导电高分子材料的研究与应用现状

合集下载

导电高分子材料的研究和应用

导电高分子材料的研究和应用

导电高分子材料的研究和应用近年来,导电高分子材料得到了越来越多的关注。

这种材料能够将电能转化为热能,具有较高的电导率和良好的机械性能,因此在可穿戴电子设备、柔性电子、智能材料等领域具有广泛的应用前景。

本文将就导电高分子材料的研究进展和应用领域进行探讨。

一、导电高分子材料的分类和制备方法导电高分子材料的分类多种多样,包括导电聚合物和导电复合材料等。

其中导电聚合物主要包括导电聚苯胺、导电聚丙烯酰胺和聚电解质等。

这些聚合物具有较高的导电性能和良好的稳定性,可以在应力、温度和化学环境等多种条件下均能保持稳定的电导率。

导电复合材料是指将导电材料与聚合物基体复合而成的材料。

导电材料可以是金属、碳纳米管、石墨烯等等,具有较高的导电性能。

而聚合物基体则可以提供良好的机械性能和稳定性。

导电复合材料的制备方法包括化学合成、物理混合和化学还原等。

二、导电高分子的应用领域1. 可穿戴设备随着移动互联网和物联网技术的不断发展,可穿戴设备逐渐得到人们的关注。

作为这一领域的重要材料之一,导电高分子可以用于制作柔性传感器、智能手表、智能眼镜等设备中的电子元件。

相比于传统的刚性电子元件,导电高分子材料可以更好地贴合皮肤,不影响使用者的日常生活。

2. 柔性电子柔性电子作为一种颠覆性的技术,将改变现有的电子产品设计理念。

导电高分子材料可以在这一领域中扮演重要的角色。

制备柔性电子的关键在于材料的柔软性和可弯折性。

而导电高分子材料具有较好的柔软性和可弯折性,因此可以作为柔性电子的重要材料之一。

3. 智能材料智能材料是指能够对外界刺激做出相应反应的材料。

导电高分子材料可以通过改变电流、温度等条件来实现形变、液滴运动等智能性能。

此外,导电高分子材料还可以应用于电磁屏蔽、光电和声音传感器等领域。

三、导电高分子材料未来的发展方向随着科技的不断发展和人们对高性能、高稳定性的需求不断增加,导电高分子材料未来的发展方向也越来越多样。

以下是未来导电高分子材料的几个发展趋势:1. 提高导电性目前导电高分子材料的电导率还有一定的提升空间。

导电高分子材料的研究进展及其应用

导电高分子材料的研究进展及其应用

导电高分子材料的研究进展及其应用摘要:本文讲述了导电高分子材料的起源、分类以及特点。

综述了导电高分子材料的研究进展及其在各个领域的应用。

关键词导电高分子研究进展应用一、引言1958 年Natta 等人合成了聚乙炔,但是当时并没有引起其他科学家的足够重视。

自从1977年美国科学家黑格(A.J.Heeger)和麦克迪尔米德(A.G.MacDiarmid)和日本科学家白川英树(H.Shirakawa)发现掺杂聚乙炔(Polyacetylene,PA)具有金属导电特性以来[1],有机高分子不能作为电解质的概念被彻底改变。

现在研究的有聚乙炔(Polyacetylene, PAC)、聚吡咯(Polypyrroles,PPY)、聚噻吩(Polythiophenes, PTH)、聚苯胺(Polyaniline,PAN)、聚对苯(Polyparaphenylene, PPP)、聚并苯(Polyacenes,PAS)等,具有许多特殊的电、光、磁和电化学性能。

也因此诞生了一门新型的交叉学科-导电高分子。

这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。

所谓导电高分子是由具有共轭∏键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。

它完全不同于由金属或碳粉末与高分子共混而制成的导电塑料。

导电高分子具有特殊的结构和优异的物理化学性能使它在能源、光电子器件、信息、传感器、分子导线和分子器件, 以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。

因此, 导电高分子自发现之日起就成为材料科学的研究热点。

经过近30多年的发展,导电高分子已取得了重要的研究进展。

二、导电高分子材料的分类按照材料结构和制备方法的不同可将导电高分子材料分为两大类:一类是结构型(或本征型) 导电高分子材料,另一类是复合型导电高分子材料。

导电高分子材料的多功能应用研究

导电高分子材料的多功能应用研究

导电高分子材料的多功能应用研究导电高分子材料是一种具有导电性能的聚合物材料,其具有良好的机械性能、热稳定性和化学稳定性,因此在许多领域具有广泛的应用前景。

本文将讨论导电高分子材料在电子器件、能源存储和生物医学领域的多功能应用研究。

一、电子器件中的导电高分子材料导电高分子材料在电子器件方面的应用日益重要。

其中最常见的应用是柔性电子器件,如可弯曲的面板和可卷曲的显示屏。

导电高分子材料能够实现柔性和可伸缩性要求,且相对于传统的金属电极,具有更轻便、成本更低和更易于制造的优势。

此外,导电高分子材料还在传感器方面展现出巨大的潜力。

例如,柔性温度传感器可以采用导电高分子材料作为传感元件。

这些材料能够快速响应温度变化,提供准确的温度测量。

此外,导电高分子材料还可用于光学传感器、压力传感器等领域,为新型传感器的发展提供了新的机会。

二、能源存储中的导电高分子材料导电高分子材料在能源存储方面也有着广泛的应用。

其中最为重要的应用是锂离子电池。

导电高分子材料在锂离子电池中作为电极添加剂,能够提高电池的性能和循环寿命。

此外,导电高分子材料还被用于超级电容器和燃料电池等能源存储装置中,提高了能量存储和释放的效率。

三、导电高分子材料在生物医学领域的应用研究导电高分子材料在生物医学领域的应用是一个新兴的研究领域。

这些材料常常被用于生物传感器、组织工程和医药释放系统等方面。

例如,导电高分子材料可以用于生物传感器的制备,用来检测生物标志物,如蛋白质、DNA和药物。

通过这些传感器,医生可以更精确地监测病人的健康状况,提供更及时和有效的治疗。

此外,导电高分子材料在组织工程中的应用也备受瞩目。

这些材料可以提供细胞生长和血管新生的支撑,用于修复和重建受损组织。

这为人体组织的再生提供了新的解决方案。

导电高分子材料还可以用于医药释放系统的设计。

通过调整材料的导电性能和结构,可以控制药物在体内的释放速度和时间。

这为药物治疗的精准性和效果提供了新的可能性。

导电高分子材料的研究进展

导电高分子材料的研究进展

导电高分子材料的研究进展导电高分子材料是一种能够传导电流的高分子材料,具有优异的导电性能和灵活的可塑性。

它们广泛应用于电子器件、柔性电子器件、能源存储和传输等领域。

随着科技的不断发展,导电高分子材料的研究也在不断取得进展。

本文将就导电高分子材料的研究进展进行探讨。

近年来,导电高分子材料的研究主要集中在三个方面:一是发展新型的导电高分子材料,二是研究导电机理,三是提高导电性能。

1.发展新型的导电高分子材料石墨烯是一种具有高导电性能的二维材料,其单层厚度仅为一个原子。

由于其优异的导电性能和独特的二维结构,石墨烯被广泛应用于导电高分子材料的开发。

例如,石墨烯可以添加到传统的高分子材料中,以提高其导电性能。

此外,石墨烯的制备方法也在不断改进,例如化学气相沉积和机械剥离技术,以提高石墨烯的制备效率和质量。

除了石墨烯,碳纳米管也是一种具有很高导电性能的材料。

碳纳米管的直径仅为几个纳米,但长度可以达到几个微米甚至更长。

碳纳米管可以在高分子基体中分散,形成导电网络,从而提高高分子材料的导电性能。

此外,一些研究人员还提出了利用纳米粒子和聚合物共同制备导电高分子材料的方法,以获得更好的导电性能。

2.研究导电机理研究导电机理是导电高分子材料研究的重要方向。

目前,导电高分子材料的导电机理主要包括两种:一种是有机导电材料的分子导电机理,即通过有机分子的电荷迁移来实现导电;另一种是金属/高分子复合材料的载流子传输机理,即通过金属粒子或纳米线来传输载流子。

研究导电机理有助于深入理解导电高分子材料的性质,并为其应用提供指导。

3.提高导电性能提高导电性能是导电高分子材料研究的重要目标之一、目前,提高导电性能的方法主要包括以下几个方面:一是通过改变高分子材料的结构和组分来调控导电性能,例如改变共聚物的比例和合成导电高分子材料的共轭结构。

二是通过添加导电剂来提高高分子材料的导电性能,例如添加金属粒子、碳纳米管等。

三是通过改变导电高分子材料的处理方法来提高其导电性能,例如通过拉伸、压印等方法调控高分子链的排列和导电网络的形成。

新型导电聚合物的研究现状

新型导电聚合物的研究现状

新型导电聚合物的研究现状导电聚合物是指可导电的高分子材料,其电导率高达金属的水平,这让其在电子材料领域有了广泛的应用。

目前,广泛应用于电子学和电气工程的导电聚合物包括:聚苯胺(PANI)、聚噻吩(PTh)、聚咔唑(PCz)和聚杂环(PEDOT)等。

然而,这些导电聚合物仍然存在很多局限性,例如电导率、机械强度和化学稳定性。

为了解决这些问题,科学家们开始研究新型导电聚合物,并开发了很多创新性的材料。

本文将介绍新型导电聚合物的研究现状。

1. 碳基导电聚合物碳基导电聚合物是一种新型导电聚合物。

因为碳是可再生、易加工的材料,所以碳基导电聚合物是被广泛研究和开发的。

碳基导电聚合物具有很高的机械性能和化学稳定性,并且能够在液态体系中制备。

碳纳米管和石墨烯也被用于制备碳基导电聚合物。

其中,石墨烯的机械稳定性和热稳定性更高,因此有可能成为未来导电聚合物的重要组成部分。

2. 离子型导电聚合物离子型导电聚合物是一类以离子为基础的高分子材料。

其电导率主要由附属的离子对电子进行传导来实现。

这种类型的材料在生物医学、能量存储和传感器等领域也有较广的应用。

目前,离子型导电聚合物的研究主要集中于优化材料的电荷传导性和光电转换率。

3. 生物可降解导电聚合物生物可降解导电聚合物是一种具有生物可降解性的导电高分子材料。

这种类型的材料可以在进行医学和生物领域的研究时起到很好的协助作用。

生物可降解导电聚合物具有很高的生物相容性,并且可以被生物体内的酶和水分解。

其应用范围十分广泛,包括人工器官、药物缓释、生物传感器和组织工程等领域。

4. 功能性凝胶导电聚合物功能性凝胶导电聚合物是一种具有凝胶属性的导电聚合物材料。

它们通过交联具有导电能力的高分子以形成凝胶状态,并且能够吸附或释放小分子,在羟基和二氧化硅凝胶中的离子的扩散。

这种类型的材料应用于传感器领域中,作为敏感度较高的生物传感器材料。

5. 金属有机框架导电聚合物金属有机框架导电聚合物(MOF)是由金属离子和有机配体形成的网状结构。

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势导电高分子材料的应用非常广泛。

首先,导电高分子材料在电子器件领域具有重要应用。

它们可以作为导电层、电极材料或者作为接触材料应用于OLED、OPV、OFET等器件中,改善器件的性能和稳定性。

其次,导电高分子材料在光电器件方面也有广泛应用。

例如,导电高分子材料可以用作透明电极在柔性有机太阳能电池中,提高电池的可弯曲性和稳定性。

此外,导电高分子材料还可以应用于能源存储领域,例如作为超级电容器的电极材料,提高超级电容器的能量密度和功率密度。

另外,导电高分子材料还可以用于生物传感领域,通过改变电荷转移性质来检测生物分子的存在。

在导电高分子材料的研究领域,目前主要集中在材料合成和性能改进方面。

为了实现导电性能,研究人员通常引入导电性的官能团或者直接制备掺杂型高分子材料。

例如,通过掺杂含有高度共轭结构的杂化分子到高分子材料中,如对苯二甲酸二甲酯(PTCDI)或者卟吩类分子,来提高导电性能。

此外,研究人员还通过优化高分子材料内部的相结构,改善材料的导电性能。

导电高分子材料的发展趋势主要包括以下几个方面。

首先,对于导电高分子材料的研究将趋向于合成方法和材料设计的精确化。

研究人员将继续探索不同的化学合成方法和材料设计策略,以获得具有高导电性能和稳定性的导电高分子材料。

其次,导电高分子材料在柔性电子领域的应用将得到进一步拓展。

随着柔性电子器件的发展,导电高分子材料将成为一个重要的研究和应用领域。

此外,为了提高导电高分子材料的性能和稳定性,研究人员也将继续通过掺杂、界面改性等手段来改进材料性能。

最后,值得注意的是,导电高分子材料仍然存在一些挑战。

首先,导电高分子材料的导电性能相对较差,需要进一步提高。

其次,导电高分子材料的稳定性也需要改进,特别是在长时间使用和极端环境下的应用中。

另外,导电高分子材料的成本也需要进一步降低,以促进其在大规模应用中的普及。

综上所述,导电高分子材料具有广泛的应用前景,在电子器件、光电器件、能源存储、生物传感等领域都有重要作用。

导电聚吡咯的研究

导电聚吡咯的研究

导电聚吡咯的研究一、本文概述导电聚吡咯作为一种新兴的导电高分子材料,近年来在电子器件、传感器、电池以及抗静电涂层等领域展现出了广阔的应用前景。

本文旨在全面综述导电聚吡咯的研究现状和发展趋势,深入探讨其合成方法、导电机理、性能优化及其在各个领域的应用。

文章将首先概述导电聚吡咯的基本性质,包括其分子结构、导电性能以及稳定性等。

随后,将详细介绍导电聚吡咯的合成方法,包括化学氧化法、电化学聚合法等,并分析各种方法的优缺点。

接着,文章将深入探讨导电聚吡咯的导电机理,包括电子传输机制、载流子浓度等因素对导电性能的影响。

还将讨论如何通过改性、掺杂等方法优化导电聚吡咯的性能,以满足不同应用领域的需求。

文章将展望导电聚吡咯在未来的发展趋势,尤其是在新能源、智能材料等领域的应用前景。

二、聚吡咯的合成方法聚吡咯(Polypyrrole,PPy)是一种具有优异导电性能的共轭高分子,其合成方法多种多样。

根据聚合条件和引发剂的不同,聚吡咯的合成可以分为化学氧化法、电化学聚合法和模板法等几种。

化学氧化法是一种最常用的合成聚吡咯的方法,该方法通常以吡咯单体和氧化剂为原料,在适当的溶剂和温度下进行反应。

常用的氧化剂有过硫酸铵、氯化铁、过氧化氢等。

在反应过程中,氧化剂将吡咯单体氧化成阳离子自由基,然后这些自由基之间发生偶合反应,形成聚吡咯链。

化学氧化法简单易行,产物产量大,但得到的聚吡咯通常导电性能相对较低,且不易控制聚合度。

电化学聚合法是一种在电极表面直接合成聚吡咯的方法。

该方法通常在含有吡咯单体的电解质溶液中进行,通过恒电位、恒电流或循环伏安等电化学手段引发吡咯单体的聚合。

电化学聚合法得到的聚吡咯具有高度的结晶度和规整的链结构,因此其导电性能通常优于化学氧化法合成的聚吡咯。

电化学聚合法还可以通过改变电位、电流等参数来调控聚吡咯的形貌和性能。

模板法是一种利用模板剂的限域作用来合成具有特定形貌和结构的聚吡咯的方法。

该方法通常需要先制备一种具有纳米孔道或纳米空腔的模板剂,然后将吡咯单体引入模板剂中,再通过化学氧化或电化学聚合等方法在模板剂内部合成聚吡咯。

导电高分子材料的进展及应用

导电高分子材料的进展及应用

导电高分子材料的进展及应用近年来,随着电子信息技术的迅猛发展,导电高分子材料越来越受到人们的关注。

导电高分子材料不仅具有普通高分子材料的优良性能,还具有良好的导电性、导热性、光学特性和机械性能。

在传感器、聚合物太阳能电池、有机发光二极管、导电墨水等领域具有广泛的应用前景。

目前,导电高分子材料的研究热点主要包括三大方面:第一,寻求新型导电高分子材料,如类金属、碳基高分子材料等,以提高材料的导电性和稳定性;第二,研究合成导电高分子材料的新方法,如单体共聚合法、离子液体法等,以提高材料的性能和制备效率;第三,开发导电高分子材料的新应用,如导电隔热材料、柔性电子器件等,以拓宽其应用范围。

其中,类金属和碳基高分子材料是当前研究的重点。

类金属高分子材料由于具有良好的导电性和机械性能,已被广泛应用于传感器、聚合物太阳能电池等领域。

碳基高分子材料因其具有嵌入式的碳元素,不仅具有好的导电性和机械性能,还具有优异的化学稳定性和生物兼容性,因此也具有广泛的应用前景。

另外,导电高分子材料的制备方法也得到了不断的改进。

单体共聚合法是当前研究的热点之一。

该方法可以将不同单体进行共聚合,以得到具有多种性质的高分子材料;离子液体法则可制备无机-有机复合材料,以提高材料的导电性和稳定性。

最后,导电高分子材料的应用前景也十分广阔。

导电隔热材料是目前研究的热点之一,其可以用于隔热材料和导热材料。

同时,柔性电子器件也是导电高分子材料的研究热点。

相较于传统的硅基材料,导电高分子材料更加轻薄柔软,可以制成柔性电子器件,应用于可穿戴电子、智能家居等领域。

总之,导电高分子材料具有广泛的应用前景,并且其研究重点逐渐向新材料、新方法、新应用领域发展。

相信在不久的将来,导电高分子材料将会得到更广泛的应用。

导电高分子材料的研究进展

导电高分子材料的研究进展

导电高分子材料的研究进展一、本文概述导电高分子材料作为一种新兴的功能材料,因其独特的导电性能和可加工性,在电子、能源、生物医学等领域展现出广阔的应用前景。

本文旨在综述导电高分子材料的研究进展,重点关注其导电机制、性能优化以及实际应用等方面。

我们将简要介绍导电高分子材料的基本概念、分类和导电原理,为后续讨论奠定基础。

接着,我们将重点回顾近年来导电高分子材料在合成方法、性能调控以及导电性能提升等方面的研究成果。

本文还将探讨导电高分子材料在电子器件、能源存储与转换、生物传感器等领域的应用进展,并展望未来的发展趋势和挑战。

通过本文的综述,希望能够为相关领域的研究人员提供有价值的参考信息,推动导电高分子材料的进一步发展。

二、导电高分子材料的分类导电高分子材料可以按照其导电机制、化学结构、应用方式等多种维度进行分类。

从导电机制来看,导电高分子材料主要分为电子导电高分子和离子导电高分子两大类。

电子导电高分子主要依靠其共轭结构中的π电子进行导电,如聚乙炔、聚吡咯、聚噻吩等;而离子导电高分子则通过离子在固态中移动实现导电,如聚电解质、离子液体等。

从化学结构上看,导电高分子材料主要包括共轭聚合物、金属络合物高分子、复合型导电高分子等。

共轭聚合物由于具有大的共轭体系和离域π电子,表现出优异的电子导电性;金属络合物高分子则通过金属离子与高分子链的配位作用,形成导电通道;复合型导电高分子则是通过在绝缘高分子基体中添加导电填料(如碳黑、金属粒子、导电聚合物等),实现导电性能的提升。

在应用方式上,导电高分子材料可以分为结构型导电高分子和复合型导电高分子。

结构型导电高分子本身即具有导电性,可以直接用于电子器件的制备;而复合型导电高分子则需要通过添加导电填料等方式实现导电性能的调控,其导电性能受填料种类、含量、分散状态等多种因素影响。

根据导电高分子材料的导电性能,还可以分为导电高分子、抗静电高分子和高分子电解质等。

导电高分子具有高的导电性,可以作为电极材料、电磁屏蔽材料等;抗静电高分子则主要用于防止静电积累,如抗静电包装材料、抗静电涂层等;高分子电解质则具有离子导电性,可应用于电池、传感器等领域。

导电高分子材料在光电应用中的研究

导电高分子材料在光电应用中的研究

导电高分子材料在光电应用中的研究随着科技的不断进步,光电子技术在我们的生活中扮演着日益重要的角色。

而导电高分子材料作为一种新型的材料,在光电应用中展现出了巨大的潜力。

本文将探讨导电高分子材料在光电应用中的研究进展和应用前景。

首先,我们来了解一下导电高分子材料的基本性质。

导电高分子材料是一种能够传导电流的聚合物材料。

相比于传统的导电材料如金属和半导体,导电高分子材料具有重量轻、柔韧性好以及可塑性强等特点。

这使得导电高分子材料在光电应用领域中具备了独特的优势。

导电高分子材料在光电器件中的应用是研究的热点之一。

目前,已有许多导电高分子材料被应用于有机太阳能电池、有机发光二极管(OLED)以及柔性电子设备等。

以有机太阳能电池为例,导电高分子材料作为太阳能电池的光电转换层,能够将太阳能有效转化为电能。

同时,导电高分子材料的柔性特性使得太阳能电池具备了更大范围的应用空间,可以被应用于建筑外墙、交通工具以及可穿戴设备等。

另外,导电高分子材料在光电储能领域也有广阔的应用前景。

光电储能技术是未来能源领域的重要方向之一。

通过将能量转化为电能并存储起来,实现高效利用。

导电高分子材料由于其导电性,可以被应用于光电储能设备中的电池、超级电容器等。

这不仅能够提高储能设备的性能,还可以大大提高储能设备的可靠性和寿命。

然而,导电高分子材料在光电应用中仍面临一些挑战。

首先是导电性能的稳定性问题。

由于导电高分子材料易于因光照、湿度以及温度等环境条件的变化而导致性能的衰减,因此需要通过合理的结构设计和材料改性来提高导电性能的稳定性。

此外,导电高分子材料的制备成本也是一个挑战。

目前,导电高分子材料的制备方法相对复杂且成本较高,需要进一步的研究和发展来降低成本,提高制备效率。

综上所述,导电高分子材料在光电应用中具有巨大的发展潜力。

随着科技的进步和人们对绿色能源的需求增加,导电高分子材料将在太阳能电池、发光二极管、电池等光电器件中发挥重要作用。

导电高分子材料制备及应用研究进展

导电高分子材料制备及应用研究进展

导电高分子材料制备及应用研究进展摘要:在介绍导电高分子材料导电机理的基础上,对目前最常见的两种导电高分子材料的制备方法进行综述;重点讨论了含大型离域π键导电高分子材料、化学掺杂型共轭结构导电高分子材料和新型本征导电高分子材料等本征型导电高分子材料的制备方法,并研究了金属及其氧化物、碳系纳米材料、有机组分以及新型导电填料等对填充型导电高分子材料导电性能的影响;同时对其在电子电器材料、生物医学以及环境保护等方面的应用进行了总结,展望了新型导电高分子材料未来的应用研究方向。

关键词:导电高分子材料;导电机理;电子电器;纳米粒子随着电子信息技术的不断发展,新型电子电器材料的开发成为目前材料研究领域中的一个热点。

传统的金属类材料成本较高、耐化学腐蚀性不足且加工过程复杂,在使用时有一定的局限性[1–2]。

高分子材料具有质量轻、化学结构灵活、耐湿热性能优异等特点[3],尤其在其改性之后能够具备良好的导电性能,因此导电高分子材料正在初步取代传统的电子材料[4]。

目前常见的导电高分子材料主要分为两种,一是本征型导电高分子材料,即通过分子设计的方法,使其材料结构内的π共轭结构能够提供一定数量导电载流子,由原来的绝缘材料转化为导电材料[5],二是填充型导电高分子材料,即在高分子基体中加入一定的导电填料,使其在分子内部形成能够传递电子的粒子链[6]。

笔者在对不同导电高分子材料制备方法进行总结的基础上,讨论了其在电子电器、生物医学以及环境保护领域的相关应用,并展望了导电高分子材料未来的研究发展方向。

1 导电高分子材料的制备二十世纪七十年代,C. K. Chiang等[7]首次制备出了具有导电性能的聚乙炔,导电高分子材料的概念开始兴起,经过四十年的深入研究和发展,各种新型导电高分子材料不断被开发出来,并在电子设备、航天航空以及工业材料领域中展现出广阔的应用潜力。

本征型导电高分子材料和填充型导电高分子材料虽然都具有良好的导电性能,但是合成方法及综合性能有一定的区别,在实际生产中,应当根据高分子材料的使用范围即技术要求选择适当的制备方法。

导电高分子在作为电极材料方面的应用

导电高分子在作为电极材料方面的应用
导电高分子在作为电极材料 方面的应用
• 导电高分子简介 • 导电高分子在电极材料中的应用 • 导电高分子电极材料的性能优势
• 导电高分子电极材料的应用前景 • 导电高分子电极材料的挑战与展望
01
导电高分子简介
导电高分子定义
01
导电高分子是指具有高导电性能 的高分子材料,其导电性能通常 通过掺杂或化学结构的设计来实 现。
在其他领域的应用
总结词
详细描述
导电高分子在其他领域的应用包括电磁屏蔽、 电致变色器件、电致动器件等。
导电高分子可以吸收和反射电磁波,具有优 异的电磁屏蔽效果;同时也可以在电场的作 用下发生颜色变化,用于显示器件和传感器 的制作;此外,导电高分子还可以用作驱动 器材料,具有响应速度快、驱动力大等优点。
易于加工和制造
总结词
导电高分子电极材料易于加工和制造,能够实现规模化生产,降低成本。
详细描述
导电高分子电极材料具有良好的加工性能,可以通过溶液涂布、静电纺丝、熔融挤出等方式制备成薄 膜、纤维或三维多孔结构等不同形貌的电极材料。这种易于加工和制造的特点使得导电高分子电极材 料在实际应用中具有较大的优势和潜力。
性。
在电极材料中,这些导电高分子 可以与其他活性物质复合使用, 提高电极材料的性能和稳定性。
这些导电高分子电极材料在微型 电池、柔性电池和植入式医疗设 备等领域具有广泛的应用前景。
03
导电高分子电极材料的性能优势
良好的导电性能
总结词
导电高分子电极材料具有良好的导电性能,能够快速传输电荷,降低电阻,提 高电化学反应效率。
03
总结词
导电高分子电极材料的规 模化制备是实现其广泛应 用的重要前提。
详细描述

导电高分子材料的最新进展及应用领域

导电高分子材料的最新进展及应用领域

导电高分子材料是一种具有导电性的聚合物材料,它在近年来取得了巨大的进展,并在许多领域中得到广泛应用。

本文将深入探讨导电高分子材料的最新进展和应用领域,以帮助读者更好地理解这一领域的前沿技术。

首先,让我们先了解一下导电高分子材料的基本概念。

导电高分子材料是一种具有电导性能的聚合物材料,它能够传导电流,并具有一定的导电性能。

相比传统的非导电聚合物材料,导电高分子材料具有多种独特的性能和应用优势。

它们既能发挥聚合物材料的机械柔性和化学稳定性,又能提供导电性能,因此受到了广泛的关注。

在过去的几年里,导电高分子材料领域发生了许多重要的进展。

其中一个重要的进展是新型导电高分子材料的开发。

传统的导电高分子材料通常是通过掺杂导电添加剂或导电材料来实现导电性能,但这种方法会导致材料的导电性能不稳定或导电性能低下。

因此,研究人员开始开发新型的导电高分子材料,旨在提高材料的导电性能和稳定性。

最近的研究表明,通过将导电材料纳米颗粒均匀分散于聚合物基体中,可以有效地提高导电高分子材料的导电性能。

同时,研究人员还开发了一种独特的自组装方法来制备导电高分子材料,这种方法不仅能够提高材料的导电性能,还能够控制材料的结构和性能。

除了新型导电高分子材料的开发,导电高分子材料在许多应用领域中也取得了重要的进展。

其中一个应用领域是柔性电子学。

导电高分子材料具有良好的柔性和可塑性,因此非常适合用于制备柔性电子器件。

例如,导电高分子材料可以用于制备柔性显示屏、可穿戴设备和柔性太阳能电池等。

这些器件具有轻薄、可弯曲和可卷曲的特点,能够适应各种复杂的曲面和环境,因此在电子产品的设计和制造中有着广泛的应用前景。

此外,导电高分子材料还可以应用于能量存储和传输领域。

由于其良好的导电性能,导电高分子材料可以用于制备高性能的超级电容器和锂离子电池等能量存储设备。

相比传统的能量存储材料,导电高分子材料具有高能量密度、高功率密度和长循环寿命等优势,因此在新能源领域具有巨大的应用潜力。

导电高分子材料的制备与应用研究

导电高分子材料的制备与应用研究

导电高分子材料的制备与应用研究第一章导电高分子材料的概述导电高分子材料是一种具有良好电导性能的高分子材料,其在电子学、能源存储、催化反应等领域具有广泛应用。

本章将介绍导电高分子材料的特点及其在各领域的应用。

第二章导电高分子材料的制备方法2.1 化学合成法化学合成法是导电高分子材料制备的常用方法之一。

通过合成不同结构的共轭聚合物,使其具有良好的导电性能。

这种方法的关键是选择合适的单体和合成条件。

2.2 电化学合成法电化学合成法是一种简单有效的制备导电高分子材料的方法。

通过在电极上进行电化学聚合反应,使聚合物拥有导电性。

这种方法具有操作简便、反应条件温和等优点。

2.3 机械混合法机械混合法是一种常用的导电高分子材料制备方法。

通过混合共轭聚合物和导电填料,如碳纳米管、石墨烯等,实现导电高分子材料的制备。

这种方法简单易行,且可以调控导电性能。

第三章导电高分子材料的应用3.1 电子学领域导电高分子材料在电子学领域具有重要应用。

它们可以作为柔性电子器件和有机发光二极管的材料,用于制备柔性显示屏、柔性电池等。

3.2 能源存储领域导电高分子材料在能源存储领域具有广泛应用。

通过修饰导电聚合物的结构,可以制备高效的超级电容器和锂离子电池,实现能量的高效存储和释放。

3.3 催化反应领域导电高分子材料在催化反应领域也具有重要应用。

通过合成具有导电性的催化剂,可以实现电催化反应,提高催化反应的效率和选择性。

第四章导电高分子材料的未来发展趋势导电高分子材料的研究与应用仍处于不断发展的阶段。

随着科技的进步和需求的增加,导电高分子材料将在更多领域展现其应用价值。

未来,需要进一步研究材料的导电机理、制备方法和性能优化,推动导电高分子材料的发展。

结论导电高分子材料作为一种具有良好导电性能的材料,正在广泛应用于电子学、能源存储、催化反应等领域。

通过不同的制备方法,可以获得具有不同导电性能的导电高分子材料。

未来的研究应着重于进一步优化材料的性能,推动导电高分子材料的应用发展。

导电高分子材料的合成与性能研究

导电高分子材料的合成与性能研究

导电高分子材料的合成与性能研究近年来,随着电子科技的迅速发展,导电高分子材料成为了研究的热点。

导电高分子材料被广泛应用于柔性电子、光电器件和生物传感器等领域,异质结构的设计和表面改性提升了其导电性能。

本文将探讨导电高分子材料的合成方法、性能研究以及未来的发展趋势。

一、合成方法目前,合成导电高分子材料的方法有很多种。

其中,化学氧化法是最常见的方法之一。

通常,通过在聚合物中添加导电性单体,如苯并噻唑或噻吩单体,然后利用硝酸和硫酸等化学试剂进行氧化反应,使聚合物具有导电性。

此外,溶胶-凝胶法也是一种制备导电高分子材料的常见方法。

该方法主要是通过溶胶的形成和凝胶的固化来合成导电高分子材料,其中,控制溶胶中高分子链的排列和交联程度对制备的导电高分子材料的性能至关重要。

此外,还有其他一些合成方法,如电聚合法、电化学聚合法和光聚合法等。

电聚合法是将电解质参与聚合反应,通过电流引发聚合反应,最终合成出导电高分子材料。

电化学聚合法是通过电位调节合成过程中的氧化还原反应,控制聚合物链的交联程度和电导率。

光聚合法则是利用紫外光或激光对聚合物单体进行激发,形成导电高分子材料。

二、性能研究导电高分子材料的性能研究主要包括导电性、力学性能、光学性能和热学性能等方面。

导电性是导电高分子材料最基本的性能之一,其导电性能直接影响材料在电子器件中的应用。

高导电性能可以提高电子器件的响应速度和传导效率。

力学性能是导电高分子材料的另一个重要性能,它决定了材料在实际应用中的可靠性和稳定性。

光学性能则是导电高分子材料在光电器件和光传感器等领域的重要性能,通过调控材料的光学性能,可以实现特定的光电转换功能。

热学性能则关注材料在高温环境下的稳定性和热导率。

此外,导电高分子材料的环境适应性和生物相容性也是研究的重点。

随着可穿戴设备和生物传感器技术的快速发展,对材料的环境适应性和生物相容性要求也越来越高。

所以,研究者们通过对导电高分子材料的结构和组成进行调控,来提高其在复杂环境和生物体内的稳定性和生物相容性。

新型导电高分子材料的制备及应用研究

新型导电高分子材料的制备及应用研究

新型导电高分子材料的制备及应用研究一、绪论随着人们生活水平的不断提高,电子、通讯、领域成为了人们生活中不可或缺的一部分。

导电高分子材料,作为一种新型的功能材料,近年来吸引了越来越多的研究者的关注,因其在电子和通讯领域的广泛应用。

本文将从新型导电高分子材料的制备及应用两个方面进行探讨。

二、新型导电高分子材料的制备A.导电高分子材料的定义导电高分子是指具有导电性能的高分子材料,其不只是单纯的高分子材料,而也具备金属、半导体和非晶体等多种材料的特性。

导电高分子材料本身具有优异的电学和机械性质,是近年来备受关注的重要研究领域之一。

B.导电高分子材料的分类根据不同的导电机理,可以将导电高分子材料划分为两类:1.掺杂型导电高分子材料:在合成或后处理过程中添加能够提供电子的小分子或高分子。

2.共轭聚合物:是指由共轭单元重复单元组成的高分子,由于周边单元间电子共享而实现高分子材料的导电。

C.导电高分子材料的制备导电高分子材料的制备包括掺杂型导电高分子材料和共轭聚合物两种类型。

具体方法有:1.化学合成在化学合成中,通过化学反应或者高分子化学反应将掺杂剂或共轭单元与高分子主链引入到一起。

化学合成过程中,需要考虑反应条件、合成质量、掺杂剂的选择等多种因素。

2.物理掺杂物理掺杂是将掺杂剂分散在高分子分子链之间的方法。

该方法分为高分子反应法和物理混合法。

物理混合法通常采用简单的干燥法、滴加法、溶液浸渍法等方法,将高分子颗粒与掺杂剂共存于同一体系中。

3.自组装法自组装法是将掺杂剂与高分子相互作用形成有序多层结构,以提高导电性。

自组装方法的优点是能够直接控制纳米尺度的层和空隙,从而精确控制掺杂剂的形成与导电性质。

3.离子注入法离子注入法是将高能的离子注入材料,以改变高分子链的电子结构,影响导电性能的方法。

三、新型导电高分子材料的应用A.导电高分子材料在电子领域中的应用1.防静电材料导电高分子材料的导电性能可以达到电阻率在10^-4~10^-7Ω.cm之间,这种导电性能可以被广泛用于防静电行业中。

导电高分子材料的研究与应用现状

导电高分子材料的研究与应用现状

ISSN1008-9446 CN13-1265 T E承德石油高等专科学校学报Journal of Chengde Petro lecum Co llege第5卷第3期,2003年9月V o l.5,N o.3,Sep.2003导电高分子材料的研究与应用现状田乃林Ξ(承德石油高等专科学校教务处,河北承德 067000)摘要:主要介绍了聚乙炔、聚吡咯、聚噻吩、聚苯胺、聚对笨乙烯撑这几类导电高分子在近年来的研究进展。

综述了提高导电高分子的电导率,改善其溶解性及可加工性的方法,以及导电高分子在电子器件、电池、电磁屏蔽材料、导电橡胶、透明导电膜等方面的实际应用和将来的研究方向。

关键词:导电高分子;聚乙炔,聚苯胺;聚吡咯;聚噻吩;中图分类号:TB324 文献标识码:A 文章编号:100829446(2003)0320019204Research on Conductive Poly m er and Its Appl ica tionT I AN N ai2lin(Educati onal A dm in istrati on,Chengde Petro leum Co llege,Chengde067000,Ch ina)Abstract:T h is paper deals w ith the recen t research p rocess of such conductive po lym ersas po lyacetylene,po lyan iline,po lypyrro le,and po lyth i op hene,focu sing on the m ethods ofi m p roving the conductivity,the so lub ility and the w o rkab ility.A lso,their app licati on andthe fu tu re are in troduced here.Key words:conductive m acrom o lecu le po lym er;po lyacetylene;po lyan iline;po lyp yrro le;po lyth i ophene 近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科[1~3]。

导电高分子复合材料的制备与应用研究

导电高分子复合材料的制备与应用研究

导电高分子复合材料的制备与应用研究引言:导电高分子复合材料是将导电性能与高分子材料相结合的新型材料,具有导电性能和高分子材料的优势。

其制备和应用研究已经成为材料科学领域的热门课题之一。

本文将主要探讨导电高分子复合材料的制备方法、特性以及广泛应用的领域。

一、导电高分子复合材料的制备方法1. 浸渍法:浸渍法是一种常见的制备导电高分子复合材料的方法。

首先,将导电填料浸泡在溶解高分子的溶液中,使其充分吸收高分子材料。

然后,在干燥过程中,通过高温烘烤使高分子材料凝聚并结合导电填料,形成复合材料。

2. 敲击法:敲击法是制备导电高分子复合材料的一种新方法。

该方法通过在高分子材料表面敲击金属纳米颗粒,将纳米颗粒引入高分子材料中。

这种方法不仅可以实现纳米颗粒的导电功能,还可以增强高分子材料的强度和韧性。

3. 拉伸法:拉伸法是一种利用拉伸过程中材料断裂产生的空隙来引入导电填料的方法。

首先,在高分子材料中添加导电填料,然后进行拉伸过程。

在拉伸过程中,高分子材料会断裂,并在断裂中形成空隙,导电填料会填充到这些空隙中。

通过这种方法制备的导电高分子复合材料具有优异的导电性能。

二、导电高分子复合材料的特性1. 导电性能:由于导电填料的添加,导电高分子复合材料具有优异的导电性能。

导电填料可以是金属纳米颗粒、碳纳米管或导电聚合物,这些材料能够形成导电网络并传导电流。

2. 机械性能:导电高分子复合材料不仅具有导电性能,还保持了高分子材料的机械性能。

高分子材料具有轻质、高强度和韧性的特点,将其与导电填料相结合可以有效增强复合材料的机械性能。

3. 热稳定性:部分导电填料具有优异的热稳定性,因此导电高分子复合材料也具有较好的热稳定性。

这种特性使得导电高分子复合材料在高温环境中能够保持稳定的导电性能。

三、导电高分子复合材料的应用研究1. 电子器件:导电高分子复合材料在电子器件中有着广泛的应用。

例如,导电高分子材料可以用于制备导电电路板、柔性显示屏和聚合物太阳能电池。

导电高分子聚苯胺及其应用

导电高分子聚苯胺及其应用

3、传感器领域
3、传感器领域
聚苯胺作为一种敏感材料,在传感器领域有着广泛的应用。通过化学或电化 学掺杂,聚苯胺的导电性能发生变化,利用这种特性可以制造出各种传感器。例 如,基于聚苯胺的酸碱传感器可以用来检测溶液的酸碱度,而聚苯胺基的压力传 感器则可以用于监测压力变化。
Байду номын сангаас
三、研究方法
1、化学反应机理
导电高分子聚苯胺的合成
3、聚合反应:将苯胺单体、氧化剂和催化剂混合在一起,在适当的温度和压 力条件下进行聚合反应。
导电高分子聚苯胺的合成
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高分子聚苯 胺。
4、后处理:通过后处理步骤, 如脱色、干燥等,得到纯净的导 电高分子聚苯胺。
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高 分子聚苯胺。
导电高分子聚苯胺及其应用
01 引言
目录
02 一、研究现状
03 二、应用领域
04 三、研究方法
05 参考内容
引言
引言
导电高分子材料在当代科技领域具有广泛的应用前景,其中聚苯胺作为一种 新型的高分子导电材料备受。聚苯胺具有优异的导电性能、良好的化学稳定性和 易于制备等优点,成为一种极具潜力的导电高分子材料。本次演示将详细介绍聚 苯胺的研究现状、应用领域及研究方法,并展望其未来发展方向。
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高 分子聚苯胺。
3、功能性应用研究:除了传统的电子、航天、建筑等领域,探索聚苯胺在新 能源、生物医学等领域的应用,如作为电池材料、生物传感器等。
4、后处理:通过后处理步骤,如脱色、干燥等,得到纯净的导电高 分子聚苯胺。
4、理论计算模拟:通过理论计算和模拟,深入了解聚苯胺的分子结构和性能 之间的关系,为材料的设计和优化提供指导。

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势

导电高分子材料的应用研究状况及发展趋势导电高分子材料是一种具有导电性能和高分子特性的材料,在各种应用领域具有广泛的应用前景。

导电高分子材料的研究始于20世纪60年代,随着科技的快速发展,导电高分子材料的研究逐渐取得了突破性进展,已经在电子存储器、显示器、光电子器件、电池等领域得到了广泛应用。

未来,导电高分子材料的研究和应用将继续向以下几个方向发展。

首先,导电高分子材料的应用领域将进一步扩大。

目前,导电高分子材料主要应用于电子器件、传感器和光电设备等领域,但随着人们对新能源和环保技术的需求增加,导电高分子材料将在能源存储、能源转换和环境保护等领域得到更广泛的应用。

例如,导电高分子材料可以应用于太阳能电池和燃料电池中,提高能量转换效率;在环境保护领域,导电高分子材料可以用于制备高效的电极材料,用于污水处理和气体分离等环保技术。

其次,导电高分子材料的性能将持续提升。

目前,导电高分子材料的导电性能已经相对成熟,但其导电性能仍然不及金属和半导体材料。

因此,未来的研究将致力于提高导电高分子材料的导电性能,使其能够达到或接近金属和半导体材料的水平。

例如,研究人员可以通过合成新的高分子材料、优化材料结构和调控材料表面等方法提高导电高分子材料的导电性能。

第三,导电高分子材料的组装和加工技术将进一步完善。

导电高分子材料的组装和加工技术是实现其应用的重要环节。

目前,导电高分子材料的组装和加工技术还比较简单和原始,制备的导电高分子材料通常具有较低的导电性能和机械强度。

因此,未来的研究将致力于开发新的组装和加工技术,以提高导电高分子材料的性能和可加工性。

例如,研究人员可以通过纳米级操控技术、刻蚀技术和纺丝技术等方法制备具有高导电性和优异力学性能的导电高分子材料。

最后,导电高分子材料的环境适应性将得到提高。

由于导电高分子材料通常具有较低的稳定性和耐用性,限制了其在实际应用中的推广和应用。

因此,未来的研究将致力于提高导电高分子材料的环境适应性,使其能够在恶劣的环境条件下稳定工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导电高分子材料的研究与应用现状
摘要: 主要介绍了聚乙炔、聚吡咯、聚噻吩这几类导电高分子在近年来的研究进展。

综述了提高导电高分子的电导率, 改善其溶解性及可加工性的方法, 以及导电高分子在电子器件、电池、电磁屏蔽材料等方面的实际应用。

关键词: 导电高分子
近年来, 导电高分子的研究取得了较大的进展, 科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已成为一门相对独立的学科。

目前研究比较多的结构型导电高分子主要有聚乙炔、聚芳杂环化合物及其衍生物、聚芳环和芳稠环化合物及其衍生物。

1 导电高分子材料的研究进展
1.1 聚乙炔
聚乙炔是研究最早、最系统,也是迄今为止实测电导率最高的电子聚合物。

采用对聚合催化剂进行高温陈化的方法, 聚合物力学性质和稳定性有明显改善, 高倍拉伸后具有很高的导电性。

有人用稀土及烷基铝作催化剂, 通过改变溶剂或添加剂的种类及稀土烷基铝的比率获得了具有纤维状结构的聚乙炔薄膜, 其电导率在10~1000 S/cm。

还有人通过增重法及红外电子自旋共振法研究了不同催化体系得到的聚乙炔的空气稳定性, 清楚了聚乙炔中的共轭双键易与空气中的氧气发生反应生成羰基化合物, 导致聚乙炔的共轭结构被破坏, 降低其电导率。

为了改善聚乙炔的导电溶解等性能, 人们研究了各种取代聚乙炔,发现乙炔有取代基时, 聚合物的电导率降低, 但却大大改善了它的溶解性, 取代聚乙炔大多数都是可溶的,且取代聚乙炔,尤其是含氟炔烃的稳定性还比聚乙炔好。

1.2 聚芳杂环化合物
(1)聚吡咯。

聚吡咯也是发现早并经过系统研究的导电聚合物之一。

由于聚吡咯容易合成, 导电率高, 科研人员对其进行了广泛而深入的研究, 并且逐渐向工业实际应用方向发展。

但其有难溶难熔的缺陷, 难以加工成型。

采用吡咯单体在聚甲基丙烯酸甲酯(PMMA )的乙酸乙酯溶液中, 以三氯化铁作为氧化剂进行现场氧化聚合得到了复合聚吡咯2聚甲基丙烯酸甲酯, 电导率高达3.05S/cm ,而且该复合导电薄膜在空气中的稳定性极好。

为了改善其溶解性, 3位取代的聚吡咯衍生物引起了人们的广泛注意, 这类聚吡咯衍生物有些是可溶的。

目前已经分别合成了聚(3-烷基吡咯) , 聚(3-烷基噻吩吡咯) 等。

闫廷娟采用以丙烯酸甲酯, 苯乙烯和丙烯酸为单体进行乳液聚合而合成新型P(BSA ),以其为基体,交联后在
低温下吸附吡咯蒸气同时进行氧化聚合,得到新型的聚吡咯导电复合薄膜, 电导率可达220S/cm。

在3位上引入带有双苯基聚吡咯,其可溶可熔,电导率为10-4~10-3 S/cm。

(2)聚噻吩。

相对于其它几种导电高分子, 聚噻吩类衍生物大多数具有可溶解、高电导率和高稳定性等特性。

TenKw anyue 等合成了一系列烷基取代聚噻吩衍生物, 掺杂前为深红色, 掺杂后聚3-甲基噻吩和聚3-已基噻吩最高电导率达1~5S/cm。

用电解聚合法也可得到导电聚噻吩及其衍生物。

在单体中引入取代基,聚合物电导率可达1000S/cm 以上的较高指标。

在噻吩的3位上引入甲氧基,聚(3-甲氧基噻吩)的电导率为15S/cm , 可溶于碳酸苯撑酯和二甲基亚砜中, 并可浇注成膜。

日本的小林等采用FeCl3化学氧化法使3-丙基磺酸钠噻吩聚合,制得分子量10万、电导率为0. 1 S/cm 的水溶性和自掺杂聚合物。

另外,美国的Pat ilr 则采用电解聚合法合成了侧链上具有丁基磺酸基的蓝色可溶性聚噻吩。

若在聚噻吩的3,4位上引入环氧烷烃二羟基,可使聚合发生在2,5位上,这样的导电聚合物同时具有较好的导电性和稳定性, 且具有电致变色。

2 导电高分子的应用
导电高分子材料具有易成型、质量轻、柔软、耐腐蚀、低密度、高弹性, 具有优良的加工性能, 可选择的电导率范围宽, 结构易变和半导体特性, 且价格便宜等特点。

导电聚合物不仅在国民经济、工业生产、科学实验和日常生活等领域具有极大的应用价值, 而且孕育的巨大潜在商机已使许多企业家将目光聚焦于导电高分子产品的开发和应用研究上。

2.1 电子器件—二极管、晶体管的应用
导电高分子材料在电子仪器部件中的应用得到迅速发展。

1977年后, 黑格利用导电聚合物发明了一种超薄并可以弯曲的电子器件—发光二极管, 迈出了导电高分子实用化的第一步。

1986 年日本又用聚噻吩制成了场效应管。

这将是导电高分子未来规模化应用的一个重要突破口。

1990年英国剑桥大学R. H. F riendt 首次报道具有半导体特性的导电高分子可以用于高分子发光二极管以来,高分子发光二极管的研究已成为90年代的研究热点。

现在,发光二极管的性能已发展到可以与无机发光材料相媲美的程度,相继出现的聚乙炔、聚吡咯、聚噻吩二极管已部分实现了商品化,与传统的无机发光二极管相比,高分子发光二极管具有颜色可调、可弯曲、大面积和低成本等优点。

当前的研究主要是解决器件的发光效率及其寿命, 正向实用化的方向发展。

这一研究热点似乎成为导电高分子领域实现导电高分子实用化的突破口。

2.2 电磁屏蔽材料
传统的电磁屏蔽材料多为铜, 随着各种商用和家用的电子产品数量的迅速增加, 电磁波干扰已成为一种新的社会公害。

对计算机房、手机、电视机、电脑
和心脏起博器等电子仪器、设备进行电磁屏蔽是极为重要的。

直接使用混有导电高分子材料的塑料做外壳, 因其成形与屏蔽一体较其他方法更为方便, 而导电聚合物具有防静电的特性, 因此它也可以用于电磁屏蔽, 而且其成本低, 不消耗资源, 任意面积都可方便使用, 因此导电高分子是非常理想的电磁屏蔽材料替代品,利用这一特性, 人们已经研制出了保护用户免受电磁辐射的电脑屏保。

这方面聚苯胺被认为是电磁干扰屏蔽最有希望的新材料, 也是制造气体分子膜的理想材料。

2.3 电池
导电聚合物具有掺杂和脱掺杂的特性, 因此可以用作弃放电的电池和电极材料。

日本钟纺公司已成功开发了聚乙炔塑料电池,以其质轻而大受消费者欢迎。

在这方面, 聚吡咯具有很大的优势, 它有较高的掺杂程度和更强的稳定性, 对电信息的变化也非常敏感, 如果在传统的纺织物上涂上聚吡咯就能使其变成导电体, 因此可溶性的聚吡咯可用于监测低浓度挥发性有机物的高灵敏度化学传感器。

聚乙烯用于二次电池的电极材料及太阳能电池材料,如果有机物的耐久性问题和高压下稳定的有机溶剂问题获得解决,那么,具有合成高分子的易生产加工成膜和可挠曲等特点的轻易、小型、高比能量的二次电池就有可能实现商品化。

有机光电导体材料的有机太阳能电池还只是在开发之中, 与无机光电导体相比, 有机光电导体一般都具有阻值高, 稳定性(耐用性) 差等缺点, 但它有便宜,可大量生产, 器件制造简单而大面积化,可选择吸收太阳光的物质等优点, 因此,有希望成为太阳能电池和材料。

总之,导电高分子在能源、光电子器件、电磁屏蔽乃至生命科学都有广泛的应用前景。

随着技术创新和研究的深入,解决了一些应用方面的问题,我们相信,不久的将来导电高分子必将对传统电子材料带来一场新的技术革命。

相关文档
最新文档