第二单元因数和倍数知识点

合集下载

五年级下第二单元倍数与因数知识点及练习

五年级下第二单元倍数与因数知识点及练习

一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。

例如:6是倍数、3和2是因数。

(×)改正:6是3和2的倍数,3和2是6的因数。

练习:(1)8×5=40,()和()是()的因数,()是()和()的倍数。

(2)因为36÷9=4,所以()是()和()的倍数,()和()是()的因数。

(3)在18÷6=3中,18是6的(),3和6是()的()。

(4)在14÷7=2中,()能被()整除,()能整除(),()是()的倍数,()是()的因数。

(5)若A÷B=C(A、B、C都是非零自然数),则A是B的()数,B是A的()数。

(6)如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的,B是A的。

(7)判断并改正:因为7×6=42,所以42是倍数,7是因数。

()因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。

()5是因数,15是倍数。

()甲数除以乙数,商是15,那么甲数一定是乙数的倍数。

()(8)甲数×3=乙数,乙数是甲数的()。

A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。

例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。

因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。

是错误的说法。

练习:(1)有5÷2=2.5可知()A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数(2)36÷5=7……1可知()A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数(3)属于因数和倍数关系的等式是()A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有()。

五年级下数学第二单元知识点(附练习题及答案)

五年级下数学第二单元知识点(附练习题及答案)

知识点归纳五年级下数学第二单元知识点(附练习题及答案)第二单元《因数和倍数》1. 整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

最小的自然数是02. 因数、倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

例:12÷2=6, 12是6的倍数,6是12的因数。

为了方便,在研究因数和倍数时,我们所说的数是自然数(一般不包括0)。

数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

一个数的最大因数=最小倍数=它本身3. 2、3、5的倍数特征1)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

①自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数,叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

②最小的奇数是1,最小的偶数是0.③奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数(大减小)奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数2)数的整除特征例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(984),最小的是(450)②在能被3整除的数中,最大的是(984),最小的是(405)③在能被5整除的数中,最大的是(980),最小的是(405)2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能( 4 )种填法。

4. 质数和合数①质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

第二单元 因数与倍数--2024年五年级数学下册重难点知识点(人教版)

第二单元 因数与倍数--2024年五年级数学下册重难点知识点(人教版)

人教版五年级数学下册同步重难点知识点第二单元因数与倍数温馨提示:图片放大更清晰!1.掌握因数、倍数、质数、合数、奇数、偶数的概念,知道有关概念之间的联系和区别。

2.掌握求一个数的因数和倍数的方法。

3.掌握2、5、3的倍数的特征,并会利用特征来判断一个数是不是2、5或3的倍数。

4.能根据质数和合数的概念判断一个数是质数还是合数。

5.会运用数的奇偶性解决一些简单问题。

重点:掌握因数、倍数、质数、合数、奇数、偶数的概念,并能用其解决一些简单问题。

难点:掌握2、5、3的倍数的特征,并会利用特征判断一个数是不是2、5或3的倍数。

知识点一:认识因数和倍数根如果a×b=c(a,b,c都是不为0的自然数),那么a 和b就是c的因数, c就是a和b的倍数。

知识点二:找一个数的因数、倍数找一个数的因数从最小因数找起,一直找到它本身,哪两个数相乘的积等于这个数,那么这两个数就是这个数的因数。

找一个数的倍数,用这个数分别去乘自然数1,2,3,…所得的积都是这个数的倍数。

知识点三:2、5的倍数的特征个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数都是5的倍数。

个位上是0的数既是2的倍数又是5的倍数。

知识点四:3的倍数的特征3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

知识点五:质数和合数判断一个数是合数还是质数的方法:先找出这个数的因数,再根据质数和合数的定义去判断这个数是质数还是合数,1既不是质数也不是合数。

知识点六:奇数和偶数的运算性质奇数与偶数的和的奇偶性:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数例1:因为8×1=8,8×2=16,8×3=24,8×4=32,…所以8的倍数有( )个,由此可见,一个数的倍数的个数是( )的,其中最小的倍数是( )。

例2:例3:《水浒传》是我国四大著名之一,书中描述写了108位梁山好汉,“108”的最小倍数是( ),108的所有因数中,质数有( )个,合数有( )个。

因数倍数知识点整理

因数倍数知识点整理

因数倍数知识点整理因数倍数知识点整理一、因数的概念1.定义:如果一个整数a除以另一个整数b(b≠0)能够得到一个整数c,那么称b是a的因数,a是c的倍数。

2.性质:(1)每个正整数都有1和它本身作为因数;(2)如果一个正整数有除了1和它本身之外的其他因数,那么这个正整数就称为合数;(3)如果一个正整数只有1和它本身两个因子,那么这个正整数就称为质数。

二、求因数的方法1.列举法:将这个正整数从小到大依次除以每个小于等于它一半的自然数组成的序列,能够被整除的即为其因子。

2.分解质因式法:将这个正整数分解成若干个质因子相乘的形式,其中每个质因子都是该正整数的真约束。

三、倍数的概念1.定义:如果一个正整数a能够被另一个正整数组成n倍(n∈N*),那么称a是n的倍,n是a的约束。

2.性质:(1)任何一个自然数组成都是1或某个质素p(p≠0)或某几个质素的积的倍数;(2)一个正整数a的倍数中最小的正整数是a本身,即1×a=a;(3)如果一个正整数b是另一个正整数a的倍数,那么a一定是b的因子。

四、求倍数的方法1.公式法:设a和n为正整数,则an为a的n倍。

2.列举法:将这个正整数从小到大依次乘以自然数组成的序列,得到的结果即为其倍数。

五、因数与倍数之间的关系1.性质:(1)如果一个正整数x既是另一个正整数组成y的因子,又是z的约束,则y必定是z的倍数;(2)如果一个正整数组成y既是另一个正整数组成x的约束,又是z 的因子,则x必定是z的约束。

2.推论:(1)如果两个自然数组成m和n(m≠n),它们有公共约束p,则它们有公共倍q=p×m×n;(2)如果两个自然数组成m和n(m≠n),它们有公共倍q,则它们有公共约束p=q÷m÷n。

六、常见问题解答1.什么样的自然数组成没有约束?只有1没有约束,其他所有自然数组成都有约束。

2.什么样的自然数组成没有倍数?只有0没有倍数,其他所有自然数组成都有倍数。

2023年因数与倍数重要知识点

2023年因数与倍数重要知识点

因数与倍数重要知识点.....1. 因数、倍数概念:假如a×b=c(a、b、c都是不为0旳整数)我们就说a和b都是c旳因数c是a旳倍数也是b旳倍数。

倍数和因数是互相依存旳。

2. 一种数旳因数个数是有限旳,最小因数是1,最大因数是它自身。

一种数旳倍数个数是无限旳,最小倍数是它自身,没有最大倍数。

3.2、3、5倍数旳特性。

(1)2旳倍数旳特性:个位上是0、2、4、6、8旳数,都是2旳倍数,是2旳倍数旳数叫做偶数;不是2旳倍数旳数叫做奇数。

(2)3旳倍数旳特性:一种数各位数上旳和是3旳倍数这个数是3旳倍数。

(3)个位上是0、5旳数都是5旳倍数。

4.质数和合数。

(1)一种数,假如只有1和它自身两个因数,这样旳数叫做质数(素数)。

最小旳质数是2。

(2)一种数,除了1和它自身尚有别旳因数,这样旳因数叫做合数。

最小旳合数是4,合数至少有三个因数。

(3)1既不是质数,也不是合数。

5.质因数和分解质因数。

(1)每个合数都可以写成几种质数相乘旳形式。

其中每个质数都是这个合数旳因数,叫做这个合数旳质因数。

(2)把一种合数用质因数相乘旳形式表达出来,叫做分解质因数。

例:30=2×3×56.最大公因数和最小公倍数。

(1)几种数公有旳因数,叫做这几种数旳公因数,其中最大旳一种,叫做这几种数旳最大公因数。

(2)几种数公有旳倍数,叫做这几种数旳公倍数,其中最小旳一种,叫做这几种数旳最小公倍数。

7.互质数:公因数只有1旳两个数,叫做互质数。

8. 100以内质数:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、979. 13旳倍数:26、39、52、65、78、91、104、11717旳倍数:34、51、68、85、102、119、136、15319旳倍数:38、57、76、95、114、133、152、171因数与倍数专题练习题..........一.我会填.1.一种数是3、5、7旳倍数,这个数最小是( 105 ).2.是3旳倍数旳最小三位数是( 102).3.三个数相乘,积是70,这三个数是(2 )( 5 )( 7 )4.同步是2、3、5旳倍数旳最小两位数是(30 ),最大两位数(90 )最小三位数( 120 )最大三位数( 990 )。

因数与倍数知识点总结

因数与倍数知识点总结

知识点必背总结一、因数和倍数1 、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数(还包括负数)。

最小的自然数是 0。

2、因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。

有时,也说 a 和 b 能整除 c,或者说 c 能被 a 和 b 整除。

倍数和因数是相互依存的。

0 是任何整数的倍数。

2、一个数的因数个数是有限的,最小因数 1,最大因数本身。

一个数的倍数个数是无限的,最小倍数是本身,没有最大倍数。

(1)一个数的因数的求法:成对的按顺序找。

不漏不重复的找法:你觉得怎样找才不容易漏掉?从最小的自然数 1 找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(2)一个数的倍数的求法:依次乘以自然数 1 、2 、3......3 、2和3、5、 9 倍数的特征(1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。

(2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。

(3)5的倍数的特征 : 个位上是0、5的数都是5的倍数。

(4) 9 的倍数的特征:一个数各位数上的和是 9 的倍数这个数是 9 的倍数。

(5) 如果一个数同时是 2 和 5 的倍数,那它的个位数字一定是 0 。

另附:13 的倍数: 26 、39 、52 、65、78、91 、104 、11717的倍数: 34 、51 、68、85 、102 、119 、136 、15319的倍数: 38 、57 、76、95 、114 、133 、152 、171二、奇数和偶数是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。

也就是个位上的数字是 1 、3 、5 、7、9 的数是奇数。

最小的奇数是 1,最小的偶数是 0。

偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数-偶数=奇数奇数×偶数=偶数奇数+奇数=偶数奇数-奇数=偶数奇数×奇数=奇数偶数-奇数=奇数偶数÷奇数=偶数三、质数和合数1 、(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数( 素数) 。

总结倍数与因数知识点

总结倍数与因数知识点

总结倍数与因数知识点一、倍数的定义和性质1.1倍数的定义正整数a是正整数b的倍数,是指存在一个整数k,使得a=k*b。

例如,6是3的倍数,因为存在一个整数k=2,使得6=2*3。

1.2倍数的性质(1)零是一切整数的倍数,因为对于任意整数a,都有0=a*0。

(2)整数a是自己的倍数,因为对任意整数a,都有a=1*a。

(3)整数a的所有倍数可以用集合的形式表示为{a, 2a, 3a, ...}。

1.3倍数的运算(1)两个正整数a和b的最小公倍数(最小公倍数定义为能同时被a和b整除的最小正整数)可以表示为a*b/gcd(a,b),其中gcd(a,b)表示a和b的最大公约数。

(2)在实际问题中,需要计算出某个数的倍数,可以通过不断地累加这个数得到。

二、因数的定义和性质2.1因数的定义正整数a是正整数b的因数,是指存在一个整数k,使得a=k*b。

例如,3是6的因数,因为存在一个整数k=2,使得6=3*2。

2.2因数的性质(1)每个整数都有两个特殊的因数1和自身。

(2)如果一个正整数有除了1和它自己之外的其他因数,那么这个数就是合数,否则就是质数。

(3)整数a的所有因数可以用集合的形式表示为{1, a, f1, f2, ...},其中f1、f2等为a的其他因数。

2.3因数的运算(1)任意整数可以分解成它的质因数的乘积,例如,60=2*2*3*5=2^2*3*5。

(2)两个正整数a和b的最大公约数可以表示为a*b/lcm(a,b),其中lcm(a,b)表示a和b 的最小公倍数。

三、倍数和因数的实际应用3.1最大公约数和最小公倍数(1)最大公约数和最小公倍数在实际问题中有着广泛的应用,例如在分数的化简、比例的计算、物品的包装等方面都会用到这两个概念。

(2)在分数的运算中,首先需要求出分子和分母的最大公约数,然后将分子和分母同时除以这个最大公约数,得到最简分数。

3.2倍数和因数在几何中的应用(1)倍数和因数在计算几何图形的周长和面积时有着重要的作用。

因数与倍数知识点总结

因数与倍数知识点总结

因数与倍数知识点总结一、因数和倍数的概念1、因数:如果整数A能被整数B整除(A、B都不为0),那么B就叫做A的因数。

例如:12÷2=6,所以2和6就是12的因数。

2、倍数:如果整数A是整数B的倍数(A、B都不为0),那么B就叫做A的倍数。

例如:12÷2=6,所以12是2的倍数,也是6的倍数。

二、因数和倍数的性质1、因数的个数是有限的,最小的因数是1,最大的因数是它本身。

例如:10的因数有1、2、5、10。

2、倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

例如:3的倍数有3、6、9、12等等。

三、因数和倍数的判断方法1、如果一个数是另一个数的倍数,那么这个数就是另一个数的因数。

例如:36是6的倍数,所以36也是6的因数。

2、如果一个数是另一个数的因数,那么这个数就是另一个数的倍数。

例如:7是14的因数,所以7也是14的倍数。

四、注意事项1、不要把因数和倍数的概念混淆,因数是A能被B整除,倍数是A 是B的倍数。

2、不要把因数和倍数的性质弄错,因数的个数是有限的,倍数的个数是无限的。

3、在计算时要注意0的问题,因为0不能作为除数,所以0不能作为因数或倍数。

例如:不能说10是5的倍数,因为10÷5=2,而不能说10是5的因数。

因数与倍数知识点总结一、因数和倍数的概念1、因数:如果整数A能被整数B整除(A、B都不为0),那么B就叫做A的因数。

例如:12÷2=6,所以2和6就是12的因数。

2、倍数:如果整数A是整数B的倍数(A、B都不为0),那么B就叫做A的倍数。

例如:12÷2=6,所以12是2的倍数,也是6的倍数。

二、因数和倍数的性质1、因数的个数是有限的,最小的因数是1,最大的因数是它本身。

例如:10的因数有1、2、5、10。

2、倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

例如:3的倍数有3、6、9、12等等。

三、因数和倍数的判断方法1、如果一个数是另一个数的倍数,那么这个数就是另一个数的因数。

五年级数学下册各单元知识点归纳(附常见题型)

五年级数学下册各单元知识点归纳(附常见题型)

第二单元因数和倍数1、因数、倍数:①一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

②一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

③一个数的最大因数和最小倍数都是它本身。

如15的最大因数和最小倍数都是15。

例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(),最小的是()②在能被3整除的数中,最大的是(),最小的是()③在能被5整除的数中,最大的是(),最小的是()2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能()种填法。

分别是。

3、质数和合数(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数;一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

判断题:①所有的奇数都是质数。

()如②所有的偶数都是合数()如③在1,2,3……自然数中,除了质数以外都是合数。

()如④两个质数的和是偶数。

()如(2)质数×质数=合数每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

(3)20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是就是合数,不是的就是质数。

4、最大、最小A的最小因数是:1;A的最大因数是:A;A的最小倍数是:A;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4最小的自然数是:0;连续的两个质数是2、3。

例题:猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数,又是4的因数 E ——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数,这个号码就是附:判断(1)因为7×8=56,所以56是倍数,7和8是因数()因为(2)1是1,2,3,4,5…的因数()(3)14比12大,所以14的因数比12的因数多()(4)因为1.2÷0.6=2,所以1.2是0.6的倍数。

五年级下册第二单元数学知识点(因数、倍数、质数、合数、最大公约数、最小公倍数)

五年级下册第二单元数学知识点(因数、倍数、质数、合数、最大公约数、最小公倍数)

五年级下册第二单元数学知识点因数、倍数、质数、合数、最大公约数、最小公倍数一、质数、合数、奇数、偶数1.奇数和偶数不能被2整除的整数是奇数,能被2整除的数叫偶数(0也是偶数)。

(1)奇数:不能被2整除,也就是个位上是1、3、5、7、9的数。

(2)偶数:能被2整除,也就是个位上是0、2、4、6、8的数。

(3)最小的奇数是1,最小的偶数是0.2.质数和合数(1)质数(或素数):只有1和它本身两个因数。

(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)自然数1只有1个因数。

“1”既不是质数,也不是合数。

(4)最小的质数是2,最小的合数是4,连续的两个质数是2、3。

(5)每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

(6)奇数和偶数、质数和合数的转化关系式奇数×奇数=奇数质数×质数=合数奇数加减偶数=奇数奇数加或减奇数=偶数偶数加或减偶数=偶数。

3.整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

4.因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

《因数和倍数》知识点

《因数和倍数》知识点

《因数和倍数》知识点【因数和倍数】1.意义:如果AXB=C (A、B、C都是非0自然数),那么A和B是C的因数,C是A和B的倍数。

2.方法:(1)求一个数的因数:列举法(以16为例)。

列除法算式: 16÷1=16,16÷2=8, 16÷4=4列乘法算式: 1X16=16,2X8=16,4X4=16,16的因数有: 1,2,4,8,16。

(2)求一个数的倍数:分别将这个数乘1,2,3, ....3.特点:(1)一个数因数的特点:个数有限;最小的因数是1,最大的因数是它木身。

(2)一个数倍数的特点:个数无限;最小的倍数是它本身,没有最大的倍数。

★注意:研究因数和倍数的时候,涉及的数都是不包括0的自然数,有小数和余数存在则不能讨论因数和倍数。

【2,3,5的倍数的特征】1.(1)2的倍数的特征:个位上是0, 2, 4, 6, 8.(2)5的倍数的特征:个位上是0或5。

同时是2和5的倍数的特征:个位上是0。

(3)3的倍数的特征:各个数位上数的和是3的倍数。

2.奇、偶数(1)偶数:是2的倍数的数,如: 2, 4, 6, 8, ....0也是2的倍数,0是最小的偶数。

(2)奇数:不是2的倍数的数。

如:1,3,5,7,....1 是最小的奇数★注意:1.个位上是0的数,既是5的倍数又是2的倍数。

2.三个连续的自然数、奇数、偶数、三个相同的数字(非0)及其分别与0组的数,都是3的倍数。

如: 123, 579, 246, 555, 20340, 35007, 77........【质数和合数】1.概念。

(l)质数:只有1和它本身两个因数的数,叫做质数。

如2, 3, 7, 19......(2)合数:除了1和它本身,还有别的因数的数,叫做合数。

如4, 6, 9,21,51.....(3)质因数:如果一个数的因数是质数,那么这个因数就是它的质因数。

(4)分解质因数:把-一个合数用质数相乘的形式表示出来。

因数和倍数知识点归纳

因数和倍数知识点归纳

因数和倍数知识点归纳一、因数:1.定义:若整数a除以整数b,商为整数而没有余数,那么b就是a 的因数,同时a也是b的倍数。

2.性质:每个整数都有1和它本身作为因数,这两个因数称为它的“平凡因数”。

3.因数的表示:a.用数学符号表达:记作a,b(a能整除b),读作“a整除b”或“b能被a整除”。

b.用集合表示:将a的所有因数放在一对括号中,如{1,a}表示a的因数集合。

4.因数的判断:若a能整除b,则b是a的因数;若a能被b整除,则a是b的因数。

5.因数的个数:a.若n是一个合数(非素数),则它的因数个数一定大于2个。

b.若n是一个素数,它的因数只有1和它本身两个。

6.因数的性质:a.因数是整数,可以是正数、负数或零。

b.若x是y的因数,y是z的因数,则x也是z的因数。

7.因数的求法:a.可以通过试除法来求一个数的因数。

从2开始逐个试除,直到试除到该数的平方根为止。

b.可以通过质因数分解来求一个数的因数。

将该数分解为若干个质数的乘积,再根据乘法的交换律将质数分解表示的因数重新排列组合。

二、倍数:1.定义:若整数a除以整数b,商为整数,则a是b的倍数,b是a的约数。

2. 性质:对于任何整数a和正整数b,ab都是a的倍数,且ab/a=b。

3.倍数的表示:a.用数学符号表达:记作a∣b(a是b的倍数)。

b.用集合表示:将a的所有倍数放在一对括号中,如{a,2a,3a,...}表示a的倍数集合。

4.倍数的判断:若a是b的倍数,则b是a的因数。

5.最小公倍数(LCM):表示两个或多个数共有的最小倍数。

6.最大公约数(GCD):表示两个或多个数共有的最大因数。

三、公约数和公倍数:1.公约数:两个或多个数同时能够整除的因数,称为公约数。

a.公约数的求法:通过分别求出两个或多个数的因数集合,找出它们的交集即为它们的公约数。

b.公约数的性质:若a是b的公约数,而b是c的公约数,则a也是c的公约数。

2.公倍数:两个或多个数同时是另一个数的倍数,称为公倍数。

因数和倍数的知识点整理

因数和倍数的知识点整理

因数和倍数的知识点整理因数和倍数是数学中常见的概念,它们在我们的日常生活中起着重要的作用。

本文将从因数和倍数的定义、性质和应用等方面进行详细介绍,帮助读者更好地理解和应用这两个概念。

一、因数的定义和性质1.1 因数的定义一个数如果能被另一个数整除,我们就称这个数为另一个数的因数。

例如,6能被2整除,因此2是6的因数。

1.2 因数的性质(1)一个数的因数一定不能大于这个数本身。

(2)一个数的因数一定不能小于1。

(3)一个数的因数都是整数。

1.3 最大公因数和最小公倍数最大公因数是指两个或多个数公有的最大的因数,最小公倍数是指两个或多个数公有的最小的倍数。

最大公因数和最小公倍数在数学中有着广泛的应用。

二、倍数的定义和性质2.1 倍数的定义一个数如果能被另一个数整除,我们就称这个数为另一个数的倍数。

例如,12是6的倍数,因为12能被6整除。

2.2 倍数的性质(1)一个数的倍数一定能被这个数整除。

(2)一个数的倍数都是整数。

三、因数和倍数的应用3.1 因数的应用(1)判断一个数是否为质数:如果一个数只有1和它本身两个因数,那么这个数就是质数。

(2)简化分数:将分子和分母的最大公因数约去,可以得到最简分数。

(3)求一个数的所有因数:通过列举所有小于这个数的正整数,并判断能否整除这个数来求得。

3.2 倍数的应用(1)求最小公倍数:通过列举两个数的倍数,找到它们的公共倍数中最小的一个数,就是最小公倍数。

(2)求最大公因数:通过列举两个数的因数,找到它们的公共因数中最大的一个数,就是最大公因数。

(3)计算简单分数的通分:将两个分数的分母的最小公倍数作为它们的公分母,然后将分子按比例扩大。

四、因数和倍数的联系与区别4.1 联系一个数的因数也是它的倍数,一个数的倍数也是它的因数。

4.2 区别因数是指能够整除一个数的数,而倍数是指能够被一个数整除的数。

因数是从小到大逐个增加的,而倍数是从大到小逐个增加的。

因数和倍数是数学中常见的概念,它们在数学中有着重要的地位和应用。

(完整版)因数和倍数知识点归纳

(完整版)因数和倍数知识点归纳

第二单元因数和倍数知识点归纳一、因数和倍数1.因数、倍数的意义:如果aX b二C (a、b、C都是不为0的整数),那么a、b就是C 的因数,C就是a、b的倍数。

(1 )一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

2.因数与倍数的关系:因数和倍数是相互依存的概念,二者不能单独存在。

3.找一个数的因数的方法:(1 )列乘法算式找;(2)列除法算式找。

4.找一个数的倍数的方法:(1 )列乘法算式找一个数的倍数,就是用这个数依次与非零自然数相乘,所得积就是这个数的倍数;(2 )列除法算式找。

5.表示一个数的因数和倍数的方法:(1 )列举法;(2)集合法。

二、2、5、3 的倍数的特征1、2的倍数的特征:个位上是O,2,4,6,8 的数都是2 的倍数。

2、奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2 的倍数的数叫做奇数。

3、奇数、偶数的运算性质:奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数- 奇数=偶数偶数- 偶数=偶数奇数- 偶数=奇数奇数X奇数一奇数奇数X偶数二偶数偶数X偶数二偶数4、5的倍数的特征:个位上是0或5的数都是5的倍数。

5、3 的倍数的特征:一个数各个数位上的数字的和是3 的倍数,这个数就是3 的倍数。

三、质数和合数1.质数和合数的意义:一个数如果只有1 和它本身两个因数,这样的叫做质数 (或素数);一个数如果除了1 和它本身还有别的因数,这样的数叫做合数。

2.分解质因数:把一个合数用几个质数相乘的形式表示出来,就是分解质因数。

3.质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。

4.分解质因数的方法:(l )枝状图式分解法;(2 )短除法。

五下第二、三单元知识点梳理(因数和倍数、长方体与正方体)

五下第二、三单元知识点梳理(因数和倍数、长方体与正方体)

第二单元因数和倍数一、因数与倍数:1、a÷b 表示两个数相除(a、b 为整数,商是整数没有余数,b 不能为0)则说能被整除,能整除。

也就是说 a 是 b 的,b 是a 的。

如:12÷6=2,则说能被整除,能整除,即和是的因数。

12 是2 的倍数,也是6 的倍数。

因数和倍数是相互的,不能说12 是倍数,6 是因数,应该说12 是6 的倍数等。

谁是谁的因数,谁是谁的倍数。

2、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是整数(一般不包括0)3、找因数的方法:①乘法②除法;找倍数:逐次乘以自然数。

4、一个数的因数的个数是有限的,其中最小的因数是,最大的因数是。

一个数的倍数的个数是无限的,其中最小的倍数是,没有最大的倍数。

一个数的最大因数和最小倍数是相等的都是他本身。

5、因数它本身、倍数它本身、最大的因数最小的倍数它本身。

二、2、3、5 的倍数的特征:1、2 的倍数特征:。

自然数中,是2 的倍数的数叫做偶数(0 也是偶数),也就是个位上是0、2、4、6、8 的数。

不是 2 的倍数的数叫奇数。

也就是个位上是1、3、5、7、9 的数。

2、5 的倍数特征:。

3、3 的倍数的特征:一个数,这个数就是3 的倍数。

4、2 和5 的倍数特征:。

(就是10 的倍数)。

5、2 和3 的倍数特征:。

(就是6 的倍数)。

6、3 和5 的倍数特征。

(就是15 的倍数)。

7、2、3、5 的倍数特征:。

(就是30 的倍数)能同时被2、3、5 整除的最小两位数是,最大两位数是,最小三位数是。

求含有因数2、3、5 的数,实际是求2、3、5 的倍数。

8、自然数按能否被2 整除分成,最小的偶数是,最小的奇数是,没有最大的奇数和偶数,最小的自然数是。

9、奇数+、- 偶数=奇数+、- 奇数=偶数+、-偶数=奇数×奇数=质数×质数=10、4的倍数特征:三、质数与合数:1、一个数,如果只有1 和它本身两个因数,这样的数叫做(或素数);一个数,如果除了 1 和它本身还有别的因数,这样的数叫做(至少 3 个因数)。

(完整版)因数与倍数知识点(挺好)

(完整版)因数与倍数知识点(挺好)

第二单元因数与倍数1. 因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。

倍数和因数是相互依存的。

2. 一个数的因数个数是有限的,最小因数是1,最大因数是它本身。

一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。

3.2、3、5倍数的特征。

(1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。

(2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。

(3)个位上是0、5的数都是5的倍数。

4.质数和合数。

(1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。

最小的质数是2。

(2)一个数,除了1和它本身还有别的因数,这样的因数叫做合数。

最小的合数是4,合数至少有三个因数。

(3)1既不是质数,也不是合数。

5.质因数和分解质因数。

(1)每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数。

(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:30=2×3×56.最大公因数和最小公倍数。

(1)几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。

(2)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

7.互质数:公因数只有1的两个数,叫做互质数。

8. 100以内质数:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、979. 13的倍数:26、39、52、65、78、91、104、11717的倍数:34、51、68、85、102、119、136、15319的倍数:38、57、76、95、114、133、152、171因数与倍数专项练习题..........一.我会填.1.一个数是3、5、7的倍数,这个数最小是( 105 ).2.是3的倍数的最小三位数是( 102).3.三个数相乘,积是70,这三个数是(2 )( 5 )(7 )4.同时是2、3、5的倍数的最小两位数是(30 ),最大两位数(90 )最小三位数(120 )最大三位数(990 )。

新人教版五年级下册数学第二单元——因数和倍数——知识点整理

新人教版五年级下册数学第二单元——因数和倍数——知识点整理

因数和倍数1、整除大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:最小的因数是最大的因数最小的倍数2、自然数按能不能被2整除来分:奇数、偶数奇数:不能被2整除的数。

偶数:能被2整除的数。

10.个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

90120。

3、自然数按因数的个数来分:质数、合数质数:合数:至少有1:只有1最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、最大公因数几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

五年级数学下册第二单元知识点倍数和因数

五年级数学下册第二单元知识点倍数和因数

五年级数学下册第二单元知识点1.因数和倍数的定义:2和6是12的因数,12是2的倍数,12也是6的倍数18的因数有1、18、2、9、3、62.一个数的因数个数是有限的,一个数的倍数有无数个任何数都有最小的因数1,最大的因数本身,最小的倍数也是本身3. 2、3和5倍数的特征2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数5的倍数的数特征是个位是0或53的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数4.只有1和本身两个因数的数叫做质数(或素数)5.除了1和本身外还有其它因数的数叫做合数6. 1既不是质数,也不是合数7. 100个,它们是:共有25个:2、3、5、7、11、13、17、 19、31、23 、 37、29 41、43、47、5961、53、 67、 79 、71、73、 97、 89 、 83补充知识1、6倍数的特征:个位上是0、2、4、6、8同时各个位上的数字和是3的倍数2.9的倍数的数特征是一个数各位上的数字的和是9的倍数,这个数就是3的倍数3.既是2、 5的倍数又是3的倍数的数的特征:是个位必须是0,且各个数位上的数字的和是3的倍数。

4、既是2的倍数,又是5的倍数的数的特征是个位必须是07、3个相同的数字及3个相同数字与0组成的数都是3的倍数8、3个连续的自然数及3个连续自然数与0组成的数都是3的倍数9.如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数10.如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数11. 偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数偶数+奇数=奇数偶数-奇数=奇数偶数×奇数=偶数奇数+奇数=偶数奇数-偶数=奇数奇数×奇数=奇数奇数-奇数=偶数无论多少个偶数相加都是偶数若干个整数连乘,如果其中有一个偶数,积就是偶数偶数个奇数相加是偶数奇数个奇数相加是奇数12、一个自然数他不是奇数就一定是偶数,自然数(0除外)按因数个数的多少,可分为三类:质数、合数、1.。

人教版五年级下册第二单元因数与倍数知识点

人教版五年级下册第二单元因数与倍数知识点

第二章 因数与倍数一、因数与倍数:1、倍数与因数之间的关系是相互的,不能单独存在。

只能说谁是谁的因数,谁是谁的倍数。

不能说是谁是因数,谁是倍数。

2、倍数、因数只考虑正数。

小数、分数等不讨论倍数、因数的问题。

3、一个数的因数个数是(有限的),最小的因数是(1),最大的因数是(他本身)。

4、一个数的倍数个数是(无限的),最小的倍数是(他本身),没有最大的倍数。

5、1是任一自然数(0除外)的因数。

也是任一自然数(0除外)的最小因数。

6、一个数的因数最少有1个,这个数是1。

除1以外的任何整数至少有两个因数(0除外)。

7、一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。

8、一个数的最小倍数=一个数的最大因数=这个数二、2,3,5的倍数特征【知识点1】2、3、5的倍数特征1、2 的倍数特征:个位上是0,2,4,6,8的数。

2、5的倍数特征:个位上是0或5的数。

3、3 的倍数特征:各个数位上的数的和是3的倍数的数。

4、既是2的倍数又是5的倍数的特征:个位上是0的数。

例如:80、20、130等。

5、既是2的倍数又是3和5的倍数的特征:个位上是0且各位数字的和是3的倍数。

例如:120、90、180、270等。

6、自然数按能否被2 整除的特征可分为奇数和偶数。

是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

(因此在自然数中,除了奇数就是偶数) 【知识点2】一些特殊数的倍数特征1、9的倍数特征:各个数位上的数的和能被9整除的数。

注意:能被9整除的数一定能被3整除,但是,能被3整除的数不一定能被9整除。

2、4(或25)的倍数特征:末两位能被4(或25)整除的数。

3、8(或125)的倍数特征:末三位数能被8(或125)整除的数。

4、如果a 和b 都是c 的倍数,那么a -b 和a +b 一定也是c 的倍数。

三、质数和合数【知识点1】质数和合数的相关定义1、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)2、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二单元因数和倍数知识点
1、整除:被除数、除数和商都是自然数,并且没有余数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、3、5的倍数特征:个位上是0,2,4,6,8的数都是2的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

个位上是0或5的数,是5的倍数。

能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2.3.5的倍数,实际是求2×3×5=30的倍数。

3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.
奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1、0.
质数(素数):只有1和它本身两个因数
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)
1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

6、最大、最小
A的最小因数是:1;最小的奇数是:1;
A的最大因数是:A;最小的偶数是:0;
A的最小倍数是:A;最小的质数是:2;
最小的自然数是:0;最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。

用短除法分解质因数(一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;
⑷2和所有奇数互质;⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

11、求最大公因数和最小公倍数方法
用12和16来举例: 求法一:(列举求同法)
最大公因数的求法:12的因数有:1、12、2、6、3、4 16的因数有:1、16、2、8、4 最大公因数是4
最小公倍数的求法:12的倍数有:12、24、36、48、… 16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)12=2×2×3 16=2×2×2×2
最大公因数是:2×2=4 (相同乘)最小公倍数是:2×2 × 3×2×2= 48。

相关文档
最新文档