异.例9.4 如上所述,在例9.2中需检验假设H 0:μ1=μ2=…=μ6; H 1:μ1,μ2,…,μ6不全相等.试取α=0.05,α=0.01,完成这一假设检验.解 s =6, n 1=n 2=…=n 6=4,n =24.S T =2211jn sij j i T x n ••==-∑∑=112.27,S A =221sj j j T T n n•••=-∑=56,S E=S T-S A=56.27.得方差分析表9-6.0.050.01由于 4.25=F0.01(5,18)>F A=3.583>F0.05(5,18)=2.77,故浸泡水的温度对缩水率有显著影响,但不能说有高度显著的影响.本节的方差分析是在这两项假设下,检验各个正态总体均值是否相等.一是正态性假设,假定数据服从正态分布;二是等方差性假设,假定各正态总体方差相等.由大数定律及中心极限定理,以及多年来的方差分析应用,知正态性和等方差性这两项假设是合理的.第二节双因素试验的方差分析进行某一项试验,当影响指标的因素不是一个而是多个时,要分析各因素的作用是否显著,就要用到多因素的方差分析.本节就两个因素的方差分析作一简介.当有两个因素时,除每个因素的影响之外,还有这两个因素的搭配问题.如表9-7中的两组试验结果,都有两个因素A和B,每个因素取两个水平.表9-7(b)表9-7(a)中,无论B在什么水平(B1还是B2),水平A2下的结果总比A1下的高20;同样地,无论A是什么水平,B2下的结果总比B1下的高40.这说明A和B单独地各自影响结果,互相之间没有作用.表9-7(b)中,当B为B1时,A2下的结果比A1的高,而且当B为B2时,A1下的结果比A2的高;类似地,当A为A1时,B2下的结果比B1的高70,而A为A2时,B2下的结果比B1的高30.这表明A的作用与B所取的水平有关,而B的作用也与A所取的水平有关.即A 和B不仅各自对结果有影响,而且它们的搭配方式也有影响.我们把这种影响称作因素A和B的交互作用,记作A×B.在双因素试验的方差分析中,我们不仅要检验水平A和B的作用,还要检验它们的交互作用.1.双因素等重复试验的方差分析设有两个因素A,B作用于试验的指标,因素A有r个水平A1,A2,…,Ar,因素B有s个水平B1,B2,…,B s,现对因素A,B的水平的每对组合(A i,B j),i=1,2,…,r;j=1,2,…,s都作t(t≥2)次试验(称为等重复试验),得到如表9-8的结果:表9-8设x ijk ~N (ij ,), i =1,2,…,r ; j =1,2,…,s ; k =1,2,…,t ,各x ijk 独立.这里ij ,均为未知参数.或写为⎪⎩⎪⎨⎧===+=.,,,2,1),,0(~,,,2,1;,,2,1,2相互独立各ijkijk ijk ij ijk t k N s j r j x εσεεμ (9.16) 记μ=111,r s ij i j rs μ==∑∑, 11si ij j s μμ•==∑, i =1,2,…,r ,11rj ij i r μμ•==∑, j =1,2,…,s ,,i i αμμ•=-, i =1,2,…,r , j j βμμ•=-, j =1,2,…,s ,ij ij i j γμμμμ••=--+.于是 μij =μ+αi +βj +γij . (9.17)称μ为总平均,αi 为水平A i 的效应,βj 为水平B j 的效应,γij 为水平A i 和水平B j 的交互效应,这是由A i ,B j 搭配起来联合作用而引起的.易知1rii α=∑=0,1sjj β=∑=0,1riji γ=∑=0, j =1,2,…,s ,1sijj γ=∑=0, i =1,2,…,r ,这样(9.16)式可写成⎪⎪⎪⎩⎪⎪⎪⎨⎧=======++++=∑∑∑∑====.,,,2,1;,,2,1;,,2,1),,0(~,0,0,0,0,21111相互独立各ijkijk s j ij r i ij s j j r i i ijk ij j i ijk t k s j r i N x εσεγγβαεγβαμ (9.18) 其中μ,αi ,βj ,γij 及σ2都为未知参数.(9.18)式就是我们所要研究的双因素试验方差分析的数学模型.我们要检验因素A ,B 及交互作用A ×B 是否显著.要检验以下3个假设:⎩⎨⎧=====.,,:,0:21112101不全为零r r H H αααααα ⎩⎨⎧=====.,,:,0:21122102不全为零s s H H ββββββ ⎩⎨⎧=====.,,:,0:121113121103不全为零rs rs H H γγγγγγ 类似于单因素情况,对这些问题的检验方法也是建立在平方和分解上的.记1111r s tijk i j k x x rst ====∑∑∑, 11tij ijk k x x t •==∑, i =1,2,…,r ; j =1,2,…,s ,111s ti ijk j k x x st ••===∑∑, i =1,2,…,r , 111r tj ijk i k x x rt ••===∑∑, j =1,2,…,s , S T =2111()rstijk i j k x x ===-∑∑∑. 不难验证,,,i j ij x x x x •••••分别是μ,μi ·,μ·j ,μij 的无偏估计.由 ()()()()ijk ijk ij i j ij i j x x x x x x x x x x x x ••••••••••-=-+-+-+--+,1≤i ≤r ,1≤j ≤s ,1≤k ≤t得平方和的分解式:S T =S E +S A +S B +S A ×B , (9.19)其中S E =2111()rstijkij i j k xx •===-∑∑∑,S A =1()2ri i stxx ••=-∑,S B =21()sj j rtxx ••=-∑,S A ×B =211()rsij i j i j txx x x •••••==--+∑∑.S E 称为误差平方和,S A ,S B 分别称为因素A ,B 的效应平方和,SA ×B 称为A ,B 交互效应平方和.当H 01:α1=α2=…=αr =0为真时,F A =[](1)(1)A ES S r rs t -- ~F (r -1,rs (t -1));当假设H 02为真时,F B =[](1)(1)BES S s rs t --~F (s -1,rs (t -1));当假设H 03为真时,F A ×B =[](1)(1)(1)A BES S r s rs t ⨯--- ~F ((r -1)(s -1),rs (t -1)).当给定显著性水平α后,假设H 01,H 02,H 03的拒绝域分别为:(1,(1));(1,(1));(1)(1),(1)).A B A BF F r rs t F F s rs t F F r s rs t ααα⨯≥--⎧⎪≥--⎨⎪≥---⎩ (9.20) 经过上面的分析和计算,可得出双因素试验的方差分析表9-9.在实际中,与单因素方差分析类似可按以下较简便的公式来计算S T ,S A ,S B ,S A ×B ,S E . 记 T ···=111r s tijki j k x===∑∑∑,T ij ·=1tijkk x=∑, i =1,2,…,r ; j =1,2,…,s ,T i ··=11stijkj k x==∑∑, i =1,2,…,r ,T ·j ·=11r tijki k x==∑∑, j =1,2,…,s ,即有221112212212211,1,1,1,.r s tT ijk i j k r A i i s B j j r s A B ij A B i j E T A B A B T S x rst T S T st rst T S T rt rst T S T S S t rst S S S S S •••===•••••=•••••=•••⨯•==⨯⎧=-⎪⎪⎪=-⎪⎪⎪⎨=-⎪⎪⎪=---⎪⎪⎪=---⎩∑∑∑∑∑∑∑ (9.21) 例9.5 用不同的生产方法(不同的硫化时间和不同的加速剂)制造的硬橡胶的抗牵拉强度(以kg ·cm -2为单位)的观察数据如表9-10所示.试在显著水平0.10下分析不同的硫化时间(A ),加速剂(B )以及它们的交互作用(A ×B )对抗牵拉强度有无显著影响.表9-10010203r =s =3, t =2, T ···,T ij ·,T i ··,T ·j ·的计算如表9-11.表9-11S T =22111,r s tijki j k T xrst•••===-∑∑∑=178.44, S A =2211r i i T T st rst•••••=-∑=15.44,S B =2211s j j T T rt rst •••••=-∑=30.11,S A ×B =22111r s ij A B i j T T S S t rst••••==---∑∑ =2.89,S E =S T -S A -S B -S A ×B =130,得方差分析表9-12.由于F 0.10(2,9)=3.01>F A ,F 0.10(2,9)>F B ,F 0.10(4,9)=2.69>F A ×B ,因而接受假设H 01,H 02,H 03,即硫化时间、加速剂以及它们的交互作用对硬橡胶的抗牵拉强度的影响不显著.2.双因素无重复试验的方差分析在双因素试验中,如果对每一对水平的组合(A i ,B j )只做一次试验,即不重复试验,所得结果如表9-13.这时ij x •=x ijk ,S E =0,S E 的自由度为0,故不能利用双因素等重复试验中的公式进行方差分析.但是,如果我们认为A ,B 两因素无交互作用,或已知交互作用对试验指标影响很小,则可将S A ×B 取作S E ,仍可利用等重复的双因素试验对因素A ,B 进行方差分析.对这种情况下的数学模型及统计分析表示如下:由(9.18)式,112,0,0,~(0,),1,2,,;1,2,,,.ij i j ij r si j i j ij ijk x N i r j s μαβεαβεσε===+++⎧⎪⎪==⎪⎨⎪==⎪⎪⎩∑∑各相互独立 (9.22)要检验的假设有以下两个:⎩⎨⎧=====.,,:,0:21112101不全为零r r H H αααααα ⎩⎨⎧=====.,,:,0:21122102不全为零s s H H ββββββ 记 1111111,,,r s s rij i ij j ij i j j i x x x x x x rs s r ••=======∑∑∑∑平方和分解公式为:S T =S A +S B +S E , (9.23)其中 22111(),(),rssT ijA i i j j S xx S s x x •====-=-∑∑∑22111(),(),srsB j E ij i j j i j S r x x S x x x x •••====-=--+∑∑∑分别为总平方和、因素A ,B 的效应平方和和误差平方和.取显著性水平为α,当H 01成立时,F A =(1)AEs S S - ~F ((r -1),(r -1)(s -1)), H 01拒绝域为F A ≥F α((r -1),(r -1)(s -1)). (9.24)当H 02成立时,F B =(1)BEr S S - ~F ((s -1),(r -1)(s -1)), H 02拒绝域为F B ≥F α((s -1),(r -1)(s -1)). (9.25)得方差分析表9-14.例9.6 测试某种钢不同含铜量在各种温度下的冲击值(单位:kg ·m ·cm ),表9-15列出了试验的数据(冲击值),问试验温度、含铜量对钢的冲击值的影响是否显著?(α=0.01)解 由已知,r =4,s =3,需检验假设H 01,H 02,经计算得方差分析表9-16.0.01A 01F 0.01(2,6)=10.92<F B ,拒绝H 02.检验结果表明,试验温度、含铜量对钢冲击值的影响是显著的.第三节 正交试验设计及其方差分析在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.1.正交试验设计的基本方法正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.列数↓L4 (23)↑↑行数水平数(2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个.最多能安排的因素数↓L4(23)↑↑试验次数水平数(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的.L4(23)↑↑实际试验数理论上的试验数正交表的特点:(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.凡满足上述两性质的表都称为正交表(Orthogonal table).常用的正交表有L9(34),L8(27),L16(45)等,见附表.用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.例9.7 提高某化工产品转化率的试验.某种化工产品的转化率可能与反应温度A,反应时间B,某两种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此考虑对A,B,C,D这4个因素进行试验.根据以往的经验,确定各个因素的3个不同水平,如表9-18所示.表9-18分析各因素对产品的转化率是否产生显著影响,并指出最好生产条件.解本题是4因素3水平,选用正交表L9(34).将各因素的诸水平所表示的实际状态或条件代入正交表中,得到9个试验方案,如表9-20所示.表9-20从表9-20看出,第一行是1号试验,其试验条件是:反应温度为60℃,反应时间为2.5小时,原料配比为1.1∶1,真空度为500毫米汞柱,记作A1B1C1D1.依此类推,第9号试验条件是A3B3C2D1.由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表9-20安排试验,试验的结果依次记于试验方案右侧,见表9-21.2.试验结果的直观分析正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.例9.7中试验结果转化率列在表9-21中,在9次试验中,以第9次试验的指标86为最高,其生产条件是A 3B 3C 2D 1.由于全面搭配试验有81种,现只做了9次.9次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析. (1) 极差计算在代表因素A 的表9-21的第1列中,将与水平“1”相对应的第1,2,3号3个试验结果相加,记作T 11,求得T 11=151.同样,将第1列中与水平“2”对应的第4,5,6号试验结果相加,记作T 21,求得T 21=183.一般地,定义T ij 为表9-21的第j 列中,与水平i 对应的各次试验结果之和(i =1,2,3; j =1,2,3,4).记T 为9次试验结果的总和,R j 为第j 列的3个T ij 中最大值与最小值之差,称为极差.显然T =31iji T=∑,j =1,2,3,4.此处T 11大致反映了A 1对试验结果的影响,T 21大致反映了A 2对试验结果的影响, T 31大致反映了A 3对试验结果的影响,T 12,T 22和T 32分别反映了B 1,B 2,B 3对试验结果的影响, T 13,T 23和T 33分别反映了C 1,C 2,C 3对试验结果的影响, T 14,T 24和T 34分别反映了D 1,D 2,D 3对试验结果的影响.R j 反映了第j 列因素的水平改变对试验结果的影响大小,R j 越大反映第j 列因素影响越大.上述结果列表9-22.(2) 极差分析(Analysis of range)由极差大小顺序排出因素的主次顺序:主→次 B ;A 、D ;C这里,R j 值相近的两因素间用“、”号隔开,而R j 值相差较大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中控制好因素B ,即反应时间.其次是要考虑因素A 和D ,即要控制好反应温度和真空度.至于原料配比就不那么重要了.选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例9.7中,希望转化率越高越好,所以应在第1列选最大的T 31=185;即取水平A 3,同理可选B 3C 1D 3.故例9.7中较好的因素水平搭配是A 3B 3C 1D 3.例9.8 某试验被考察的因素有5个:A ,B ,C ,D ,E .每个因素有两个水平.选用正交表L 8(27),现分别把A ,B ,C ,D ,E 安排在表L 8(27)的第1,2,4,5,7列上,空出第3,6列仿例9.7做法,按方案试验.记下试验结果,进行极差计算,得表9-23.试验目的要找出试验结果最小的工艺条件及因素影响的主次顺序.从表9-23的极差R j的大小顺序排出因素的主次顺序为主 → 次 A 、B ;D ;C 、E最优工艺条件为A 2B 1C 1D 2E 1.表9-23中因没有安排因素而空出了第3,6列.从理论上说,这两列的极差R j 应为0,但因存有随机误差,这两个空列的极差值实际上是相当小的.3.方差分析正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.设有一试验,使用正交表L p (n m ),试验的p 个结果为y 1,y 2,…,y p ,记T =1pi i y =∑, y =11p i i Ty p p ==∑,S T =21()pii yy =-∑为试验的p 个结果的总变差;S j =222111nn ij ij i i T T T r T r p r p ==⎛⎫-=- ⎪⎝⎭∑∑ 为第j 列上安排因素的变差平方和,其中r =p/n .可证明S T =1mij S=∑即总变差为各列变差平方和之和,且S T 的自由度为p -1,S j 的自由度为n -1.当正交表的所有列没被排满因素时,即有空列时,所有空列的S j 之和就是误差的变差平方和S e ,这时S e 的自由度f e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取S j 中的最小值作为误差的变差平方和S e .从以上分析知,在使用正交表L p (n m )的正交试验方差分析中,对正交表所安排的因素选用的统计量为:F =1jeeS S n f -.当因素作用不显著时,F ~F (n -1,f e ),其中第j 列安排的是被检因素.在实际应用时,先求出各列的S j /(n -1)及S e /f e ,若某个S j /(n -1)比S e /f e 还小时,则这第j 列就可当作误差列并入S e 中去,这样使误差S e 的自由度增大,在作F 检验时会更灵敏,将所有可当作误差列的S j 全并入S e 后得新的误差变差平方和,记为S e Δ,其相应的自由度为f e Δ,这时选用统计量F =1je eS S n f - ~F (n -1,f e Δ).例9.9 对例9.8的表9-23作方差分析.解 由表9-23的最后一行的极差值R j ,利用公式S j =2211n ij i T T r p=-∑,得表9-24.表9-24表9-24中第3,6列为空列,因此S e =S 3+S 6=1.250,其中f e =1+1=2,所以S e /f e =0.625,而第7列的S 7=0.125,S 7/f 7=0.1251=0.125比S e /f e 小,故将它并入误差. S e Δ=S e +S 7=1.375,f e Δ=3.整理成方差分析表9-25.eeS fC 3.125 1 3.125 6.818D 6.125 1 6.125 13.364E Δ 0.125 1 0.125 e 1.1250 2 0.625 e Δ 1.37530.458由于F 0.05(1,3)=10.13, F 0.01(1,3)=34.12,故因素A ,B 作用高度显著,因素C 作用不显著,因素D 作用显著,这与前面极差分析的结果是一致的.F 检验法要求选取S e ,且希望f e 要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素A 和B 的交互作用A ×B .这类交互作用在正交试验设计中同样有表现,即一个因素A 的水平对试验结果指标的影响同另一个因素B 的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.小 结本章介绍了数理统计的基本方法之一:方差分析.在生产实践中,试验结果往往要受到一种或多种因素的影响.方差分析就是通过对试验数据进行分析,检验方差相同的多个正态总体的均值是否相等,用以判断各因素对试验结果的影响是否显著.方差分析按影响试验结果的因素的个数分为单因素方差分析、双因素方差分析和多因素方差分析.1. 单因素方差分析的情况.试验数据总是参差不齐,我们用总偏差平方和S T =211()jn sijj i xx ==-∑∑来度量数据间的离散程度.将S T 分解为试验随机误差的平方和(S E )与因素A 的偏差平方和(S A )之和.若S A 比S E 大得较多,则有理由认为因素的各个水平对应的试验结果有显著差异,从而拒绝因素各水平对应的正态总体的均值相等这一原假设.这就是单因素方差分析法的基本思想.2. 双因素方差分析的基本思想类似于单因素方差分析.但双因素试验的方差分析中,我们不仅要检验因素A 和B 各自的作用,还要检验它们之间的交互作用.3. 正交试验设计及其方差分析.根据因素的个数及各个因素的水平个数,选取适当的正交表并按表进行试验.我们通过对这少数的试验数据进行分析,推断出各因素对试验结果影响的大小.对正交试验结果的分析,通常采用两种方法,一种是直观分析法(极差分析法),它通过对各因素极差R j 的排序来确定各因素对试验结果影响的大小.一种是方差分析法,它的基本思想类似于双因素的方差分析. 重要术语及主题单因素试验方差分析的数学模型 S T =S E +S A单因素方差分析表 双因素方差分析表 正交试验表极 差分析表习题九1.灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡寿命是否因灯丝材料不同而有显著差异?2.一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了一些学生,试在显著性水平0.05下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.4.为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配比的方5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A)、防老剂(B)、硫化系统(C)3个因素(各取3个水平),根据专业理论经验,交互4(2) 给定α=0.05,作方差分析与(1)比较.6.某农科站进行早稻品种试验(产量越高越好),需考察品种(A),施氮肥量(B),氮、磷、钾肥比例(C),插植规格(D)4个因素,根据专业理论和经验,交互作用全忽略,早(1) 试作出最优生产条件的直观分析,并对4因素排出主次关系.(2) 给定α=0.05,作方差分析,与(1)比较.。
教育与心理统计学 第六章 方差分析考研笔记-精品
第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
数理统计之方差分析1
双因素方差分析的数据结构 以上表格反映的是双因素方差分析的数据结构。 以上表格反映的是双因素方差分析的数据结构。 思考:多因素方差分析的数据结构。 思考:多因素方差分析的数据结构。
二、单因素方差分析
1、数据结构 、
水平 样本均值 样本方差
模型 假定
N (µ1,σ 2 ) N (µ2 ,σ 2 )
A1 A2 … Ar
结论: 拒绝H 结论 拒绝 0.
• 统计分析
根据方差分析,得出结论是:药物治疗某种疾 根据方差分析,得出结论是: 病有显著差异,进一步问: 病有显著差异,进一步问:哪一种药物治疗效果较 好呢? 好呢?
水平 1 2 3 4 5 ni 6 6 6 6 6 均值 7.5 5 4.3333 5.1667 6.1667 标准差 1.6432 1.2649 1.0328 1.472 2.0412
方差分析
又如 – 美国三大汽车公司(A,B,C)生产有五种不同的车型,试 分析汽车的油耗。 Ⅰ 20.3 25.7 24.0 Ⅱ 21.2 24.7 23.1 Ⅲ 18.2 19.3 20.6 Ⅳ 18.6 19.3 19.8 Ⅴ 18.5 20.7 21.4
A B C
公司之间产品油耗有无差异? 汽车型号油耗有无差异?
1)
2)
σ2
2 SEi
ST2
~ χ 2 (n − 1)
~ χ (ni −1), S = ∑S
2
r
σ
2
2 E
i =1
2 Ei
σ2
2 SE
~ χ 2 (n − r)
3)
σ2
2 SA
~ χ 2 (r − 1)
2 S A /(r − 1) 分布的定义知: 由F分布的定义知: F = 2 分布的定义知 ~ F (r − 1, n − r ) S E /(n − r )
数理统计-方差分析
例1
H 1 : 1 , 2 , 3不全相等.
检验假设
H 0 : 1 2 3 , H 1 : 1 , 2 , 3不全相等.
进一步假设各总体均为正态变量,且各总体的 方差相等,但参数均未知. 问 题——检验同方差的多个正态总体均 值是否相等.
解决方法——方差分析法,一种统计方法.
2 SA /( r 1) 在检验水平 下, 由p F 2 k 得 S E /( n r ) k F1 ( r 1, n r )
H0的拒绝域为 :
2 SA /( r 1) F1 ( r 1, n r ) F 2 S E /( n r )
自由度 2
12 14
均
方
F
比
素A 0.00105333
0.00052667 32.92
0.000016
随机误差 0.000192 总 和 0.00124533
F 32.92 F0.05 ( 2,12) 3.89.在水平0.05下拒绝 H 0 . 各机器生产的薄板厚度有显著差异.
在MATLAB中的求解 函数:anova1 格式:p=anova1(x) 说明:对样本X中的多列数据进行单因素方差分析, 比较各列的均值,返回“零假设”成立的概率值,如果 概率值接近于零,则零假设值得怀疑,表明各列的均 值事实上是不同的. 源程序: x=[0.236,0.238,0.248,0.245,0.243; 0.257,0.253,0.255,0.254,0.261; 0.258,0.264,0.259,0.267,0.262]; p=anova1(x’) 助 程序运行结果 方差分析表 Box 图检验 帮
1. 各水平效应 i 的点估计
统计学之方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。
数理统计课件-方差分析(zijiyong)
计算各水平样本均值: ①假定从第i个总体中抽取一个容量为ni的简单随机样本, 第i个总体的样本均值为该样本的全部观察值总和除 以观察值的个数 ni ②计算公式为
x
xi
j 1
ij
ni
(i 1,2,, k )
式中: ni为第 i 个总体的样本观察值个数 xij 为第 i 个总体的第 j 个观察值
通过对数据 误差来源的 分析来判断 不同总体的 均值是否相 等
四、方差分析的基本思想和原理
(一)两类误差 1. 组内误差 组内误差:在因素的同一水平(同一个总体)下,样本的各
2.
观察值之间的差异 比如,同一种颜色的饮料在不同超市上的销售量是不同的 不同超市销售量的差异可以看成是随机因素的影响,或者 说是由于抽样的随机性所造成的,称为随机误差 组间误差 组间误差:在因素的不同水平(不同总体)下,各观察值之 间的差异 比如,同一家超市,不同颜色饮料的销售量也是不同的 这种差异可能是由于抽样的随机性所造成的,也可能是由 于颜色本身所造成的,后者所形成的误差是由系统性因素 造成的,称为系统误差
然后加以比较进行统 计判断,得出结论。
ANOVA 由英国统 计学家R.A.Fisher首 创,为纪念Fisher, 以F命名,故方差分析 又称 F 检验 (F test)。
注:方差分析(Analysis of Variance,简称ANOVA),又称 “变异数分析”或“F检验”.
学习目标:
本章的主要学习目标是要求学生在理解方差分 析基本思想的基础上,掌握单因素和双因素方差分 析的应用原理;重点是要学会方差分析的操作与应 用。
SST=SSE+SSA
实例
超市 (j)
1 2 3 4 5 合计
数理统计第九章 方差分析
r
而 i 0,
i 1
s
j 0,
j 1
1 rs
r i 1
s
ij
j 1
(9.8)
作假设 H01 :1 2 r 0;
(9.9)
H02 : 1 2 s 0;
(9.10)
如果H01成立,则ij与i无关,这表明因子 A对试验结果无显著影响;同理,如果H02成 立,则ij与j无关,这表明因子B对试验结果 无显著影响。
故,给定信度1 ,可得ik的置信区间
( X i X k t / 2 (n r)
11 ni nk
Qe )
பைடு நூலகம்
其中
Qe
Se nr
例9.3 在例9.2中给定=5%,问灯丝的
不同的配料方案对灯泡寿命有无显著 影响?
解:已知r=4, n1=7, n2=5, n3=8, n4=6, n=26. 计算的下列
方差分析表
i 1
i 1
i 1
r
故
ESA s
2 i
(r
1)
2
,
i 1
s
ESB r
2 j
(s
1)
2
,
ESe (r 1)(s 1) 2
i 1
令
QA
r
1 1
SA,
QB
1 s 1SB,
Qe
(r
1 1)(s 1)
Se
则
EQA
r
s 1
r i 1
2 i
2,
EQB
r s 1
s j 1
2 j
2,
EQe 2
当H01真时 EQA EQe , 否则EQA EQe;
灯
数理统计14(方差分析)
总变异
统计量
其中
称为组间均方 (mean square between groups) 或因素均方 (mean square factor),
MSE
SSE nk
称为组内均方 (mean square within groups)
或误差均方 (mean square error),
第一节 单因素方差分析
一、方差分析的原理和方法
效应 (effect): 在试验中的试验结果。 因素 (factor): 影响试验结果的条件。 水平 (lever): 因素所处的不同状态或内部分类。 方差分析的目的:是探讨不同因素、不同水平
之间效应的差异,从而考察各因素对试 验结果是否有显著影响。
试验中只有一个因素取不同的水平进行试 验,而其他因素保持不变,这样的试验称为 单因素试验 (one factor trial), 相应的方差分 析就是单因素方差分析。
表8-5 例8-1的方差分析表
方差 离差
来源 平方和
Source 组间
(因素)
组内 (误差)
总和 (总变差)
SS 442.7
160.5 603.2
自由 度 df 4
15
19
均方
MS 110.68
10.7
F值 MSA MSE
10.34
P值 P<0.05
临界值 F
F0.05(4,15) =3.06
第二节 多重比较
温度(℃) 60 65 70 75 80 合计 86 80 83 76 96
xi j
89 83 90 81 93
91 88 94 84 95
90 84 85 82 94
方差分析的概念与应用
方差分析的概念与应用方差分析(AnalysisofVariance,ANOVA)是统计学中一种重要的数据分析方法,可以用于比较三个或三个以上的平均值之间是否存在显著差异。
它被广泛应用于各个领域,包括医学、社会科学、市场研究等,以解决具有多个因素的数据问题。
本文将介绍方差分析的概念、原理和应用,帮助读者更好地理解和应用这一统计学方法。
什么是方差分析?方差分析是一种统计方法,旨在比较不同组之间的平均数是否存在显著差异。
它基于一个重要的假设:样本之间的差异是由于组内误差和组间误差所引起的。
组内误差是指同一组内个体之间的变异,而组间误差则是指不同组之间的差异。
通过对这两种误差进行比较,我们可以确定组间平均值是否有统计学上的显著差异。
方差分析的本质在于将总的方差分解为组间方差和组内方差,并通过计算统计量F来判断组间方差是否显著大于组内方差。
如果F值大于一定的临界值,则可以拒绝原假设,即认为组间差异较大,存在显著差异。
方差分析的应用场景方差分析可以广泛应用于各种实际问题的解决中,下面我们将介绍几个常见的应用场景。
医学研究在医学研究中,方差分析可以用于比较不同药物或治疗方法在不同组患者中的疗效差异。
以某种疾病的治疗为例,可以将患者随机分为不同的治疗组,然后比较各组的平均治愈时间或治愈率是否存在显著差异。
通过方差分析,可以获得客观而可靠的结果,为治疗方案的制定提供科学依据。
市场研究在市场研究中,方差分析可以用于比较不同产品或广告策略在不同群体中的效果差异。
例如,某家公司想要推出一款新产品,可以将潜在用户随机分为不同受众群体,然后通过方差分析来确定不同产品特性对用户满意度的影响程度,以指导后续的产品改进和市场推广策略。
社会科学研究在社会科学研究中,方差分析可以用于比较不同群体在某种社会现象上的差异。
例如,某项研究想要了解不同年龄段人群对待待人接物的态度差异,可以将人群按年龄分组,然后通过方差分析来确定不同年龄段之间是否存在显著差异。
数理统计CH方差分析pt课件
i1 j1 k 1 ab
原因AB旳互作效应
nij (xij xi x j x )2
i1 j1
ab
MSAB
SSAB
nij (xij xi x j x )2
i1 j1
(a 1)(b 1)
(a 1)(b 1)
2024/9/30
26
6.2 两向分组数据方差分析
平方和代表效应
(12)总离差平方和分解
x1b1
…
x1b,n1b
…
x2b1
…
x2b,n2b
…
…
A单向分组 …
xab1
…
xab,nab
2024/9/30
6
6.2 两向分组数据方差分析
(2)数据模式
➢各个处理(原因A与B旳水平组合)分别独立试
验,第i×j处理反复试验nij次取得nij个观察, 这nij个观察视作第i×j正态总体旳一种样本; ➢全部观察(整个样本)由a×b个独立正态总
互作效应假设 H13 : ij i j 不全为零
2024/9/30
14
6.2 两向分组数据方差分析
(6)统计假设
总效应分解成 各个原因效应
原因A效应假设 H01 :1 2 a 0
H11 : 1,2 ,
,
不全为零
a
原因B效应假设 H02 : 1 2 b 0 H12 : 1, 2 , , b不全为零
23
6.2 两向分组数据方差分析
(10)计算原因B平方和SSB
Var
x j
1
a
nij
Var
n2 j i1 k 1
xijk
2
n j
b
EH0 SSB
统计学中的方差分析
统计学中的方差分析在统计学中,方差分析(Analysis of Variance,简称ANOVA)是一种常用的数据分析方法,用于比较两个或更多个样本均值之间的差异。
它可以帮助研究人员确定这些差异是否是由于随机变异导致的,或者是否存在其他因素对样本均值产生显著影响。
方差分析的基本理念是将总体方差分解为不同来源的方差,以评估各个因素对总体方差的影响程度。
一般情况下,将总体方差分解为组内方差和组间方差两部分。
组内方差反映了同一组内个体之间的差异程度,而组间方差则反映了不同组之间的差异程度。
方差分析的数学模型可以通过以下公式表示:$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$其中,$Y_{ij}$表示第i组中第j个个体的观测值,$\mu$为总体均值,$\alpha_i$为第i组的固定效应,$\epsilon_{ij}$为误差项。
通过方差分析可以检验组间因素($\alpha_i$)对于总体均值是否具有显著影响。
在进行方差分析之前,需要满足以下几个前提条件:1. 独立性:样本观测值彼此之间应独立,即每个观测值的产生不会受到其他观测值的影响。
2. 正态性:每个组内的观测值应呈正态分布,这样才能保证方差分析的结果准确性。
3. 方差齐性:每个组内的观测值应具有相同的方差,即不同组之间的方差应该相等。
方差分析有两种常见的类型:单因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量(或因素)的情况下,用于比较不同水平(或处理)之间的均值差异。
例如,一个研究人员想要比较不同药物治疗方法对疾病恢复时间的影响,可以使用单因素方差分析。
多因素方差分析适用于具有两个或更多个自变量(或因素)的情况。
它可以帮助研究人员分析多个因素之间的相互作用效应。
例如,一个研究人员想了解不同年龄、性别和教育程度对于工资水平的影响,可以使用多因素方差分析。
方差分析的结果可以通过计算统计量F值来判断不同因素对于总体均值的显著影响。
统计学——方差分析概念和方法
统计学——方差分析概念和方法方差分析是一种用于比较两个或多个样本均值之间差异的统计分析方法。
它主要用于分析一个因变量和一个或多个自变量之间的关系,并判断这些自变量对因变量的影响是否存在显著差异。
方差分析主要包括以下几个概念和方法:1.因变量和自变量:方差分析中,我们首先需要明确研究的因变量和自变量。
因变量是我们感兴趣的变量,我们想要比较的两个或多个样本均值;而自变量是我们认为对因变量有影响的变量,可以是类别变量(如性别、教育程度等)或连续变量(如年龄、收入等)。
2.假设检验:在进行方差分析之前,我们需要假设样本均值之间没有显著差异,即为零假设(H0)。
然后,我们通过方差分析来检验零假设是否成立。
3.方差分析的类型:根据自变量的个数和类型的不同,方差分析可以分为单因素方差分析、多因素方差分析和混合方差分析。
单因素方差分析适用于只有一个自变量的情况,多因素方差分析适用于含有多个自变量的情况,而混合方差分析适用于自变量同时包含类别变量和连续变量的情况。
4.方差分析表:方差分析表是用来总结方差分析结果的常用工具。
在方差分析表中,我们可以看到组间方差(组间均方)、组内方差(组内均方)、总体方差(总体均方)以及统计量F值。
通过比较F值与给定的显著性水平,我们可以判断不同样本均值之间是否存在显著差异。
5.假设检验的步骤:进行方差分析时,需要按照以下几个步骤进行假设检验:a.建立假设:H0(样本均值没有显著差异)和H1(至少有一组样本的均值存在显著差异);b.计算各个组的均值;c.计算组间方差和组内方差;d.计算统计量F值;e.判断结果:通过比较F值和临界值来判断是否拒绝零假设。
6. 方差分析的扩展:在方差分析中,我们可以进行一些扩展的分析,如多重比较和建模。
多重比较是用来判断哪些组之间存在显著差异,常用的方法有Tukey法、Duncan法和Scheffe法等。
建模则是通过增加其他变量(如交互效应)来更好地解释因变量的变化。
(完整版)研究生数理统计问答题答案
(完整版)研究生数理统计问答题答案201311。
检验的显著性水平:在假设检验中,若小概率事件的概率不超过α,则称α为检验水平或显著性水平.检验的P 值:拒绝原假设的最小显著水平称为假设检验中的P 值。
2。
参数估计的类型:① 点估计;② 区间估计;参数的点估计的方法:① 矩估计法 基本思想:由于样本来源于总体,样本矩在一定程度上反映了总体矩,而且由大数定律可知,样本矩依概率收敛于总体矩。
因此,只要总体X 的k 阶原点矩存在,就可以用样本矩作为相应总体矩的估计量,用样本矩的函数作为总体矩的函数的估计量。
② 极大似然估计法 基本思想:设总体分布的函数形式已知,但有未知参数θ,θ可以取很多值,有θ的一切可能取值中选一个使样本观察值出现的概率为最大的值作为θ的估计值,记作 ∧θ ,并称为θ的极大似然估计值.这种求估计值的方法称为极大似然估计法。
参数的点估计的评价方法:错误!无偏性;错误!有效性;错误!一致性。
3.假设检验的思想:先假设总体具有某种特征,然后再通过对样本的加工,即构造统计量推断出假设的结论是否合理。
假设检验是带有概率性质的反证法.推理依据:第一,假设检验所采用的逻辑推理方法是反证法.第二,合理与否,所依据的是“小概率事件实际不可能发生的原理”。
参数假设检验步骤:错误!提出原假设和备择假设;错误!选择适当的统计量,并确定其分布形式;错误!选择显著性水平α ,确定临界值;错误!作出结论。
5。
正交试验数据分析方法:○,1直接对比法就是对试验结果进行简单的直接对比。
错误!直观分析法是通过对每一因素的平均极差来分析问题。
所谓极差就是平均效果中最大值和最小值的差。
有了极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。
4。
方差分析的目的:方差分析的目的是通过分析,判定某一因子是否显著,当因子显著时,我们还可以给出每一水平下指标均值的估计,以便找出最好的水平。
方差分析是对多个总体均值是否相等这一假设进行检验。
《概率论与数理统计》实验报告-方差分析以及回归分析精选全文
(2) 计算样本相关系数;
(3) 在显著性水平 0.05下,作线性回归关系显著性检验;
(4) 若线性回归关系显著,求 =25时,电器用电支出的点估计值.
第1步:进入Excel表–>选择【工具(T)】,在下拉菜单中选择【回归】->点击【确定】按钮。
4.掌握方差分析的基本方法,并能对统计结果进行正确的分析.
实验原理
其中:
计算公式:
计算公式:
实验内容
实验过程(实验操作步骤)
实验结果
1.用5种不同的施肥方案分别得到某种农作物的收获量(kg)如下:
施肥方案
1
2
3
4
5
收获量
67
98
60
79
90
67
96
69
64
70
55
91
50
81
79
42
66
35
70
88
第3步:在出现的对话框中输入相关的内容->点击【确定】按钮,得到方差分析结果。
P-value
0.000825
P值=0.000825<0.05,所以认为检验储藏方法对含水率有显著的影响.
4.考察合成纤维中对纤维弹性有影响的两个因素:收缩率及总的拉伸倍数,各取四个水平,重复试验两次,得到如下的试验结果:
(4)
y=0.123x25-1.4254=1.6496则其点估计值为1.6496
第2步:在出现的对话框中输入相关的内容->点击【确定】按钮。
第3步:重新分析,在【回归】对话框中输入相关内容->点击确定按钮,得到结果。
(1)
概率论与数理统计第九章方差分析与回归分析
版权所有 BY 张学毅
10
方差分析的基本思想
7.若不同水平对试验指标值没有影响,则组间误差中只 包含随机误差,没有系统误差。这时,组间误差与 组内误差经过平均后的数值就应该很接近,它们的 比值就会接近1;
8.若不同水平对试验指标值有影响,则在组间误差中除 了包含随机误差外,还会包含有系统误差,这时组 间误差平均后的数值就会大于组内误差平均后的数 值,它们之间的比值就会大于1;
3)该平方和反映的是随机误差的大小。
计算公式为 :
nj s
2
SE
Xij X.j
i1 j1
三个离差平方和的关系
nj s
2s
2 kn
2
XijX nj X.jX XijX.j
i1j1
j1
i1j1
STSASE
总离差平方和=组间平方和+组内平方和
即 EMSE2
2) M S A 是否是总体方差 2 的无偏估计量,与原假设 成立与否有关 。当且仅当原假设成立时,M S A 才是 总体方差 2 的无偏估计量。
EMSA2s1 1js1njj2
2020/3/1
版权所有 BY 张学毅
17
八、方差分析表
通常将上述计算过程列成一张表格,称为方差分析表。
9.当这个比值大到某种程度时,就可以说不同水平之间 存在着显著差异,也就是自变量对因变量有影响。
2020/3/1
版权所有 BY 张学毅
11
六、离差平方和与自由度的分解
总离差平方和 S T ( sum of squares for total)
1)全部观察值 X
与总均值
ij
X
的离差平方和;
研究生 统计学讲义 第5讲 第5章 方差分析
SS组 内
j 1 i 1
k
nj
( X ij X j ) 2
( n j 1) S 2 j
显然SS组内的大小还与各样本例数 nj 的多少有关, 确切地说与自由度df组内(df组内=Σnj - k)有关,所以计算 组内方差,称为组内均方(within group mean square ,记为MS组内,MS组内=SS组内 / df组内=[Σ(nj -1)sj2 ]/ (Σnj -k)。 (3) 组间变异(between groups variation):四组间E-SFC 值的样本均数 x j 也大小不等,这种变异称为组间变异, 它反映了不同处理(中药)的影响,也包括了随机误差。 其大小可用各组均数分别与总均数之差的平方和(记为 SS组间)来表示,
Pmin
m
才推断差异在总检验水准为α下具有统计学意义, 这就是Bonferroni标准,利用Bonferroni标准进行多组 比较的方法,称为Bonferroni校正法。 例5.3 已知表5-1资料满足方差分析的应用条件,试分 析四种用药情况对小白鼠细胞免疫机能的影响是否相 同。
本例资料一个研究因素,满足方差分析的应用条件 ,比较各组总体均数相等用单因素方差分析法。 H0:μ1=μ2=μ3=μ4即各总体均数相等, H1:各总体均数 不全不等;α=0.05
例如有4个样本均数间的两两比较有C42 =4!/[2 !(4-2)!]=6 种情况,即可有 6 次对比,若每次比较 的检验水准α=0.05,则每次比较不犯第一类错误的概 率为0.95,按概率的乘法定理,6 次比较均不犯第一类 错误的概率为(1-0.05)6,这时,总的检验犯第一类错误 的概率为1- 0.956=0.2649,比0.05大多了。 例5.2 曾经有人观察甲、乙两种性激素对成四种中 药纤维细胞生长的影响,以安慰剂为对照,三组样本 含量均为10,结果是甲组为36±4,乙组为39±3,安 慰剂组为40±4。按检验水准α=0.05,使用 t 检验作两 两比较,结论:甲组与乙组组比较 t =1.897,P>0.05 ,差异无统计学意义;乙组与安慰剂组比较,t=0.632 ,P>0.05,差异无统计学意义;甲组与安慰剂组比较 ,t=2.236,P≈0.04,差异有统计学意义。显然在逻辑 上是矛盾的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意到如下的代数式分解:
2 ( X X ) n ( X X ) ( X X ) ij i ij i 2 2 i 1 j 1 i 1 i 1 j 1 k n k k n
分析:1. ( X ij X ) 2 :全部
2 ( X X ) , , ( X X ) kj k 之和,每个有 n-1 1 SSe 是 1 j 2 j 1 j 1 n n
个自由度,故 SSE 应有 k(n-1)个自由度。 所以 SST SSA SSe 相应的一个自由度分解: kn-1 = (k-1 ) + k(n-1)。 在统计上,把一个平方和除以其自由度,称为“平 均平方和” , “均方离差” 或简称 “均方” , 用 MS 记。 例如,因素 A 的平均平方和为: MSA SS A (k 1) 误差平均平方和为: MSe SSe (k (n 1))
由此分解式可写为: SST SSA SSe 。 这就是方差分析的含义:把一个“总方差”SST 分 解为由种种原因 (因素 A, 随机误差等) 形成的 “部 分方差” 。
SST 有 kn-1 个自由度;
SS A 是由 k 个数 X 1 , X 2 , , X k 算出的样本方差,
有 k-1 个自由度;
~
~
N ( 1 , 2 ) ;
N ( 2 , 2 ) ;
~
N ( k , 2 )
H 0 : 1 2 k H 1 : 1 , 2 ,, k 不全相同。
注意: ( X
i 1 j 1 k ni ij
X ) ni ( X i X ) ( X ij X i ) 2 。
j 1,2, , n 。
2
~ N ( 1 , ) 即: 水平 1: X 11 , X 12 ,, X 1 j ,, X 1n ~ N ( 2 , 2 ) 水平 2:X 21 , X 22 ,, X 2 j ,, X 2 n 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 ~ N (i , 2 ) 水平 i: X i1 , X i 2 ,, X ij ,, X in 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 ~ N ( k , 2 ) 水平 k:X k1 , X k 2 ,, X kj ,, X kn
: 1 2 3 , 即 1 , 2 并无区别。
差别。这里面情况很复杂。 例如当 k 3 , 可以有 H 0 当 H0
: 1 2 k 被否定时:
X 1 , X 2 ,, X k
按大小排队,
(1) 把 k 个样本平均值
例如 X 3 X 4 X 1 X 2
试问: 在日产量上, 各台机器之间是否有显著差异 ( 0.05 ) 。 例 1.3:从某校初中二年级的四个平行班各随机抽取一个学 生先后参加五次年级数学竞赛,其结果如下:
试验号 水平
1 81 83 76 70
2 80 89 92 99
3 88 85 83 82
4 85 91 90 80
5 95 88 95 78
k 4 。我们就据此推断
3 4 1 2 。 如 越大越好, 则应挑选水平 3。
(2) 一般地,我们还关心特定的两水平之差。 例如: i
l ,我们用 X i X l 作为 i l 的估计。
而其区间估计则使用 t 分布,具体形式为: (置信系数为
之间的差异就越大,从而各水平之间的差异也 越大。 因 此 , 算 出 X 1 , X 2 ,, X k 的 样 本 方 差 :
S
*2Leabharlann 1 k (X i X )2 〈组间方差〉 , k 1 i 1
反映各水平差异的影响
1 k 1 k n X X i X ij 其中 k i 1 kn i 1 j 1
第五章 方差分析、正交试验设计
一种工业产品的产量或质量往往受到许多因素的 影响。例如,电池的寿命与生产工艺、原材料、工人 操作技术和工厂管理水平等等有关。任何一个因素的 改变都可能对电池的寿命产生一定的影响。为了提高 经济效益, 需要分析各种因素对电池寿命的影响如何, 那些因素是重要的、那些因素是次要的,从而找出一 种最佳的生产条件 (即各因素最佳的配置) , 以达到最 好的经济效益。
以上全部讨论可以总结为下表,即单因素方差分析表。 单因素方差分析表(各水平试验次数相同) 方差来源 (组间) 因素 A (组内) 随机误差 总和 平方和 自由度 k-1 均方
MSA SS A (k 1)
F值
MS A MS e
SS A
SSe
k(n-1)
MS e SSe (k (n 1))
SST
kn-1
在实际计算时,采用以下的步骤:
2 (1) 对每个 i,算出 Ti X i1 X in 及 Ti i 1,2,, k ,从
2 2 T T T , H T T 1 k 而算出 1 k ;
(2) 算出每个 X ij 的平方 X ij ,然后算出它们的和:
( X
i 1 j 1
k
k
n
ij
X ) 2 :“总离差平方和”或“总平方和” ,记为 SST ;
n( X
i 1
k n
i
X ) 2 :“因素 A 平方和”或“组间离差平方和” ,记
为 SS A ;
( X
i 1 j 1
ij
X i ) 2 “误差平方和” : 或 “组内离差平方和” , 记为 SSe 。
则 i 是工艺 i 生产的电池的平均寿命, 方差 2 反映了随机误差的大小。
注意这里 与 i 无关,即假定了随机误差的大小与工艺无关。
2
因此在这个提法中就牵涉到两项假定: 正态性和等方差性
常用的方差分析都是在这两项基本假定下得出的。
所要弄清楚的问题是三种工艺是否有优劣之分,把 “无优劣之分”作为原假设, 即 H 0 : 1 2 3 H 1 : 1 , 2 , 3 不全相同。
§1 单因素方差分析 1.1 模型 单因素问题是指在问题中只考虑一个 对指标有影响的因素 A(应当说明的是, 对指标有影响的因素仅此一个). 把别的因素都适当固定下来,而只让 因素 A 在试验中有变化,以观察和分析 它对指标的影响。这样就构成了一个单 因素问题。
例 1.1:一工厂用三种不同的工艺生产某类型电 池。 从各种工艺生产的电池中分别抽取样本并测 得样本的寿命(使用时间)如下: (单位:小时)
1 )
Xi Xl 2 2 MS E t (k (n 1)) i l X i X l MS E t (k (n 1)) 2 2 n n
1.3 各水平试验次数不一定相同的情况 一切与前面相同,只是在 A 的各水平下的试验次数不一定都等 于同一个 n。这样,就得到如下的模型: 水平 1: X 11 , X 12 ,, X 1 j ,, X 1n1 水平 2: X 21 , X 22 ,, X 2 j ,, X 2 n2 。 。 。。 。 。。 。 。。 。 。。 。 。。 。 。 水平 k: X k1 , X k 2 ,, X kj ,, X knk 要检验假设
2 G ( X X ) ( X X ) X ij 2 11 2 1n 2 k1 2 kn i 1 j 1 k n
2
(3) 计算
SSA 1 1 1 1 H T 2 , SSe G H , SST G T 2 n nk n nk
在方差分析的实践中,习惯上是当某一因素(如此处的 A)在
S * S 2 C ,C 为一常数
2
C 的值依水平数 k, 每水平试验次数及指定的检 验水平 而定。 可以证明:
F nS
*2
n k S ( X i X )2 k 1 i 1
2
k n 1 ( X ij X i ) 2 k (n 1) i 1 j 1
在给定的检验水平 时, 原假设 H 0 : 1 2 k 的拒绝域为:
要检验假设
H 0 : 1 2 k H 1 : 1 , 2 ,, k 不全相同。
先分析随机误差的影响有多大。 看水平 1 下的那 n 个数据 X 11 , X 12 ,, X 1n ,
2 N ( , ) 中抽出的,它们 这全是从同一个总体 1
之间的差异只反映了随机误差的影响,故计算 出其样本方差为:
A1
A2
A3
A4
试问:这四个学生成绩是否存在差异( 0.025 ) 。
现在再回到单因素方差分析的一般模型。 如果检验的结果,原假设 H 0 : 1 则认为该因素各水平效应一样。
2 k 通过了,
如果 H 0
: 1 2 k 被拒绝了, 则认为 1 , 2 ,, k 有
工艺 1 工艺 2 工艺 3 40 46 38 42 44 26 34 30 28 32 39 40 43 48 50
我们感兴趣的指标是电池的寿命,而把“工艺” 作为对它可能影响的“因素” 。这个因素有 3 个 水平:工艺 1 是水平 1,等等。
如果假定第 i 种工艺下生产的电池寿命服从正态分
2 N ( , ) i 1,2,3 , 布 i
全部 kn 个数据 X ij 的算术平均。
* 2 把 S 与 S 比较,即计算比值 S S 。 若此比值大,则说明水平差异的影响大于随机 2
*2
2
误差的影响,这时就只能拒绝 H 0 ; 反之,若比值不大,则说明水平差异的影响未 能大于随机误差的影响,因而不能拒绝 H 0 。
由此,原假设 H 0 : 1 2 k 的拒绝域为