马赫曾德光纤干涉实验
实验三:集成波导马赫-曾德尔干涉仪
实验三:集成波导马赫-曾德尔干涉仪一、实验目的:1.掌握MZI 的干涉原理2.掌握MZI 干涉仪的基本结构和仿真方法 二、实验原理:MZI 干涉原理基于两个相干单色光经过不同的光程传输后的干涉理论。
MZI 主要由前后两个3dB 定向耦合器和一个可变移相器组成。
最终使不同的两个波长分别沿两个不同的端口输出。
其结构示意图如下所示:图1 MZI 干涉原理简图马赫-曾德干涉结构可用做光调制器,也可用做光滤波器。
1、马赫-曾德干涉仪的分光原理:设两耦合器的相位因子分别为12,ϕϕ,当干涉仪一输入端注入强度为0I (以电场强度表示为0E )光波时,可以推出两个输出端的光场强度12,I I (以电场强度分别表示为12,E E )分别为:2222110121222222201212cos ()sin(2)sin(2)sin (/2)sin ()sin(2)sin(2)cos (/2)I E E L I E E L ϕϕϕϕβϕϕϕϕβ⎡⎤==++⎣⎦⎡⎤==-+⎣⎦式中,β为传输常数;12∆=-L L L 为干涉仪两臂的长度差,它在干涉仪两臂之间引入的相位差:2/2/∆=∆=L n L C F βπυπυ。
(υ为光的频率;n 为光纤纤心的折射率:C 为真空中的光速;/=∆F C n L 为马赫一曾德干涉仪的自由程。
当构成干涉仪的两耦合器均为标准的3 dB 耦合器(即分光比为1:1)时,两耦合器的相位因子为045,可以得到干涉仪输出端的强度传输系数分别如下:[][]2111200222220011cos(2/)211cos(2/)2===-===+E I T F I E E I T F I E πυπυ 图2给出了强度传输系数随输入光频率的变化曲线:图2 马赫-曾德干涉仪强度传输系数随频率变化曲线从图2可以看出,两个输出端的强度传输系数正好是反相的,也就是说,当在干涉仪的一个输入端注入单一频率的光波时,调节干涉仪使一个输出端输出光强度达到最大时,则另一输出端输出光强度将达到最小。
马赫曾德干涉仪实验讲义
马赫曾德干涉仪马赫——曾德干涉仪。
马赫——曾德干涉仪(Mach-Zehnder; inter-ferometer)是一种重要的光学和光子学器件,广泛应用于干涉计量、光通信等领域;它用分振幅法产生双光束以实现干涉,被广泛用作传感器和光调制器。
一、实验目的1.掌握马赫曾德干涉仪的原理和结构;2. 组装并调节马赫曾德干涉仪,观察干涉条纹。
3. 学会调节两束相干光的干涉;二、实验原理与仪器He-Ne 激光器、平面反射镜1和平面反射镜2 、分束器、合束器、扩束滤波准直系统、可变光阑、光强衰减片、白屏。
图1 实验装置及光路图图1为马赫曾德的实验装置图,:由He-Ne激光器发出的激光由扩束镜(显微物镜)、针孔滤波和透镜准直后形成宽口径平面波,经可变光阑后,光斑直径变为1厘米后,再经分束器形成两路:透射光和反射光。
透射光被反射镜2反射后垂直入射到原始物平面Po上的物体上,经衍射后的物光经过合束器到达距离z=20厘米处的CCD记录面P H上。
经过分束器后的反射光作为参考光被反射镜1和合束器反射到P H面上与物光干涉产生干涉条纹,被CCD 记录下来传输到计算机中。
三、实验内容和步骤1 光学器件的共轴调节调节激光器水平,调整各器件的高度的俯仰,使其共轴。
在调节透镜时要注意反射光点重合。
2 平行光调节利用调平的激光器,通过调节扩束准直系统,得到平行光。
加入可变光阑,使平行光中心通过光阑的中心。
通过针孔滤波和透镜准直获得宽口径平面波后搭建MZ干涉仪,保证两束光在合束器后完全重合并产生平行直条纹的干涉图样。
3.首先在激光束的传播方法放置分束器,将He-Ne激光器的主光束平分得到两个分光束。
调整分束器角度,得到两条严格垂直的分光束。
在光路1中放置反射镜1,将分光束1的传播方向改变,该反射镜与分光器位于同一列螺纹孔。
反复调节反射镜的位置和反射角度,得到严格平行并且等高的两束光线。
在光路2中放置反射镜2,如果调节的方法正确,主分光束的反射光和另外一条分光束可以刚好在空间相交,该交点基本可以刚好满足严格的等过程。
实验十、MZ综合实验
【实验名称】 马赫-曾德光纤干涉仪综合实验马赫-曾德光纤干涉仪基于相干光学中马-曾干涉仪原理实现了相干光路光纤化的一种器件,通称MZ 。
它主要由光纤耦合器、偏振控制器、PZT 相位调制器和光纤组成。
利用MZ 干涉仪原理制成的MZ 光纤调制器是在MZ 干涉仪的基础上,加入第二个耦合器,并采用PZT 将输入的电调制信号转换为光调制信号输出,其在光通信中有重要的应用。
因此,学习MZ 干涉仪的基础知识对于理解和掌握光通信原理和技术是非常必要的。
【实验目的】1.了解光纤马赫-曾德干涉仪的基本原理及时调整方法2.掌握光耦合的基本技能,3.掌握光纤偏振控制器的原理及使用方法,4.掌握压电陶瓷(PZT)进行光纤相位调制的工作原理及使用方法.【实验原理】为深入地掌握MZ 干涉仪的工作原理,我们先从构成MZ 干涉仪的基础元件光纤耦合器出发,运用模耦合理论分析光纤耦合器光场的输入和输出关系,再利用光传输理论扩展到整个MZ 干涉仪。
1. 光纤熔锥耦合器光纤熔锥耦合器是将两段光纤除去涂覆层后缠绕在一起,用光纤拉锥机拉制而成的用于光功率耦合的光纤器件。
通常光纤耦合器为1×2和2×2,图1给出1,2端口端输入,3,4端口输出的2×2耦合器示意图,图中箭头表示光波传输方向。
图1. 2×2光纤熔锥耦合器结构对于光波导而言,绝大部分光都集中在纤芯,但总有很小部分能量散布于包层.当两个光波导相互靠近时,一个波导中传输的光能将耦合到另一个波导之中,从而改变各个光波导的场分布,而这种变化反过来对原光波导发生影响,这就形成了两光波导的横向耦合。
理论上参与耦合作用的光场满足如下光纤耦合器的模耦合方程[][]⎪⎩⎪⎨⎧+=+=)()(d d )()(d d 212211z E z kE i zE z kE z E i z E ββ (1) 其中和分别为存在于耦合器中两个相互作用光场, 为模耦合系数, )(1z E )(2z E k β是光在光纤中传播常数。
光纤马赫-曾德干涉
马赫-曾德光纤干涉实验光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。
光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。
一、实验目的1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。
二、实验器材OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器 三、实验原理1.光纤传感器基本工作原理光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。
光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。
经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为)(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2)在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。
2.马赫-曾德光纤温度传感器工作原理激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。
当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。
干涉条纹的数量能反映出被测温度的变化。
光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。
长度为 L 的光纤中传播光波的相位ΦnL k 00+Φ=Φ (3)其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。
图1 光纤Mach-Zenhder 干涉仪原理图λπ=λπδ=∆ΦSP22λπ+=SP K I I I 2cos 00设光纤1L 温度不变,光纤2L 温度该变T ∆,则折射率n 的改变量为n ∆ ,光纤2L 长度改变量为2L ∆。
光纤马赫-曾德干涉实验
马赫-曾德光纤干涉实验光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。
光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。
一、实验目的1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。
二、实验器材OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器 三、实验原理1.光纤传感器基本工作原理光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。
光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。
经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为)(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2)在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。
2.马赫-曾德光纤温度传感器工作原理激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。
当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。
干涉条纹的数量能反映出被测温度的变化。
光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。
长度为 L 的光纤中传播光波的相位ΦnL k 00+Φ=Φ (3)其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。
图1 光纤Mach-Zenhder 干涉仪原理图λπ=λπδ=∆ΦSP22λπ+=SP K I I I 2cos 00设光纤1L 温度不变,光纤2L 温度该变T ∆,则折射率n 的改变量为n ∆ ,光纤2L 长度改变量为2L ∆。
全光纤马赫-曾德尔干涉仪的测温实验
收 稿 日期 : 0 9 1 — 3 修 改 日期 : 0 00 ~ 6 2 0—01 ; 2 1 — 10 资助 项 目 : 京 航 空 航 天 大 学 S TP项 目支 持 ( . R 4 0 17 北 R No S TP 3 3 0 ) 作 者 简 介 : 亚 星 (9 8 ) 男 , 张 1 8 一 , 湖南 岳 阳 人 , 京 航 空 航 天大 学 物 理科 学 与 核 能 工 程 学 院 本 科 生 . 北 指 导 教 师 : 明川 (9 9 )男 , 京 人 , 京 航 空 航 天 大 学 物 理 科 学 与 核 能 工 程 学 院 副 教 授 , 士 , 事 光 电 测 试 技 术 苗 15- , 北 北 博 从 研究.
第3 O卷 第 9 期
21 0 0年 9月
物 理 实
验
Vo1 O .3
NO. 9
PH YSI CS EX PERI EN TA T I N M o
S p ,0 0 e . 2 1
学
生
园
全 光 纤 马赫 一 曾德 尔 干 涉 仪 的测 温 实验
张亚星 , 赵 鹏 , 张 洁 , 明 川 苗
亮条 纹 , 等 于 ( k 1 兀时 为 暗 条 纹 (是为 级 △ 2+ )
2 温 度 测 量 系统
2 1 测 温 原 理 .
数) .设 。 和
分 别 为 2柬 激 光 射 出 光纤 时 的
相 位 ( l受 温 度 调 制 ) 1 : 一 1+ 惫n , 2 。 。L1 一
( 北京航 空航 天 大 学 物 理科 学与核 能 工程 学 院 , 北京 1 0 9 ) 0 1 1
地
摘 要 : 阐述 了全 光纤 马赫 一 德 尔 干 涉 仪 的 测 温 原 理 , 在 2  ̄ 4 ℃对 测 温 系 统 进 行 了标 定 .利 用 Malb数 字 图 曾 并 0 0 t a 像 处 理 技 术 对 温 度 干涉 条 纹 图像 进 行 处 理 , 计 了计 算 条 纹 移 动 数 目的 程 序 .通 过 测 温 实 验 对 条 纹 记 数 程 序 进 行 了 检 设 验, 有较 好 的 准 确 度 .
实验报告 马赫 曾德干涉仪
实验报告马赫曾德干涉仪实验报告马赫-曾德干涉仪2011-03-17 11:20 P.M.班级08级物理系*班组别_1_姓名_Ayjsten_学号1080600*日期_ 2010.03.02指导教师_ _【实验题目】马赫-曾德干涉仪马赫-曾德干涉、针孔滤波器、相干长度。
【实验目的】1.熟悉所用仪器及光路的调节,观察两束平行光的干涉现象。
2.观察全息台的稳定度。
3.通过实验考察激光的相干长度。
【实验原理】针孔滤波器激光从发出,经过各种透镜的反射折射,会产生很多杂散光,如光学元件表面本身不够平整,表面落有灰尘等,而激光的干涉性又好,元件表面的问题导致激光产生大量散射光。
针孔滤波器原理图见图?,如图所示,聚光镜汇聚光的同时还产生很多散射光,而这些散射光的光线与没有受到干扰的光束的方向不同,只有没有受到干扰的光束才能通过针孔,从而过滤掉了其他的干扰光。
针孔的直径很小,一般约,从针孔后面看,就可以把它当做一个能产生球面波接近理想的光源。
这对于光学研究有重要的意义。
全息工作台基本要求是工作台的稳定性要好。
振动的一般来源是地基的震动,所以必须对全息台进行减震处理。
专用全气浮工作台是最好的减震台。
简单的减震方法可用砂箱、微塑料、气垫和重的铸铁或花岗岩,并应安装一个隔离罩。
记录全息图时,室内不要通风,工作人员不要大声讲话并与工作台保持较远的距离。
如全息记录时,物光和参考光交角为θ,干板中央处的干涉条纹间距为d=λ/sinθ(λ为激光波长)。
如果干板以大于d/2的振幅上下震动,则明暗部分将混乱。
所以在记录全息的过程中,工作台的稳定性必须考虑。
马赫-曾德干涉马赫-曾德干涉是用分振幅法产生双光束以实现干涉的干涉仪。
具体光路图见下图?所示。
马赫-曾德干涉中,在分束镜2处汇聚的两路激光一般是存在一个夹角的,调整分束镜2使夹角减小,则白屏上观察到的干涉就更明显。
由分束镜分开后的两路光路长度,要求是等长的。
若相差超出实验用的激光器的最大相干长度,则不能出现干涉。
光电检测与显示实验一光纤M-Z干涉仪及光纤传感实验
实验一光纤M-Z干涉仪及光纤传感实验(一)M—Z光纤干涉仪实验一、实验目的1.了解马赫——曾特(M—Z)干涉仪的原理和用途;2.调试M—Z干涉仪并进行性能测试。
二、实验仪器He-Ne 激光器1套;光纤干涉演示仪1套;633nm单模光纤1根。
注意:1.本实验不需要打开M-T干涉仪观察窗下方的开关!2.任何人不得切割单模光纤!三、实验内容1.M—Z干涉仪的原理和用途马赫——曾特干涉仪是一种重要的光学和光子学器件,广泛应用于干涉计量、光通信等领域。
基于干涉仪对波导及其周围介质折射率的相位敏感特性,M-Z被广泛用作传感器和光调制器。
光纤传感技术是上世纪70年代末新兴的一项技术,与传统传感器相比,光纤传感器具有以下特点:频带宽;不受电磁干扰;灵敏度高;体积小;损坏阈值高;可非接触测量;电子设备与传感器可以间隔很远;能形成传感网络等;光纤检测技术的核心把光纤传感器,光纤干涉仪是基于光干涉技术用于检测的光纤传感器系统,其测量精度比普通光纤传感器更高,不仅可以代替传统的干涉仪功能,还能用于教学,测量压力、应力、温度、磁场、折射率、位移等物理量的微小变化,用途非常广泛。
以光纤取代传统M—Z(马赫-曾特)干涉仪的空气隙,就构成了光纤型M—Z干涉仪。
这种干涉仪可用于制作光纤型光滤波器、光开关等多种光无源器件和传感器,在光通信、光传感领域有广泛的用途,其应用前景非常美好。
光纤型M—Z干涉仪实际上是由分束器构成。
当相干光从光纤型分束器的输入端输入后,在分束器输出端的两根长度基本相同的单模光纤会合处产生干涉,形成干涉场。
干涉场的光强分布(干涉条纹)与输出端两光纤的夹角及光程差相关。
令夹角固定,那么外界因素改变的光程差直接和干涉场的光强分布(干涉条纹)变化相对应。
光纤马赫曾德尔干涉仪结构的优化与应用研究
光纤马赫曾德尔干涉仪结构的优化与应用研究光纤马赫曾德尔干涉仪是一种重要的光学仪器,它可以用于测量光波的相位差和频率。
本文将从理论和应用两个方面对光纤马赫曾德尔干涉仪的结构进行优化和研究。
我们来了解一下光纤马赫曾德尔干涉仪的基本结构。
它主要由光源、分束器、反射镜和检测器等部分组成。
其中,光源是用来产生光波的装置,分束器是用来将光束分成两路的装置,反射镜是用来反射光线的装置,检测器则是用来测量光波的相位差和频率的装置。
在这些部分中,最关键的是反射镜的设计。
因为只有通过精确的反射镜设计,才能保证光线的正确分布和测量结果的准确性。
针对以上问题,我们进行了以下的研究:一、优化光纤马赫曾德尔干涉仪的结构1. 改进分束器的设计为了提高光纤马赫曾德尔干涉仪的性能,我们对其分束器进行了改进。
具体来说,我们采用了一种新型的分束器设计,使得两路光线之间的夹角更加精确,从而提高了测量精度。
我们还加入了一些补偿措施,以应对不同环境下光线的变化。
1. 优化反射镜的设计为了进一步提高光纤马赫曾德尔干涉仪的性能,我们对其反射镜进行了优化。
具体来说,我们采用了一种新型的反射镜设计,使得光线能够更加均匀地分布在整个反射面上。
我们还加入了一些调节装置,以便根据不同的测量需求进行调整。
二、应用光纤马赫曾德尔干涉仪解决实际问题除了对光纤马赫曾德尔干涉仪本身进行优化外,我们还将其应用于实际问题中。
例如,在光学通信领域中,我们可以使用光纤马赫曾德尔干涉仪来测量光波的相位差和频率,从而确保数据的传输质量。
在医学领域中,我们也可以利用光纤马赫曾德尔干涉仪来进行生物成像等方面的研究。
通过对光纤马赫曾德尔干涉仪结构的优化和应用研究,我们可以更好地发挥其性能优势,并为相关领域的发展做出贡献。
最新马赫曾德干涉仪实验讲义
马赫曾德干涉仪马赫——曾德干涉仪。
马赫——曾德干涉仪(Mach-Zehnder; inter-ferometer)是一种以实现干涉,被广泛用作传感器和光调制器。
一、实验目的1.掌握马赫曾德干涉仪的原理和结构;2. 组装并调节马赫曾德干涉仪,观察干涉条纹。
3. 学会调节两束相干光的干涉;二、实验原理与仪器He-Ne 激光器、平面反射镜1和平面反射镜2 、分束器、合束器、扩束滤波准直系统、可变光阑、光强衰减片、白屏。
图1 实验装置及光路图图1为马赫曾德的实验装置图,:由He-Ne激光器发出的激光由扩束镜(显微物镜)、针孔滤波和透镜准直后形成宽口径平面波,经可变光阑后,光斑直径变为1厘米后,再经分束器形成两路:透射光和反射光。
透射光被反射镜2反射后垂直入射到原始物平面Po上的物体上,经衍射后的物光经过合束器到达距离z=20厘米处的CCD记录面P H上。
经过分束器后的反射光作为参考光被反射镜1和合束器反射到P H面上与物光干涉产生干涉条纹,被CCD 记录下来传输到计算机中。
三、实验内容和步骤1 光学器件的共轴调节调节激光器水平,调整各器件的高度的俯仰,使其共轴。
在调节透镜时要注意反射光点重合。
2 平行光调节利用调平的激光器,通过调节扩束准直系统,得到平行光。
加入可变光阑,使平行光中心通过光阑的中心。
通过针孔滤波和透镜准直获得宽口径平面波后搭建MZ干涉仪,保证两束光在合束器后完全重合并产生平行直条纹的干涉图样。
3.首先在激光束的传播方法放置分束器,将He-Ne激光器的主光束平分得到两个分光束。
调整分束器角度,得到两条严格垂直的分光束。
在光路1中放置反射镜1,将分光束1的传播方向改变,该反射镜与分光器位于同一列螺纹孔。
反复调节反射镜的位置和反射角度,得到严格平行并且等高的两束光线。
在光路2中放置反射镜2,如果调节的方法正确,主分光束的反射光和另外一条分光束可以刚好在空间相交,该交点基本可以刚好满足严格的等过程。
马赫-曾德干涉光路下的全息数字记录及其再现
第31卷第5期大学物理实验Vol.31No.52018年10月PHYSICALEXPERIMENTOFCOLLEGEOct.2018收稿日期:2018 ̄06 ̄25文章编号:1007 ̄2934(2018)05 ̄0017 ̄04马赫 ̄曾德干涉光路下的全息数字记录及其再现李欣芫ꎬ赵梓言ꎬ付申成(东北师范大学ꎬ物理学师范专业国家级实验教学示范中心ꎬ吉林长春㊀130024)摘要:搭建马赫 ̄曾德全息光路图ꎬ分别进行了数字全息的两个相关实验:光学 ̄数字全息(光学记录 ̄数字再现)ꎬ计算模拟全息(数字记录 ̄数字再现)ꎬ并对两个实验的结果进行分析加以对比ꎮ关键词:马赫曾德干涉ꎻ光学记录ꎻ数字记录ꎻ数字再现中图分类号:O4 ̄34文献标志码:ADOI:10.14139/j.cnki.cn22 ̄1228.2018.05.005㊀㊀1948年ꎬ英国物理学家DennisGabor为提高电子显微镜的分辨本领ꎬ首次提出同轴全息照相ꎮ1949年ꎬDennisGabor提出了一种新的波前记录和再现方法 全息术[1]ꎮ由于传统全息术在利用干板记录全息图时必须要做化学湿处理ꎬ给实验操作带来了诸多不便ꎮ1971年ꎬHuang进一步提出数字全息的概念ꎮ采用数字全息技术ꎬ不仅省去了繁琐的化学湿处理步骤ꎬ而且可以很方便地对生成的全息图进行图像处理[2]ꎬ同时减少或消除噪声等因素带来的的影响ꎮ其最大的优势是响应速度快㊁灵敏度高㊁能够记录运动物体的瞬时状态ꎮ近年来ꎬ数字全息在生物医学ꎬ粒子场测量等很多领域都得到了广泛应用[3]ꎮ2006年ꎬJorgeGarcia ̄Sucerquiaꎬ等人介绍了一种可适用于研究海洋环境中蜉蝣生物运动的水下数字全息显微技术(DIHN)[1]ꎮ2017年ꎬYasuhjrTsuchiyama等人提出了一种使用RGB彩色滤光片的来生成高质量的全彩色大规模计算机全息图(CGH)[4]ꎮ1㊀数字全息记录与再现的原理1.1㊀数字记录㊁数字再现数字全息技术分为两个步骤ꎮ首先利用光学干涉原理来记录物体振幅及相位信息ꎬ即记录过程ꎻ再利用光的衍射原理ꎬ对物体所含的光信息进行再现ꎬ即再现过程[4]ꎮ图1所示为数字全息图的记录及再现的坐标变换示意图ꎮ图1 数字全息图的记录及再现的坐标变换示意图㊀㊀物体位于物平面(Object ̄Plane)上ꎬ数字相机在全息平面(Hologram ̄Plane)上记录物光与参考光在全息平面上的干涉光强分布ꎬ最后在成像平面(VirtualImage ̄Plane)上生成全息图ꎮ设位于物平面上的物光场分布为U0(x0ꎬy0)ꎬ则全息平面上的光场记为:O(xꎬy)=A0(xꎬy)exp[jφ0(xꎬy)]其中ꎬA0(xꎬy)和φ0(xꎬy)分别为物光波的振幅和相位分布ꎮ将到达全息平面上的参考光波记为:R(xꎬy)=Ar(xꎬy)exp[jφr(xꎬy)]其中ꎬAr(xꎬy)和φr(xꎬy)分别为物光波的振幅和相位分布ꎮ则全息平面上全息图的强度分布为:IH(xꎬy)=|U(xꎬy)|2=|O(xꎬy)+R(xꎬy)|2=|A0(xꎬy)|2+|Ar(xꎬy)|2+2A0(xꎬy)Ar(xꎬy)cos[φ0(xꎬy)-φr(xꎬy)]上式的前两项分别代表了物光和参考光的光强分布ꎬ仅与振幅有关ꎻ第三项则是二者的干涉项ꎬ包含物光全部的振幅和相位信息[5]ꎮ由于参考光作为载波ꎬ其振幅和相位都受到了物光波的调制ꎬ因此物光调制参考光的结果即是产生了干涉条纹ꎮ全息图的数字再现过程是利用计算机对光波的振幅和相位进行数字计算完成的ꎮ根据衍射原理和再现距离可以得到再现平面上的光场分布ꎬ即:㊀㊀UI(xIꎬyI)=exp(jkd)jλd∬¥-¥I(uꎬv)C(uꎬv)expjk2d(xI-u)2+(yI-v)2[]{}dudv=exp(jkd)jλd∬¥-¥I(uꎬv)C(uꎬv)expjk2d(u2+v2)éëêêùûúúexp-j2π1λd(uxI+uyI)éëêêùûúúdudv㊀㊀因此ꎬ只要物体到成像平面间的距离满足菲涅尔衍射距离的要求ꎬ就可以获得清晰地再现全息图[6]ꎮ1.2㊀马赫 ̄曾德干涉光路(光学记录㊁数字再现)搭建马赫 ̄曾德干涉光路ꎬ如图2所示ꎮ图2㊀马赫 ̄曾德干涉光路图㊀㊀由二倍频Nd:YAG激光器输出波长为532nm的激光ꎬ利用衰减片可自由调整光强ꎬ之后光束经过空间滤波器ꎬ滤过高频光ꎬ再经扩束镜和准直镜后ꎬ形成一个亮度合适㊁宽度恰好的均匀平行光束ꎮ之后经分束镜分为物光和参考光ꎬ经过反射ꎬ物光和参考光在另一分束镜面耦合发生干涉ꎬ生成全息图[7]ꎮ为确保光路水平稳定ꎬ光学器件等高同轴ꎬ在搭建光路时ꎬ待测物和CMOS数字相机可最后再加入到光路中[8]ꎮ在光路搭建完成时ꎬ物光及参考光应具有相等的光程差ꎬ此时调节两束光ꎬ使其经合束镜后汇成一束同轴光ꎬ并在远处汇聚ꎬ出现干涉条纹[9]ꎬ此时光路基本调节完成ꎮ将CMOS数字相机加入到系统中ꎬ然后调整衰减片使COMS采集到的干涉条纹光波强度适合接下来的实验ꎮ再通过调整合束镜微调旋钮ꎬ改变条纹疏密程度ꎬ最终所调竖条纹清晰且密集即可认为调节完毕ꎬ在近处观察时可看到条纹图像如图3所示[10]ꎮ图3㊀所调竖条纹图像81马赫 ̄曾德干涉光路下的全息数字记录及其再现2㊀实验内容与结果2.1㊀计算机模拟全息(数字记录ꎬ数字再现)实验利用计算机来模拟数字全息的记录与再现过程ꎮ具体操作流程如图4所示ꎮ图4㊀数字全息记录和重现流程图计算模拟全息实验分为两两个过程ꎬ首先通过计算机计算出一幅图片的全息图ꎬ然后通过计算机将全息图再现ꎮ通过单平面菲涅尔全息图数字模拟ꎬ同时设置此时的虚拟光路的相关参数ꎬ生成全息图像如图5(右)所示ꎮ图5㊀含 东北师大 字样原始图片(左)及输出全息图(右)图5(右)是含有 东北师大 字样加密后全息图样ꎬ字的形状已经难以辨认ꎬ但仍可以看出是黑白相间的模糊条纹ꎮ之后通过单平面一步菲涅尔数字再现ꎬ设置与模拟参数相同的再现参数ꎬ输出再现结果如图6所示ꎮ图6㊀输出含 东北师大 字样的数字再现图再现的 东北师大 字样轮廓清晰ꎬ可以很容易的从背景中分辨出来ꎮ4.2㊀数字全息(光学记录ꎬ数字再现)数字全息实验可分为两个过程ꎬ第一个过程是通过搭建马赫 ̄曾德干涉光路进行光学记录ꎬ第二个过程是利用计算机进行数字再现ꎮ记录时用计算机将含 东北师大 字样的图片输入到空间光调制器(SLM)中作为待测物ꎬ记录介质则采用COMS相机替代传统全息实验中的干板ꎮ图7即为CMOS相机记录的全息图ꎬ软件中可以通过调整物光和参考光的夹角直到ʃ1级和0级衍射分开ꎮ同时可以通过观察计算机中全息图条纹的间距来不断调整夹角的大小ꎬ使其不超过最大夹角以保证全息图和再现图不失真[8]ꎮ图7㊀含 东北师大字样全息图图8㊀含 东北师大 字样再现图图8中生成的全息图较为清晰ꎬ难以辨认字形ꎬ但可大致观察到字的位置大小等信息ꎬ起到了加密的作用ꎮ再现图的周围有一些衍射条纹ꎬ这是再现像和共轭像相互重叠引起的ꎮ将字形放大来看ꎬ其0级和ʃ1级衍射条纹基本分开ꎬ可以较为清晰看到字形ꎮ但仍有误差存在ꎬ 光学记录 整个过程由实验者搭建光学仪器完成ꎬ实验台的晃动ꎬ光学仪器的镜面是否干净ꎬSLM仪器是否足够精密ꎬ物光与参考光是否严格同轴平行等都会影响实验结果ꎮ3㊀实验结论数字全息记录的是参考光和物光直接在介质91马赫 ̄曾德干涉光路下的全息数字记录及其再现上干涉形成的图样[11]ꎮ采用CMOS相机代替传统全息实验中的干板ꎬ直接将全息图记录在计算机中ꎬ再利用计算机将全息图再现ꎮ计算模拟全息则是用数学的方法将物体的振幅和相位记录下来加以加密再现ꎬ完全通过计算机来实现图像的记录和再现[12ꎬ13]ꎮ就全息图来说ꎬ前者生成的全息图较为清晰ꎬ可看到图样大致宽度㊁轮廓等ꎻ而后者生成的全息图完全模糊ꎬ无法看到前者表达的图样大致信息ꎮ对于再现图ꎬ前者几乎无衍射条纹影响ꎬ图样效果好ꎬ后者较大程度受到了衍射条纹的影响ꎬ图样不如前者清晰可辨ꎮ参考文献:[1]㊀JorgeGarcia ̄SucerquiaꎬDigitalin ̄lineholographicmi ̄croscopy[J].APPLIEDOPTICSꎬ2006(45):836 ̄850. [2]㊀桂进斌ꎬ李俊昌ꎬ宋庆和ꎬ等.离轴数字全息超分辨率记录系统优化设计[J].光学学报ꎬ2014(6):77 ̄81.[3]㊀罗鹏ꎬ吕晓旭ꎬ钟丽云.数字全息技术研究进展及应用[J].激光杂志ꎬ2006(6):8 ̄10.[4]㊀YasuhiroTsuchiyamaꎬKyojiMatsushimꎬFull ̄colorlarge ̄scaledcomputer ̄generated[J].OPTICSEXPRESSꎬ2017(3):2016 ̄2019.[5]㊀王亮.三维物体数字全息及其应用研究[D].南京师范大学ꎬ2007.[6]㊀何建瑜ꎬ赵荣涛ꎬ竺江峰.新马赫 ̄曾特尔全息光路图制作高频全息光栅[J].大学物理实验ꎬ2011(6):9 ̄11.[7]㊀韩冰ꎬ肖文ꎬ潘锋ꎬ丛琳ꎬ等.同轴数字全息相位恢复算法采样距离优化研究[J].激光与光电子学进展ꎬ2012(12):69 ̄74.[8]㊀于瀛洁ꎬ郭路ꎬ周文静.数字全息位相拼接实验研究[J].光学仪器ꎬ2011(4):55 ̄59.[9]㊀刘丽君ꎬ封玲ꎬ王喜省.数字像面全息与同轴全息实验研究[J].大学物理实验ꎬ2011(6):19 ̄21. [10]朱江ꎬ刘丽飒.数字平面全息光栅实验研究[J].大学物理实验ꎬ2017(3):69 ̄71.[11]丁大为.计算全息图及其数字重现的研究[J].安徽大学硕士学位论文ꎬ2004(5).[12]仇宇.全息图的数字化频域滤波及数值再现研究[J].电子科技大学学报ꎬ2006(6):934 ̄936. [13]李文昌ꎬ周敏ꎬ等.利用马赫 ̄曾德干涉光路制作二维全息光栅[J].大学物理实验ꎬ2018(4):49 ̄53.Mach ̄ZendeDigitalHolographicRecordingandReconstructionLIXin ̄yuanꎬZHAOZi ̄yanꎬFUShen ̄cheng(NationalExperimentalTeachingDemonstratingCenterofPhysicsNormalProfessionꎬNortheastNormalUniversityꎬJilinChang ̄chun130024)Abstract:ItsetsupaMach ̄Zehnderholographicopticalpathꎬandconductstworelatedexperimentsofdigitalholography:optical ̄digitalholography(opticalrecordinganddigitalreconstruction)ꎻcomputersimulationholo ̄gram(digitalrecordinganddigitalreconstruction).Theresultsofthetwoexperimentswereanalyzedandcom ̄pared.Keywords:Mach ̄Zehnderinterferenceꎻopticalrecordingꎻdigitalrecordingꎻdigitalreconstruction02马赫 ̄曾德干涉光路下的全息数字记录及其再现。
实验,马赫曾德
-、实验十三双光纤Mach-Zehnder干涉传感实验本实验采用双光纤技术,一方面通过双光纤分光路干涉,构成光纤Mach-Zehnder干涉传感测量系统;另一方面,在双光纤的出射端,构成杨氏双孔干涉系统。
通过本实验,可对光纤干涉相位调制的物理过程有一个完整的了解,同时,借助于双光纤杨氏空间干涉系统,可研究干涉条纹的空间分布等相关特性。
此外,借助于光纤双光路的光程调制器,可获得光相位的一些具体调制方法。
一、实验目的1.掌握基于双光纤干涉的基本原理;2.重点了解采用光纤形成光路的马赫-曾德(Mach-Zehnder)干涉系统中,光纤光程变化对条纹移动的影响;3.简要了解基于双光纤干涉的马赫-曾德(Mach-Zehnder)干涉测温以及应变测量等基本知识。
二、实验原理1.光纤杨氏干涉英国物理学家杨(T.Yong),最初所做的干涉实验如图13-1所示。
图13-1 双孔杨氏干涉实验用强光照射针孔S,以它作为点光源发射平面波。
在离S一定距离处放置另外两个小针孔S1和S2,它们从由S发出的球形波阵面上分离出两个很小的部分作为相干光源,由这两个小孔发出的光波在空间相遇的区域内会产生干涉现象。
因为针孔S、S1、S2很小,所以产生的干涉条纹图样很弱,不易观察。
后来采用狭缝代替针孔,得到了同样形状但明亮得多的干涉图样。
然而,有人认为无论是双孔干涉还是双缝干涉产生的干涉图样可能是由于光经过孔或缝的边缘时发生的复杂变化,而不是真正的干涉,后来菲涅耳做了双棱镜干涉实验,使人们确信光存在干涉性。
本实验采用光纤作为产生相干光的光源来实现双孔干涉(如图13-2所示),可以获得非常明亮的、条纹间距很宽的干涉图样。
该干涉条纹用眼睛在毛玻璃上能清晰地观察到。
图13-2 双光纤杨氏干涉实验装置2.光纤Mach-Zehnder干涉仪两光纤所构成的光路受到干扰时,会导致空间干涉条纹的移动。
因此,利用这一特性,可以构成光纤Mach-Zehnder干涉仪。
全光纤马赫-曾德尔干涉仪输出特性研究
南京邮电大学 硕士学位论文摘要
学科、专业:工 学 光学工程
研 究 方 向:光纤通信与光波技术
作
者:谷朋飞 硕 081606
指 导 教 师:黄勇林 教授
题
目:全光纤马赫-曾德尔干涉仪输出特性研究
南京邮电大学硕士研究生学位论文
摘要
摘要
光滤波器是光通信和光电子领域不可或缺的重要元器件,在波长锁定、波分复用/解复用、 波长路由、色散补偿、增益平坦等技术中都有广泛应用。随着波分复用(WDM)系统中信道 数的不断增加和信道间隔的不断减小,对滤波技术的要求也越来越高,因而研究新型高性能 光滤波器成为学科前沿课题之一。在众多滤波器中马赫-曾德尔干涉仪型滤波器由于结构简单、 可多级串联、以及具有梳状和带通滤波特性等优点,因而在 WDM 系统中备受关注。
目录
目录
摘 要.....................................................................................................................................................I Abstract ............................................................................................................................................... II 目 录..................................................................................................................................................IV 第一章 绪论........................................................................................................................................1
光纤马赫曾德尔干涉仪结构的优化与应用研究
光纤马赫曾德尔干涉仪结构的优化与应用研究光纤马赫曾德尔干涉仪是一种非常重要的光学仪器,它可以用于测量光的相位差、波长和强度等参数。
在现代科技中,光纤马赫曾德尔干涉仪的应用非常广泛,比如在通信、医疗、地质勘探等领域都有着重要的作用。
那么,如何优化和应用光纤马赫曾德尔干涉仪呢?下面就让我们一起来探讨一下吧!我们需要了解什么是光纤马赫曾德尔干涉仪。
简单来说,它就是利用光的干涉现象来实现测量的。
具体来说,当两束光线经过一个狭缝后发生干涉时,它们会形成一些明暗相间的条纹。
这些条纹的位置和间距与两束光线的相位差有关,因此可以通过测量这些条纹的位置来确定光的相位差。
这就是光纤马赫曾德尔干涉仪的基本原理。
接下来,我们来看看如何优化光纤马赫曾德尔干涉仪的结构。
我们需要选择合适的光源和狭缝。
一般来说,使用单色光源可以提高测量精度,而使用狭缝则可以让光线更加集中。
还可以采用可调谐激光器来控制光源的波长,以便更好地适应不同的测量需求。
另外,为了提高干涉效果,还可以在狭缝后面加上一个反射镜或者透镜来进行多次反射或者透射。
除了结构的优化之外,我们还需要考虑如何正确地使用光纤马赫曾德尔干涉仪。
要注意保持仪器的稳定性。
这包括防止震动、温度变化等因素对测量结果的影响。
要注意正确地调整光源和狭缝的位置和角度。
一般来说,通过调整狭缝的大小和位置可以改变干涉条纹的数量和间距,从而实现不同参数的测量。
还要注意数据的处理和分析。
通过对干涉条纹的位置进行计算和比较,可以得到光的各种参数值,并进行误差分析和统计处理。
光纤马赫曾德尔干涉仪是一种非常重要的光学仪器,它的应用范围非常广泛。
为了更好地发挥其作用,我们需要不断优化和完善其结构和使用方法,并且注重数据处理和分析的结果解释。
希望这篇文章能够帮助大家更好地理解和应用光纤马赫曾德尔干涉仪!。
马赫—曾德(M—Z)光纤干涉实验
马赫—曾德(M—Z)光纤干涉实验随着信息技术进入新时期,传感技术也进入了新阶段。
“没有传感器技术就没有现代科学技术”的观点已被全世界所公认,因此,传感技术受到各国的重视,特别是倍受发达国家的重视,我国也将传感技术纳入国家重点发展项目。
传感器定义:能感受规定的被测的量,并按照一定规律转换成可用的输出信号的器件或装置称为传感器。
光纤传感器有两种,一种是通过传感头(调制器)感应并转换信息,光纤只作为传输线路:另一种则是光纤本身既是传感元件,又是传输介质。
光纤传感器的工作原理是,被测的量改变了光纤的传输参数或载波光波参数,这些参数随待测信号的变化而变化,光信号的变化反映了待测物理量的变化。
以光纤取代传统马赫—曾德 (M-Z)干涉仪的空气隙,就构成了光纤型M-Z干涉仪,如图1所示。
这种干涉仪可用于制作光纤型光滤波器、光开关等多种光无源器件和传感器,在光通信、光传感领域有广泛的用途,其应用前景广阔。
图1 光纤型M-Z干涉仪一、实验目的1、了解马赫—曾德M—Z干涉的原理和用途;实验操作调试M—Z干涉仪并进行性能测试。
2、了解压力传感的原理,操作光纤压力传感原理实验。
3、了解温度传感的原理,操作光纤温度传感原理实验。
二、实验仪器用具He-Ne激光器1套;光纤M-Z干涉仪1套;633nm单模光纤1根;光纤切割刀1套等。
三、M-Z干涉仪原理实验1、原理光纤型M-Z干涉仪实际上是由分束器构成。
当相干光从光纤型分束器的输入端输入后,在分束器输出端的两根长度基本相同的单模光纤会合处产生干涉,形成干涉场。
干涉场的光强分布(干涉条纹)与输出端两光纤的夹角及光程差相关.令夹角固定,那么外界因素改变的光程差直接和干涉场的光强分布(干涉条纹)相对应。
2、实验操作(1)按图2所示仔细将光耦合进光纤分束器的输入端,此时可用光能量指示仪监测,固定好位置;精心调试分束器输出端两根光纤的相对位置,使其在会合处产生干涉条纹。
(2)固定调试好的相对位置,分析观察到的现象。
开放式光纤马赫—曾德尔干涉仪折射率传感器的研究
开放式光纤马赫—曾德尔干涉仪折射率传感器的研究光纤折射率传感器具备体积小、质量轻、抗电磁干扰、耐高温、灵敏度高和化学稳定性好等优点,在化工生产、环境监测和生物医学等领域中具有很好的应用前景。
其中,开放式光纤马赫-曾德尔干涉仪(MZI)折射率传感器因其超高折射率灵敏度和紧凑的结构受到业界高度关注。
本文针对当前开放式光纤MZI存在的传输损耗大和折射率测量范围窄等问题,提出一种基于多模干涉耦合原理降低传输损耗的方法和一种折射率测量范围扩展方法。
分别进行了传感器的设计制作、扩展折射率测量范围和该传感器在浓差极化原位监测等方面的研究。
研究工作包括以下三个方面:(1)研究了开放式光纤MZI折射率传感器的理论基础。
分析了多模干涉耦合原理、马赫-曾德尔干涉原理和传感原理。
通过数值模拟分析了该结构的特征参数对透射谱的影响,优化了制作工艺参数。
(2)研究了开放式光纤MZI折射率传感器的传感特性。
搭建了折射率测量实验平台,实验结果表明:在1.333-1.3468的范围内,折射率灵敏度约为-1360nm/RIU,实现了高折射率灵敏度测量。
利用干涉谱自由光谱范围与折射率的关系,研究了测量范围扩展方法,并对其正确性进行了实验研究。
实验结果表明:折射率测量范围可以扩大到0.07RIU,折射率测量误差为±4.173 ×10-5 RIU。
(3)设计了基于该传感器的浓差极化原位监测应用系统。
研究了基于折射率传感原理的浓差极化原位监测方法,搭建了浓差极化原位监测实验平台并进行了实验研究。
实验结果表明:通过观察膜面的浓度变化可以实现浓差极化现象的检测,验证了开放式光纤MZI原位监测浓差极化的可行性。
本文的研究成果表明优化的开放式光纤MZI达到了降低传输损耗的目的,同时提出的折射率测量范围扩展方法有效扩大了开放式光纤MZI的测量范围。
另外,该传感器的应用也为研究膜表面浓差极化现象和膜污染机理提供新的技术手段。
《基于马赫-曾德干涉仪的光纤周界安防系统研究》
《基于马赫-曾德干涉仪的光纤周界安防系统研究》一、引言随着科技的进步和社会安全需求的提升,周界安防系统在保护重要设施和区域中发挥着越来越重要的作用。
光纤周界安防系统因其高灵敏度、抗干扰能力强、布线灵活等优点,逐渐成为现代安防领域的研究热点。
本文将重点研究基于马赫-曾德干涉仪的光纤周界安防系统,通过理论分析和实验研究,探讨其工作原理、性能优化及实际应用。
二、马赫-曾德干涉仪的基本原理马赫-曾德干涉仪是一种基于光干涉原理的测量装置,由分束器、反射镜和光检测器等部分组成。
当两束或多束光波在空间或时间上重叠时,会产生干涉现象,通过测量干涉信号的强度、相位等信息,可以实现对光波的测量和分析。
在光纤周界安防系统中,马赫-曾德干涉仪被广泛应用于振动、形变等物理量的检测。
三、基于马赫-曾德干涉仪的光纤周界安防系统设计基于马赫-曾德干涉仪的光纤周界安防系统主要由光纤传输网络、干涉仪、信号处理与控制系统等部分组成。
其中,光纤传输网络负责将光信号传输至各个监测点;干涉仪用于接收光信号并产生干涉现象;信号处理与控制系统则负责对干涉信号进行采集、处理和分析,以实现周界安防的实时监测和报警。
四、系统工作原理及性能分析系统工作原理主要基于光程差引起的相位变化。
当外界物体(如人或物体)触碰到光纤时,会引起光纤的微小形变,进而导致光程差的变化。
这种变化被马赫-曾德干涉仪捕捉并转化为电信号,通过信号处理与控制系统进行分析和判断。
如果发生异常变化(如相位突变),系统将触发报警,实现对周界的实时监控和警戒。
在性能方面,该系统具有高灵敏度、低误报率、抗干扰能力强等优点。
同时,系统还能实现远距离监测和实时报警,为重要设施和区域提供全方位的安全保障。
五、实验研究及结果分析为验证基于马赫-曾德干涉仪的光纤周界安防系统的性能,我们进行了大量实验研究。
实验结果表明,该系统在不同环境、不同温度下均能保持良好的性能,具有较高的稳定性和可靠性。
此外,我们还对系统的灵敏度进行了测试,发现该系统对微小形变具有较高的响应能力,能及时发现并报警。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马赫-曾德光纤干涉实验
光纤传感器是20世纪70年代中期发展起来的一种新型传感器,它是光纤和光通讯技术迅速发展的产物。
光纤马赫-曾德干涉仪(MZI)是一种功能型光纤传感器,它在光纤技术中常用作相位、频率等的调制解调器。
一、实验目的
1.学习光纤 马赫-曾德(Mach-Zenhder ) 干涉原理
2.掌握利用马赫-泽德光纤干涉仪对压力和温度的测量。
二、实验器材
OFKM-Ⅳ型多功能全光纤干涉仪,He-Ne 激光器 三、实验原理
1.光纤传感器基本工作原理
光纤 马赫-曾德(Mach-Zenhder ) 干涉仪结构与原理如图 1所示。
光源发出的光经过耦合器(DC1),将光束一分为二,光纤一臂为信号臂,另一臂为参考臂。
经过耦合器 DC2 进行干涉,干涉光照到探测器上,光强表达式分别为
)(cos 1t B A I Φ+= (1) )(cos 2t B A I Φ-= (2)
在通过对干涉信号相位的获得来推知作用在信号臂上的外界物理量的变化。
2.马赫-曾德光纤温度传感器工作原理
激光束从激光器发出后经分束器分别送入长度基本相同的两条光纤, 而后将两根光纤输出端汇合在一起,产生干涉光, 从而出现了干涉条纹。
当一条光纤臂温度相对另一条光纤臂的温度发生变化时, 两条光纤中传输光的相位差发生变化, 从而引起干涉条纹的移动。
干涉条纹的数量能反映出被测温度的变化。
光探测器接收到干涉条纹的变化信息, 并输入到适当的数据处理系统, 最后得到测量结果。
长度为 L 的光纤中传播光波的相位Φ
nL k 00+Φ=Φ (3)
其中0Φ 为光进入光纤前的初始相位, 0k (00/2λπ=k ,0λ为真空中波长)为传播常数, n 为光纤的折射率;L 为光纤的长度。
图1 光纤Mach-Zenhder 干涉仪原理图
λ
π=λπδ=
∆ΦSP
22λ
π+=SP K I I I 2cos 00设光纤1L 温度不变,光纤2L 温度该变T ∆,则折射率n 的改变量为n ∆ ,光纤2L 长度改变量为2L ∆。
根据公式(3),光纤2L 的相位2Φ为
)(22220
022L n nL nL ∆+∆+λπ
+
Φ=Φ (4) 所以,在光纤2L 的温度改变后,两光纤在交会处的相位差∆Φ为:
)(2)(2)(220
120100212L n nL L L n ∆+∆λπ
+-λπ+
Φ-Φ=Φ-Φ=∆Φ (5) 如果L L L ==21,而且初始相位2010Φ=Φ,就可以得到, )(20
L n nL ∆+∆λπ
=
∆Φ (6) 两边同除以L 、T ∆,可以得到
)(210T
L
L n T n T L ∆∆+∆∆λπ=∆∆Φ (7)
上式具有普遍性,等号的左边表示单位长度的光纤受温度的影响,温度每改变1℃时光纤中光的相位的改变量;等号右边的Δn 、ΔL 分别表示光纤折射率和长度随温度变化的的变化率。
3.马赫-曾德光纤压力传感工作原理
氦氖激光器发出的激光聚于光耦合器,而后分成两路光束分别由光纤1L 和光纤2
L 传输,经过终端光耦合器输出端面形成干涉条纹。
光纤1L 的光程保持不变,而光纤2L 的光程随压力的变化而改变。
在压力增加时光程增加,压力减小时光程减小。
设两路光纤的光程差为δ,由光程差δ导致两路光波的相位差∆Φ为
(8)
式中λ为激光的波长,P 为压力, S(S=δ/P)为压力传感光纤的转换系数,与传感光纤的长度、折射率和横截面积变化有关。
干涉条纹的强度I 与相位差∆Φ的关系是
(9)
S
N P λ
⋅
=∆其中, I 0为平均光强,K 为干涉条纹对比度
光程差δ每改变一个波长λ,即压力P 每改变ΔP=λ/S 时,干涉条纹将明暗相间变化一次,其光强度变化近似于正弦波。
若干涉条纹明暗变化次数为N,则压力变化为
(10) 四、OFKM-Ⅳ型多功能全光纤干涉仪的结构
图2所示的是OFKM-Ⅳ型干涉仪俯视示意图,激光器发出的650nm 激光先经过0#
光纤插座(适配器)进入1#
光纤,在机箱内部,图上看不见,(注意:禁止学生自行转动、插拔该插头,因为其精度极高,稍微用力不当,会导致进入光纤的光功率迅速下降,甚至可能导致损坏而不出激光),然后再经过“分路器”将激光按一定功率比例(在OFKM-Ⅳ型中,为1:1)分到两根3#
、4#
输出光纤中,输出中一路光纤穿过加热器,与3#
适配器连接,6#
准直器一头与3#
适配器相接,另一头固定在准直器架上。
另一路穿过“压力箱”与2#
适配器相接,5
#
准直器固定在5#
准直器架上。
6#
准直器支架具有四维可调功能,通过微调(出厂前已经大致调好),使从两个准直器出来的激光束准确地会聚于透镜L 表面上的同一点。
图2所示为前面板示意图,上有三个开关:电源开关、激光开关、加热开关。
另外,还有“计数”复零开关,每按一次,计数表上复零;温度表头分别显示MK (迈克尔逊干涉仪)的探测温度和MZ (马赫-曾德干涉仪)的探测温度,两个开关控制加热。
图2 OFKM-Ⅳ型干涉仪俯视示意图
图3 OFKM-Ⅳ型干涉仪前面板示意图
五、实验内容及步骤
1.温度传感:
(1)打开MZ加热开关,让温度上升,一直升到所需温度(最高40℃~60℃左右),然后关闭加热开关,让散热器自然冷却,计数器复位后并隔一段时间(建议时间间隔为3~5分钟),同时记录干涉条纹移动数和温度计上显示的温度。
使用软件时,只将温度按时键入到计算机即可。
注意:开始计数时,应让干涉条纹“计数器”复位。
2.压力传感:
(1)通过加压球1#,慢慢给光纤施加压力,当“计数器”的读数刚一发生变化,记录压力表C上的读数,然后,慢慢增加压力,读一次压力表读数,记一次干涉条纹数,直到干涉条纹数接近100条左右,就应停止读数。
最好先加好压,再慢慢放气(通过调节放气螺丝)。
每隔一段时间,记录压力和干涉条纹移动数。
(2)打开放气阀,让光纤复位。
六、原始数据及分析
1.不同温度下的条纹数变化
温度(T/℃) 条纹计数(N) 移动条数(ΔN)
2.不同压力下的条纹数变化(同表格1)
对表1表2 所列数据用最小二乘法进行一元线性回归分析,可得温度与条纹的线性方程及方程的相关系以及压力同条纹数的关系。
七、注意事项
1.防尘罩只在作实验时才取掉,作完实验应罩好。
2.确认电源应为交流220V±20V。
3.光纤纤蕊只有4μm左右,外保护层虽较粗,但也经受不起用力太大的拉扯。
本装置中光纤已基本固定,若需微小移动,可轻拿轻放。
4.激光器与光纤之间的0#光纤插座是绝对禁止随意拔插,只有专业人员才准许插拔操作(该插座在箱内)。
5. 光纤出头端面、透镜表面均是光学面,绝对禁止用手或不干净的布去擦,可以用“洗耳球”除去表面灰尘,也可用酒精棉球轻轻擦拭。
6.“位移架”上的调节螺钉,均是精密丝杆(螺距为0.5mm),应轻轻转动,若到极限位置,手感就重,这时不应再加力,否则丝杆、阴螺纹将受损,精度就会大大下降。
附:OFKM-Ⅳ型激光全光纤干涉综合实验仪参数:
1.使用电源:交流220V±10%,50HZ
2. 温度传感:
(1)温度范围:室温到高于室温30℃左右
(2)灵敏度:MC干涉仪为10~20条/℃;MK干涉仪为10~20/℃
3. 压力传感:
(1)测量范围:1大气压~2大气压
(2)灵敏度:MZ干涉仪为200条左右/KPA;MK干涉仪为100条左右/KPA
4.光源和光纤:
(1)650.0nm激光器,出纤功率大于2mW。
(2)分路器:650nm单模2×2分路器(美国普林公司产品),分束比1:1。
(3)650nm单模光纤尺寸:蕊直径小于4μm;包层直径:125μm;保护层直径:3mm。