一元一次方程 优秀教学设计(教案)

合集下载

《一元一次方程》的优秀教案(9篇)精选全文完整版

《一元一次方程》的优秀教案(9篇)精选全文完整版

可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。

进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。

教学难点分析实际问题中的相等关系,列出方程。

教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。

本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇

初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。

符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。

同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。

为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。

教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。

本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。

教学方法是“引导分类归纳”。

本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。

教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。

过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。

情感与态度:增强应用数学的意识,激发学习数学的热情。

教学重点:从实际问题中寻找相等关系。

教学难点:从实际问题中寻找相等关系。

学习路线:篇二1、阅读课本。

2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。

(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。

一元一次方程定义教案(汇总16篇)

一元一次方程定义教案(汇总16篇)

一元一次方程定义教案(汇总16篇)一元一次方程教案3.使学生初步养成正确思考问题的良好习惯.。

教学重点和难点。

课堂教学过程设计。

一、从学生原有的认知结构提出问题。

为了回答上述这几个问题,我们来看下面这个例题.。

例1某数的3倍减2等于某数与4的和,求某数.。

(首先,用算术方法解,由学生回答,教师板书)。

解法1:(4+2)÷(3-1)=3.。

答:某数为3.。

(其次,用代数方法来解,教师引导,学生口述完成)。

解法2:设某数为x,则有3x-2=x+4.。

解之,得x=3.。

答:某数为3.。

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤。

师生共同分析:1.本题中给出的已知量和未知量各是什么?2.已知量与未知量之间存在着怎样的相等关系?(原先重量-运出重量=剩余重量)。

上述分析过程可列表如下:解:设原先有x千克面粉,那么运出了15%x千克,由题意,得。

x-15%x=42500,所以x=50000.。

答:原先有50000千克面粉.。

(还有,原先重量=运出重量+剩余重量;原先重量-剩余重量=运出重量)。

(2)例2的解方程过程较为简捷,同学应注意模仿.。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的状况,教师总结如下:(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);(4)求出所列方程的解;(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)。

解:设第一小组有x个学生,依题意,得。

3x+9=5x-(5-4),解这个方程:2x=10,所以x=5.。

其苹果数为3×5+9=24.。

答:第一小组有5名同学,共摘苹果24个.。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.。

一元一次方程教案最新7篇

一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。

是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。

并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。

要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。

从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。

采用教师引导,学生自主探索、观察、归纳的教学方式。

利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。

学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。

通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

初中数学初一数学上册《一元一次方程》教案、教学设计

初中数学初一数学上册《一元一次方程》教案、教学设计
1.关注学生对基本概念的理解,如未知数、常数项、系数等,确保学生能够正确把握一元一次方程的基本要素。合并同类项等方法,逐步掌握方程的求解过程。
3.结合学生的生活实际,设计具有趣味性、挑战性的教学活动,激发学生的学习兴趣,提高学生的参与度。
4.针对不同学生的学习需求,提供个性化的辅导和指导,帮助学生克服学习难点,提高学习效果。
四、教学内容与过程
(一)导入新课
1.创设情境:以一个与学生生活密切相关的实际问题为例,如“小明的年龄问题”,引导学生思考如何用数学方法解决这个问题。
-小明今年比妈妈小28岁,4年后,小明比妈妈小多少岁?
-通过讨论,引导学生发现,这个问题可以通过列方程来解决。
2.提出问题:根据小明年龄问题的讨论,引导学生思考,什么是方程?一元一次方程的定义是什么?
初中数学初一数学上册《一元一次方程》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的定义,了解方程中的未知数、常数项、系数等基本概念。
2.学会使用等式性质、移项、合并同类项等方法解一元一次方程,掌握求解过程。
3.能够根据实际问题列出相应的一元一次方程,并运用所学的解法求解。
4.掌握一元一次方程的解的判定方法,了解方程有唯一解、无解和多解的情况。
五、作业布置
为了巩固本节课所学的一元一次方程知识,培养学生的应用意识和问题解决能力,特布置以下作业:
1.基础练习题:完成课本第23页的练习题1、2、3,旨在让学生熟练掌握一元一次方程的求解方法。
2.提高题:根据以下实际问题,列出相应的一元一次方程并求解。
-问题1:小华今年12岁,他的哥哥比他大6岁,请问5年后,小华的哥哥是多少岁?
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,增强学习数学的自信心,克服对一元一次方程的恐惧感。

一元一次方程教案(4篇)

一元一次方程教案(4篇)

一元一次方程教案〔4篇〕元一次方程教案篇一一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、学问与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

2、过程与方法:〔1〕通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进展猜测、推断。

〔2〕运用所学过的数学学问进展分析,演练、合作探究,体会数学学问在社会活动中的运用,提高应用学问的力气和社会实践力气。

3、情感态度与价值观:通过数学活动,激发学生学习数学兴趣,增加自信念,进一步进展学生合作沟通的意识和力气,体会数学与现实的联系,培育学生求真的科学态度。

三、重难点与关键1、重点:经受探究具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

2、难点:以上重点也是难点3、关键:明确问题中的量与未知量间的关系,查找等量关系。

四、教具预备:投影仪,每人一根质地均匀的直尺,一些一样的棋了和一个支架。

五、教学过程:(一)活动1一种商品售价为2.2元件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品n件,争论下面问题:这个人买了n件商品需要多少元?教师活动:〔1〕把学生每四人分成一组,进展合作学习,并参入学生中一起探究。

〔2〕教师对学生在发表解法时存在的问题加以指正。

学生活动:〔1〕分组后对活动一的问题开放争论,探究解决问题的方法。

〔2〕学生派代表上黑板板演,并发表解法。

解:2.2nn1002.2100+2(n-100)n100问题转换:一种商品售价为2.2元/件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品共花了n元,争论下面的问题:〔1〕这个人买这种商品多少件?〔2〕假设这个人买这种商品的件数恰是0.48n,那么n的值是多少?教师活动:同上学生活动:同上解:(1)n220100+n220〔2〕=0.48nn=0100+=0.48nn=500(二)活动2:本活动课前布置学生做好活动前的预备工作:1、预备一根质地均匀的直尺,一些一样的棋子和一个支架。

求解一元一次方程数学教案(优秀7篇)

求解一元一次方程数学教案(优秀7篇)

求解一元一次方程数学教案(优秀7篇)解一元一次方程的教案篇一教学目标知识技能:1.用一元一次方程解决“数字型”问题;2.能熟练的通过合并,移项解一元一次方程;3.进一步学习、体会用一元一次方程解决实际问题。

过程方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。

情感态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。

重点建立一元一次方程解决实际问题的模型。

难点探索并发现实际问题中的等量关系,并列出方程。

环节教学问题设计教学活动设计情境引入牵线搭桥,解下列方程:(1)-5x+5=-6x;(2);(3)0.5x+0.7=1.9x;总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。

引出问题即课本例3问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。

学生:独立完成,根据讲评核对、自我评价,了解掌握情况。

探究一:数字问题例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?1.引导学生观察这列数有什么规律?①数值变化规律?②符号变化规律?结论:后面一个数是前一个数的-3倍。

2.怎样求出这三个数?①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?②列出方程:根据三个数的和是-1701列出方程。

③解略变式:你能设其它的数列方程解出吗?试一试。

比比较哪种设法简单。

探究二:百分比问题(习题3.2第8题)某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元。

这个乡去年农民人均收入是多少元?①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。

七年级数学《一元一次方程》教案4篇

七年级数学《一元一次方程》教案4篇

七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

一元一次方程优秀教案市公开课一等奖教案省赛课金奖教案

一元一次方程优秀教案市公开课一等奖教案省赛课金奖教案

一元一次方程优秀教案引言:一元一次方程是初等代数的重要内容之一。

学好一元一次方程对于培养学生的逻辑思维能力和解决实际问题的能力具有重要作用。

本文将介绍一份优秀的一元一次方程教案,旨在帮助教师提升课堂教学效果,激发学生的兴趣和主动性。

一、教学目标1. 知识目标:掌握一元一次方程的概念及解法。

2. 能力目标:培养学生通过列方程解决实际问题的能力。

3. 情感目标:激发学生对数学的兴趣,培养他们对数学思维的自信心。

二、教学重点与难点1. 教学重点:一元一次方程的列式和解法。

2. 教学难点:如何将实际问题转化为一元一次方程,并通过解方程得到准确答案。

三、教学准备1. 教材:教师需要准备与一元一次方程相关的教材资料。

2. 教具:黑板、彩色粉笔、计算器。

四、教学过程1. 导入教师可以通过生活实例引导学生认识到一元一次方程的重要性,如购物问题、运动问题等。

并与学生展开讨论,引发他们的思考和兴趣。

2. 概念讲解通过黑板上的示意图和公式,教师讲解一元一次方程的定义和基本形式。

帮助学生理解方程中未知数、系数和常数项的含义。

并通过一些例子加深学生的理解。

3. 解法讲解教师介绍一元一次方程的解法,包括解方程的基本步骤和常用的解法方法,如等式两边加减法、等式两边乘除法等。

通过讲解过程中的实例,帮助学生掌握解方程的技巧和方法。

4. 练习演练教师安排一些练习题,让学生独立完成并检查答案。

同时,教师要及时给予指导和纠正,帮助学生巩固解方程的方法和技巧。

5. 拓展应用教师设计一些实际问题,要求学生运用一元一次方程解决。

通过组织小组合作、开展讨论等方式,加深学生对一元一次方程应用的理解和掌握。

6. 总结教师对本节课内容进行总结,强调一元一次方程解法的重要性,鼓励学生继续学习和运用解方程的能力。

五、教学评价教师可以通过课堂练习、小组讨论以及课后作业等方式进行评价。

关注学生对一元一次方程概念的理解程度、解方程的准确性以及解题思路的合理性。

初一数学《一元一次方程》教案

初一数学《一元一次方程》教案

初一数学《一元一次方程》教案初一数学《一元一次方程》教案范文(通用9篇)在教学工作者实际的教学活动中,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

来参考自己需要的教案吧!以下是小编为大家整理的初一数学《一元一次方程》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

初一数学《一元一次方程》教案篇1【一、教材分析】1、本节内容的地位和作用(1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。

通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。

对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。

2、教学目标(认知、能力、情感)(1)知识目标能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

(2)能力目标进一步培养学生分析问题,解决实际问题的能力。

(3)情感目标通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。

3、教学重点:引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。

知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。

4、教学难点掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

用一元一次方程解决实际问题的关键是找到等量关系。

体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

5、教法学法优选教法本节课主要采用“学生主体性学习”的教学模式。

通过多媒体创设情境,激发学生兴趣,提供问题让学生想,设计问题让学生做,方法技巧让学生归纳。

认识一元一次方程教学设计优秀3篇

认识一元一次方程教学设计优秀3篇

认识一元一次方程教学设计优秀3篇一元一次方程教学设计篇一删繁就简三秋树领异标新二月花————“一元一次方程应用”教学实录及反思临沂高都中学王兴玲列方程解应用题,是整个初中阶段数学教学的重点。

因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。

在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。

具体设计如下:一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。

在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1一叁5米,是沂河大桥的2倍还多55米。

”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?问题1、小埠东橡胶坝长1一叁5米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?生1:沂河大桥长为(米)(师板演)师:除了列算式外,还有别的方法吗?生2:可以列方程师:如果用列方程的方法来解,设哪个未知数为x? 生2:设沂河大桥的长为x米。

师:根据怎样的相当关系来列方程?方程的解是多少?生2:根据小埠东橡胶坝长1一叁5米,是沂河大桥的2倍还多55米,列方程1一叁5=2x+55,解得:x=540(教师板演)师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?生3:列方程就是直来直往。

师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题……(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)二、故事的发展——怎样列方程师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。

《一元一次方程》教学设计精选11篇

《一元一次方程》教学设计精选11篇

《一元一次方程》教学设计精选11篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《一元一次方程》教学设计精选11篇作为一位优秀的人·民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。

一元一次方程的解法数学教案设计5篇

一元一次方程的解法数学教案设计5篇

一元一次方程的解法数学教案设计5篇元一次方程篇一方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。

这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。

总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。

(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。

)再让学生总结注意点,教师进行点拨。

最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。

在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。

另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

初中七年级上册数学《解一元一次方程》教案优质篇二教学目的:知识与技能目标:会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。

初中七年级上册数学解一元一次方程教案优质(优秀5篇)

初中七年级上册数学解一元一次方程教案优质(优秀5篇)

初中七年级上册数学解一元一次方程教案优质(优秀5篇)元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。

2.使学生掌握含有字母系数的一元一次方程的解法。

3.使学生会进行简单的公式变形。

4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。

5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。

教学重点:(1)含有字母系数的一元一次方程的解法。

(2)公式变形。

教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。

(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。

教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。

(2)移项——未知项移到等号一边常数项移到等号另一边。

注意:移项要变号。

(3)合并同类项——提未知数。

(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。

(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。

引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。

)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。

(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。

2024年一元一次方程教案完整版

2024年一元一次方程教案完整版

2024年一元一次方程教案完整版一、教学内容本节课选自人教版《数学》七年级上册第三章第一节“一元一次方程”,内容包括方程的概念、一元一次方程的定义及其解法。

具体章节内容为:3.1.1 方程的概念及3.1.2 一元一次方程的解法。

二、教学目标1. 理解方程的概念,掌握一元一次方程的定义及解法。

2. 能够根据实际问题列出一元一次方程,并运用所学知识解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点难点:一元一次方程解法的运用。

重点:一元一次方程的定义及其解法。

四、教具与学具准备教具:黑板、粉笔、PPT课件。

学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入通过PPT展示小明和小华分苹果的情景,提出问题:“小明和小华一共分了10个苹果,小明分了3个,小华分了多少个?”引导学生列出方程。

2. 知识讲解(1)方程的概念:含有未知数的等式。

(2)一元一次方程的定义:含有一个未知数,且未知数的次数为1的方程。

(3)一元一次方程的解法:移项、合并同类项、化简。

3. 例题讲解讲解一个一元一次方程的例题,并详细解释解题过程。

4. 随堂练习让学生完成PPT上的两道练习题,巩固所学知识。

六、板书设计1. 方程的概念2. 一元一次方程的定义3. 一元一次方程的解法4. 例题及解题过程5. 练习题七、作业设计1. 作业题目:(1)求解一元一次方程:2x + 3 = 7(2)根据实际问题列出方程并求解。

2. 答案:(1)x = 2(2)答案不唯一,合理即可。

八、课后反思及拓展延伸1. 反思:本节课学生对一元一次方程的概念和解法掌握情况,及时调整教学方法。

2. 拓展延伸:引导学生思考一元一次方程在实际生活中的应用,提高学生的数学素养。

重点和难点解析1. 实践情景引入的设置。

2. 一元一次方程解法的详细讲解。

3. 例题的选择与讲解。

4. 随堂练习的设计与反馈。

5. 作业设计的合理性和答案的完整性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程
一、素质教育目标
(-)知识教学点
1.通过本节知识的学习,使学生清楚了解方程、方程的解的概念,以及解方程的含义.
2.让学生学会根据条件列出方程.
(二)能力训练点
1.通过例2的教学,培养学生解决数学问题的思想方法和综合分析问题的思维能力.
2.通过例3方程的解的检验问题培养学生准确解题的能力及数学问题的严密性.
(三)德育渗透点
从已知到未知,从特殊到一般的认识问题的方法.
(四)美育渗透点
通过本节课的学习,学生会进一步体会到概念中语言的准确美与简洁美.
二、学法引导
1.教学方法:以尝试指导为主、练习巩固为辅,体现学生的主体活动,增强课堂上民主意识的体现.
2.学生学法:识记→练习
三、重点、难点、疑点及解决办法
1.重点:使学生了解方程的有关概念,会检验方程的解,并能根据求某数的简单条件,列出某数为未知数的一元方程(仅限于一次,二次).
2.难点:列关于某数的简单方程.
3.疑点:关于方程解的理解.
四、课时安排
l 课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师出示探索性练习题,学生讨论解答,得出有关概念,教师出示巩固性练习题,学生以多种形式完成.
七、教学步骤
(-)创设情境,复习导入
师:我们上一节共同学习了等式和等式的性质,我们知道了用“等号”表示相等关系的式子叫做等式.下面请同学们思考如下问题:
(出示投影1)或电脑显示如下
1.如果,那么,为什么?(根据什么等式性质)
03=-x ______=x 2.如果,那么,根据等式什么性质?
26=+x ______=x 3.如果,那么,根据等式什么性质?
312=-x ______=x 4.如果,那么,根据等式什么性质?
875=-x ______=x 师:同学们对这组问题回答的非常准确,条理清楚.说明我们掌握新知识,学习新方
法的劲头很足,望同学们发扬.
(二)探索新知,讲授新课
师:请同学们观察上面题中等式:

03=-x ;
26=+x ;
312=-x .
875=-x 这些等式中,象-3,6,2,-1,3,-7,5,8这些数都是已知的,我们把这些数叫做已知数.
再观察式中的也表示一个数,不难发现它相当于一个问号“?”,在研究它之前是未x 知的,像这样的数叫做未知数,像这样的式子,我们已经知道它是等式,因此方程就是含有未知数的等式.
师提出问题:
(1)请同学们把这个结果代入方程中,看一看会有什么结果?当学3=x 875=-x 生能够回答出时方程左右两边相等这一结果后,引出概念:使方程左右两边的值相3=x 等的未知数的值,叫做方程的解,只有一个未知数的方程的解也叫方程的根.
(2)再观察到的变形过程
875=-x 3=x 被减数等于差加上减数.○
a 得,
785+=x 即.
155=x 再据一个因数等于积除以另一个因数,得,即.
515÷=x 3=x (说明是小学解法)
两边都加上7,得,,○
e 785+=x 即.
155=x 两僆都除以5,得,

3=x 提出问题:上面两种变形最终我们求出了什么?
两种方法所得结果一样吗?
【教法说明】通过上面提问由学生展开讨论,教师归纳上面过程实质上就是求方程解的过程.
师:求得方程解的过程,叫做解方程.
如:求得方程的解的两种方法,都可以叫解方程.
875=-x 875=-x (三)尝试反馈,巩固练习
师提出问题:现在请同学们分组讨论,由各组派代表回答,如何判断一个式子是方程?
学活动:分组讨论,准备派代表回答,回答结果:(1)含有未知数,(2)等式.(出示投影2)
例1 判断下列各式是不是方程,如果是,指出已知数和未知数,如果不是,说明为什么?
①;②;③;④.
125=-x 1422-=+y y 62=-y x 8522
++x x 【教法说明】例1教学应注意,方程必须是含有未知数的等式.未知数的系数是1,可以省写.这个1,也是已知数,已知数包括它的符号.
巩固练习:
(出示投影3)
判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明为什么?①;②;③;④.
y y 213=-2543x x ++7887⨯=⨯06=x 【教法说明】这组可采用分组抢答形式,用竞赛加分的办法完成以增加学生学习的积极性,如:分成四组,班长记分,教师主持.
师提出问题:如果设某数为,请大家把下面的句子用方程的形式表示出来,看谁做x 得快.
(出示投影4)
(1)某数的与1的和是2;5
4(2)某数的4倍等于某数的3倍与7的差;(3)某数与8的差的
等于0.32学生活动:学生动笔动脑分析得出方程,由一个学生写在黑板上,如:
(1);(4);(3).2154=+x 734-=x x ()083
2=-x 【教法说明】为了使学生掌握,③小题应提醒学生注意运算的顺序,必要时加上括号.另外有时得出方程可有形式上的区别.师提出问题:请同学们选择适当的未知数,列出例2中的方程:
(出示投影5)
例2 根据下列条件列出方程:
(1)某数比它的大;5416
5(2)某数比它的2倍小3;
(3)某数的一半比某数的3倍大4;
(4)某数比它的平方小42.
学生活动:要求学生独立完成上面的题目,完成后与小组同学讨论,对比,分组说出所列方程中,形式不一样地方.
【教法说明】教师可布置学生自编两个题目,留给同桌同学列方程,找代表说一说题目和方程.
(四)变式训练,培养能力
(出示投影6)
1.下列各式是不是方程,如果是,指出它的未知数是什么?
①; ②; ③; ④; ⑥; 412=-x 7361=-y 243
=+y 6=-y x x 43=⑦; ⑧; ⑨; ⑩.
1183=+14=-m 62+m y x 43-【教法说明】这组题用小组竞赛的形式完成,优胜组负责编一个这样的题目,点其他组任一同学解答,答对者给以掌声鼓励.
(出示投影7)
2.请同学们用两种方法,求出下面方程的解.
①;②;③;④.632=-x 013
=-y 25=-x 844=+m
【教法说明】这组题由学生在练习本上演练,教师指定学生口述,征求全体同学意见.
(出示投影8)
3.请同学们选用适当的未知数,写一个方程使方程的解是下面的数:
(1)1; (2)-2; (3)0; (4)2.
学生活动:分组编写,互相交换,观察所作方程的特征,互相交流经验、方法,增强协作意识.
【教法说明】这组题难度较大,教师在学生编题时要注意后进生的动态,多启发他们动脑筋,开发数学的逆向思维.
(五)归纳小结
师:本课内容与前两节内容的联系,可以用下图表示:
八、随堂练习
1.选择题
(1)下列各式中是方程的是( )
A .
B .
C .
D .32+x 321=+b x >+2312=-m (2)下列说法正确的是( )
A .方程中未知数的值就是方程的解
B .方程的解也是方程的根
C .是方程的解1-=x 22
-=x D .是方程的解
1=x 05322=-+x x 2.根据条件列出方程
(1)某数的一半比这个数小2;
(2)某数的绝对值比这个数的10%多10.
3.检验是否是方程的解.
3=y ()y y --=+14352九、布置作业
思考题:怎样检验某个数是某方程的解,讨论后每位同学交一份作业纸.
十、板书设计
方程和它的解一、有关方程概念 二、例题 三、板演练习
四、小结
___________
1.已知数______________ 例1 ______________
2.未知数______________ 例2 ______________ _____________
3.方程________________ ______________ _____________
4.方程的解____________ ______________ _____________
5.解方程______________
十一、随堂练习答案
1.D D
2.设某数为 (1); (2).x x x =+22
1x x %1010=-3.略
答:将某数代入方程,比较左右两边是否相等,即可知某数是否是方程的解。

相关文档
最新文档