低合金高强度结构钢的焊接特点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低合金高强度结构钢的焊接特点

1.热影响区的淬硬倾向

焊后冷却过程中,易在热影响区中出现低塑性的脆硬组织,这种组织在焊缝扩散

氢量较高和接头拘束较大时易产生氢致裂纹。

钢材的碳当量是决定热影响区淬硬倾向的主要因素。碳当量越高,钢材

淬硬倾向越大。焊接时热影响区过热区的800-500℃的冷却时间(一般用t

8/5表示)是另一个重要参数。该冷却速度越大,则热影响区的淬硬程度越高。焊接

的大小。

方法、板厚、接头形式、焊接规范、预热温度决定了t

8/5

焊接接头中,热影响区的硬度值最高。一般用热影响区的最高硬度来衡量淬硬程度的高低。不同级别的主强度钢热影响区有不同的最高硬度允许值,目前我国还没有明确规定。

2.冷裂纹敏感性

低合金高强度钢焊接时出现的裂纹主要是冷裂纹。因此,焊接时对于防止冷裂纹问题必须予以足够的重视。钢的强度级别越高,淬硬倾向越大,冷裂纹敏感性也越大。关于冷裂纹形成机理,是一种比较复杂的现象,一直有人在深入研究。目前多数人认为产生冷裂纹的三大因素是:

(1)焊缝凝固以后冷却时,由于焊缝一般含碳量比母材低,所以焊缝的奥氏体向铁素体转变较母材早,此时氢的溶解度急剧降低,大量的氢向仍处于奥氏体的母材热影响区中扩散,由于氢在奥氏体中扩散速度小,在熔合区附近形成了富氢带,含氢量越高,冷裂纹敏感性越大。

(2)滞后相变的热影响区发生奥氏体向马氏体转变的淬硬组织,氢以过饱和状态残存于马氏体中并逐步晶格缺陷等应力集中处扩散聚集,使该处的金属结合强度降低或脆化。钢的淬硬性倾向越大,冷裂纹倾向也越大。

(3)结构的刚性越大,由于焊接时加热引起的拘束应力也越大。同时热影响区相变组织应力共同构成了产生冷裂纹的应力条件。焊接应力越大,冷裂纹敏感性越大。

冷裂纹一般在焊后冷却过程中发生,也可能在焊后数分钟或数天后发生,具有延迟的性质,这可以理解为是氢从焊缝金属扩散到热影响区淬硬区集聚达到某一临界值的时间。在点固焊时,由于冷却速度快,极易出现冷裂纹,必须特别注意。

3.再热裂纹倾向

当焊接厚壁压力容器等结构件时,焊后需进行消除应力热处理,对于含铬、钼、钒、钛、铌等合金元素的钢材,在热处理过程中,易在热影响区的粗晶区产生晶间裂纹。有时不仅在热处理过程中发生,也可能发生于焊后再次高温加热的使用过程中。焊接这类高强度低合金钢时,应重视防止再热裂纹问题。防止再热裂纹的主要措施是尽量选取对再热裂纹不敏感的材料,选择强度较低的焊接材料,提高预热温度和焊接线能量,以及尽量减少焊接接头中的应力集中等。

4.层状撕裂

大型厚板结构件,特别是T型接头,角焊缝处,由于母材轧制时产生的层状偏析(主要是MnS)、各向异性等缺陷,在热影响区或在远离焊缝的母材中产生与钢

板表面成梯形平行的裂纹,叫层状撕裂。焊接大厚度钢板角焊缝时,应注意在选材和工艺上防止层状撕裂。

5.液化裂纹

液化裂纹是一种热裂纹,某些低合金高强度钢焊接时,可能有液化裂纹倾向,主要是由于母材含杂质量(如S、P和Si等)偏高,能在晶间形成低熔点的复合夹杂物(共晶或化合物)。由于焊接时的高温使近缝区晶间液化,加之随后冷却所出现的焊接应力的作用而引起沿晶开裂。

相关文档
最新文档