化工原理各章小结
化工原理公式及各个章节总结汇总
第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp d lu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导)6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111lnp m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=4. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热5. 传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。
化工原理重要的章节总结
化工原理重要的章节总结化工原理是化学工程专业的基础课程,涉及到化学工程的核心理论和基本原理。
在化工原理的学习过程中,存在一些重要的章节需要着重掌握。
下面将对其中几个重要的章节进行总结。
第一章:化工原理的基本概念与原理这一章主要介绍了化工原理的基本概念和基本原理,包括物质的组成与性质、质量守恒定律、能量守恒定律、动量守恒定律等。
这些概念和原理是后续章节的基础,需要牢固掌握。
第二章:化学反应平衡与热力学这一章主要介绍了化学反应的平衡和热力学,包括化学平衡常数、反应速率、化学反应的热力学过程等。
化学反应平衡和热力学是化工过程中最基本的原理,对于了解和研究化学反应的平衡性和动力学过程具有重要意义。
第三章:物料平衡物料平衡是化工工程中最基本也是最重要的概念之一。
这一章主要介绍了物料平衡的基本原理和方法,包括质量平衡、组成平衡和能量平衡等。
物料平衡是解决化工过程中物质流动和转化问题的基础,对化工工程师来说至关重要。
第四章:能量平衡能量平衡是化工过程中的关键,也是核心。
这一章主要介绍了能量平衡的基本原理和方法,包括热力学原理、能量转化和传递等。
能量平衡是解决化工工程中能量转化和传递问题的重要手段,对于优化化工过程、提高能量利用率具有重要意义。
第五章:流体静力学与运动学这一章主要介绍了流体在静态和动态条件下的性质和运动规律。
包括流体静力学的基本原理、质量流动和能量流动控制方程、雷诺运动和黏性流体动力学等。
流体静力学和运动学是化工工程中设计和分析流体传输过程的基本方法和工具。
第六章:传热与传质传热和传质是化工过程中重要的能量转移和质量转移方式。
这一章主要介绍了传热和传质的基本原理和机制,包括传热和传质的基本方程、传热和传质的传递方式和速率、传热和传质过程的分析和计算方法等。
传热和传质是化工过程中热力学和动力学过程的核心内容,对于掌握化工过程热力学和动力学规律具有重要意义。
以上是化工原理重要的几个章节的总结。
这些章节涉及到化工过程的核心理论和基本原理,对于理解和分析化工过程、解决实际问题具有重要的指导作用。
化工原理考研各知识点分章总结
一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理知识点总结复习总结重点(完美版)
第一章、流体流动「一、流体静力学J二、流体动力学I三、流体流动现象、四、流动阻力、复杂管路、流量计一、流体静力学:•压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。
表压强(力)=绝对压强(力)-大气压强(力)真空度=大气压强-绝对压«电解大气压皎大气压力、绝对压力、表压力(或真空度)之间的关系•流体静力学方程式及应用:戈力形式P2 = pλ + pg{zλ -z2)备注:1)在静止的、连续的同一液体内,处于同一Y能量形式-^ + z l g = -^ + z2g水平面上各点压力都相等。
P P此方程式只适用于静止的连通着的同一种连续的流体。
应用:U 型压差计p1-p2 =(∕70-p)gR倾斜液柱压差计微差压差计二、流体动力学•流量质量流量ms kg/s i πis=VsP、体积流量v s m3∕sʃm s=GA= π∕4d i G质量流速G kg∕rn2s [ V s=uA= π∕4d u(平均)流速u m/s ʃ G=up•连续性方程及重要引论:•一实际流体的柏努利方程及应用(例题作业题)以单位质量流体为基准:Z i g+-u^λ +-^ + W e =z2g+-u^ +^ + ΣW f J/kg2 p 2 p以单位重量流体为基准:z1+ɪwɪ2+^ + H e =z2+ɪw/ +⅛ + ΣΛ, J∕N=m2g pg 2g - Pg输送机械的有效功率:N e = m s W eN输送机械的轴功率:N =。
(运算效率进行简单数学变换)应用解题要点:1、作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、截面的选取:两截面均应与流动方向垂直;3、基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、两截面上的压力:单位一致、表示方法一致;5、单位必须一致:有关物理量的单位必须一致相匹配。
三、流体流动现象:•流体流动类型及雷诺准数:(1)层流区Re<2000(2)过渡区200(X Re<4000(3)湍流区Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re值,更重要的是两种流型的质点运动方式有本质区别。
化工原理知识点总结pdf
化工原理知识点总结pdf第一章:化工原理基础化工原理是化工学科的一门基础课程,主要研究化工过程的基本原理和基本规律。
本章将针对化工原理的基础知识进行总结。
1.1 化工过程基本概念化工过程是指将原材料通过化学反应、分离、精制等一系列工艺操作,转化成符合特定需求的产品的过程。
化工过程一般包括原料处理、反应、分离、精制和产品收率等环节。
1.2 热力学基础热力学是研究物质能量转化规律的科学,它主要包括热力学系统、热力学第一、二、三定律,熵增原理等内容。
在化工过程中,热力学原理对于理解和分析热力学系统的能量变化、效率提高和过程优化具有重要的意义。
1.3 物质平衡原理物质平衡是指在化工过程中,针对物质流量、组分和质量进行的平衡分析。
物质平衡原理是化工过程中不可或缺的理论基础,它体现了化工过程中原料转化成产品,各种物质在环境中传输和转化的基本规律。
1.4 动量平衡原理在流体力学和传递过程中,动量平衡原理是通过对流体流动、传输和转动的分析,确定系统内部及其与外界的动量交换关系。
动量平衡原理在化工过程中的应用十分广泛,对于管道流体、设备运转和动力传递等方面起着重要作用。
1.5 质量平衡原理质量平衡原理是指在化工过程中,对于物质的组分、浓度、流量等进行质量平衡的原理分析。
质量平衡原理是化工过程中最基本的原理之一,对于产品质量控制、环境保护和过程优化具有重要的指导意义。
1.6 界面传递原理界面传递原理是指在化工过程中,各种界面过程发生物质传递、热量传递、动量传递的基本规律。
界面传递原理的研究对于化工过程中的分离、精制、传质、传热等方面具有重要的意义。
第二章:化工反应原理化工反应原理是化工学科的重要分支之一,主要研究化工原料通过化学反应,转化成特定产品的原理和规律。
本章将总结化工反应原理的基本知识。
2.1 化学反应的基本概念化学反应是指化学物质在一定条件下,由原有的化学键断裂再组合成新的化学物质的过程。
化学反应包括各种离子反应、氧化还原反应、配位反应、配位反应、离子化合物的生成等。
(完整版)化工原理各章节知识点总结
(完整版)化工原理各章节知识点总结第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动流场中各点流体的速度u 、压强p 不随时间而变化。
轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。
平均流速流体的平均流速是以体积流量相同为原则的。
动能校正因子实际动能之平均值与平均速度之动能的比值。
均匀分布同一横截面上流体速度相同。
均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性稳定性是指系统对外界扰动的反应。
定态性是指有关运动参数随时间的变化情况。
边界层流动流体受固体壁面阻滞而造成速度梯度的区域。
化工原理 课后小结
化工原理第一章 小结一、基本概念1. 流体:可压缩性流体,不可压缩性流体,理想流体,牛顿型流体,非牛顿型流体。
不可压缩性流体:流体的体积不随压力变化而变化,如液体 可压缩性流体:流体的体积随压力发生变化, 如气体。
牛顿型流体:剪应力与速度梯度的关系符合牛顿粘性定律的流体;非牛顿型流体:不符合牛顿粘性定律的流体。
2. 压力:大气压、表压、真空度、绝对压、压力单位换算 1 atm = 1.013×105Pa =760mmHg =10.33m H2O流体垂直作用于单位面积上的力,称为流体的静压强,习惯上又称为压力。
绝对压力 以绝对真空为基准测得的压力。
表压或真空度 以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力流体压力与作用面垂直,并指向该作用面;任意界面两侧所受压力,大小相等、方向相反;作用于任意点不同方向上的压力在数值上均相同3. 流体的机械能:动能、静压能、位能、动压头、静压头、位压动,压头损失,能量损失。
zg ——单位质量流体所具有的位能,J/kg ρp——单位质量流体所具有的静压能,J/kg 。
4. 流体流动类型:层流、过度流、湍流,Re 与速度分布Re ≤2000时,流动为层流,此区称为层流区;Re ≥4000时,一般出现湍流,此区称为湍流区;2000< Re <4000 时,流动可能是层流,也可能是湍流,该区称为不稳定的过渡区。
5. U 型压差计: )(1A R m g p p ++=ρ gR gm p p 02A 'ρρ++=6. 解析边界层概念,举例说明边界层对传热、传质过和的影响。
7. 光滑管、水力光滑管、粗糙管,绝对粗糙度,相对粗糙度。
光滑管:玻璃管、铜管、铅管及塑料管等;粗糙管:钢管、铸铁管等。
绝对粗糙度 :管道壁面凸出部分的平均高度。
相对粗糙度 :绝对粗糙度与管内径的比值。
8. 当量直径。
化工原理各章节知识点总结
化工原理各章节知识点总结化工原理是化学工程与技术的基础课程之一,主要涉及物质的物理性质、能量转化、传质现象、化学反应等方面的知识。
下面是化工原理各章节知识点的总结。
第一章:化工基本概念与物质的物理性质1.1化学工程与化学技术的发展历史与现状1.2化工过程及其特点1.3物质的物理性质-物质的密度、比重、相对密度-物质的表观密度、气体密度-物质的粘度、表面张力、折射率-物质的热容、导热系数、热膨胀系数-物质的流变性质第二章:能量转化与传递2.1能量的基本概念2.2热力学第一定律2.3热力学第二定律2.4热力学第三定律2.5热力学循环第三章:物质的传递过程3.1传质的基本概念与分类3.2质量传递平衡方程3.3传质速率和传质通量3.4界面传质-液-气界面传质-液-液界面传质-固-液界面传质-固-气界面传质3.5传质过程中的最速传质与弛豫时间第四章:化工流体的流动4.1流体的基本性质4.2流体的流动类别4.3流体的流动方程-流体的质量守恒方程-流体的动量守恒方程-流体的能量守恒方程4.4流体内运动的基本规律-斯托克斯定律-流体的相对运动-流体的运动粘度4.5流体的管道流动-管道内的雷诺数-管道的流动阻力第五章:多元物系中物质的平衡与分离5.1多元物系基本概念5.2雾滴定律5.3吸附平衡5.4蒸汽液平衡5.5溶液中的平衡情况5.6气相-液相-固相三相平衡第六章:化学反应与反应工程6.1化学反应动力学6.2化学平衡6.3化学反应速率6.4反应器的基本类型-批次反应器-连续流动反应器-均质反应器-非均质反应器6.5反应器的设计与操作以上是化工原理各章节的知识点总结,涵盖了物理性质、能量转化、传质现象、化学反应等方面的内容。
这些知识点是化学工程与技术的基础,对于理解和应用化工原理具有重要意义。
化工原理小结(动量传递)
⑦流体流动类型的判据——雷诺数 Re; Re = 流体流动类型的判据——雷诺数 —— 层流: 层流:Re≤2000;u=0.5umax; ∆p =
duρ
µ
;λ =
(1)非圆形管一定用当量直径计算 Re。
32 µlu d2
湍流:Re≥4000;u=0.82umax; λ = f (Re,
ε
d
64 Re
Ne
p a − pV − ∆h − Σh f ( 0→1) [m] ρg
② Hg = Hs −
u2 − Σh f ( 0→1) [m] 2g
pV 1000 ′ H S = H S − ( H a − 10) − − 0.24 [ m] 3 9.81 × 10 ρ
(4)注意区别以下概念:离心泵的扬程 H[m]、液体的升扬高度ΔZ[m]、离心泵 注意区别以下概念: 的安装高度 Hg[m];风机风压 Pa(全风压、静风压、动风压)。 离心泵的扬程 H:柏努利方程中外加有效压头(能量)项: H:柏努利方程中外加有效压头(能量) 柏努利方程中外加有效压头
⑥Ha:当地大气压 [m],以 10m 水柱 计。
H = ∆Z +
∆p ∆u 2 + + ΣH f [m] ρg 2 g
液体升扬高度: 两液面的垂直距离, 即将液体由液面 1 送到液面 2 (高位槽距离) 液体升扬高度: ) Hg: 泵的安装高度 Hg:泵的吸入口到储槽的垂直高度,此值可以为负值。 离心泵的运行与调节: ;转速调节。 离心泵的运行与调节:阀门调节(简单易行) 工作点:离心泵的特性曲线与管路特性曲线交点。 工作点:离心泵的特性曲线与管路特性曲线交点。 管路特性曲线; 管路特性曲线; 离心泵的并联: 离心泵的并联:提高输送液体流量; 离心泵的串联:提高输送压头,即提高能量。 离心泵的串联: 风机风压: 风机风压:风机提供给气体的能量表示方法。风机要考虑动风压,而离心泵不考 虑动压头。 (离心泵与通风机的区别) 往复泵与离心泵的主要区别: 往复泵与离心泵的主要区别:离心泵无自吸能力,往复泵有自吸能力;离心泵的 Q 与 H 成反比,往复泵无此关系;离心泵可以用阀门调节,往复泵 旁路调节。 容积式泵类:往复泵、计量泵
化工原理总结
③ 湍 流 区 : Re≥4000 及 虚 线 以 下 的 区 域 λ =f(Re,ε /d)。Re较小,λ 集中;Re较大,λ 分散
ε /d=const:Re↑,λ ↓ ; Re=const:ε /d↑,λ ↑ ④完全湍流区:λ 仅与ε /d有关,而与Re无关。 Re 一定时, λ 随 ε /d 增大而增大,阻力损失与速度
32 lu p f 2 d
64 Re
(重点)
层流时的哈根-波谡叶方程
(4)湍流时的摩擦系数
湍流时摩擦系数是通过因次分析(量纲分析)和实验
得到与Re和相对粗糙度的关系。并绘在图上,P44, 该图可分为四个区域:
①层流区:Re≤2000,λ 与Re为直线关系,而与ε /d无 关。阻力损失与速度的一次方成正比。λ 可计算,也可 以查图。 λ =64/Re λ =f(Re)
u2 d1 2 ( ) u1 d 2 (重点)
H 称为压头或扬程,其物理意义为单位重量流体流经
泵所获得的能量,单位为m 。
u1 p2 u 2 z1 g We z 2 g hf 2 2
(非常重要) 实际流体的柏努利方程式(单位质量) We为单位质量流体流经泵所获得的能量,也称为有 效功,单位为J/kg。 有效功率:单位时间输送设备所作的有效功。以Ne 表示:
x wn
n
x wB x wn ——液体混合物中各组分的质量分数
公式应用条件:混合前后体积不变,则1kg混合液的体积
等于各组分单独存在时的体积之和。
(3)气体密度的计算
气体的密度随温度和压强而变化
当气体的压强不太高、温度不太低时,气体密度可按
化工原理公式及各个章节总结汇总
化⼯原理公式及各个章节总结汇总第⼀章流体流动与输送机械1. 流体静⼒学基本⽅程:gh p p ρ+=022. 双液位U 型压差计的指⽰: )21(21ρρ-=-Rg p p )3. 伯努⼒⽅程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算⽅程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:µρdu =Re6. 范宁公式:ρρµλfp dlu u d l Wf ?==??=22322 7. 哈根-泊谡叶⽅程:232d lup f µ=8. 局部阻⼒计算:流道突然扩⼤:2211??-=A A ξ流产突然缩⼩:??? ??-=2115.0A A ξ第⼆章⾮均相物系分离1. 恒压过滤⽅程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此⽅程为:kt q q q e =+22第三章传热1. 傅⽴叶定律:n t dAdQ ??λ-=,dxdtQ 21-=λ,或mA b tQ λ?=4. 单层圆筒壁的定态热传导⽅程: )ln1(21221r r t t l Q λπ-=或m A b t t Q λ21-=5. 单层圆筒壁内的温度分布⽅程:C r l Qt +-=ln 2λπ(由公式4推导) 6. 三层圆筒壁定态热传导⽅程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. ⽜顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λµCp =Pr 格拉晓夫数223µρβtl g Gr ?= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d??=λµµρλα8.0023.0,其中当加热时,k=0.4,冷却时k=0.3 10. 热平衡⽅程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=⽆相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸⽓冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数⽅程:212121211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率⽅程:t KA Q ?=14. 两流体在换热器中逆流不发⽣相变的计算⽅程:p m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发⽣相变的计算⽅程:+=--22111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸⽓加热冷流体的计算⽅程:2221ln p m c q KAt T t T =--第四章蒸发1.蒸发⽔量的计算:110)(Lx x W F Fx =-= 2.⽔的蒸发量:)1(1x x F W -=3. 完成时的溶液浓度:WF F x -=04.单位蒸⽓消耗量:rr D W '=,此时原料液由预热器加热⾄沸点后进料,且不计热损失,r 为加热时的蒸⽓汽化潜热r ’为⼆次蒸⽓的汽化潜热 5.传热⾯积:mt K QA ?=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=?,T 为加热蒸⽓的温度,t 1为操作条件下的溶液沸点。
化工原理公式及各个章节总结汇总
第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp dlu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdtA Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b t t Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导) 6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=0.4,冷却时k=0.3 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111ln p m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1.蒸发水量的计算:110)(Lx x W F Fx =-= 2.水的蒸发量:)1(1x x F W -=3. 完成时的溶液浓度:WF F x -=04.单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热 5.传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。
化工原理公式及各章节总结汇总
第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp d lu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导)6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111lnp m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=4. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热 5. 传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。
大学本科化工原理第二章小结
夏季(水温33℃): H=4+10+10000/996.8/9.81+[0.02×(32+7.5+30+6.5+16+5+ 12.5+50)/0.0762+10]×1.222/2/9.81 =18.96m(液柱)
《化 工 原 理》
(上)
第二章 小 结
一、明确基本概念
1、流体输送机械: 给流体增加机械能的设备,使流
体 p ,ρu2/2 , 转换为其它形式 的能量,克服磨擦阻力。 2、液体输送机械类型:
动力式泵:无自吸能力、安装位置 容积式泵:有自吸能力、安装位置
二、离心泵
工作原理和主要构件 1、原理
1) 汲入管注满水 2)给液体以动能、静压能 15-20m/s 流
HT= A – BQT
实际关系:
H = A - BQ2
QT 2 r2b2c2 sin 2
HT
u2c2
cos2
g
HT
1 g
(r2 ) 2
QT 2 b2 g
ctg 2
泵一定:r2,b2,2一定,
HT A - BQT
离心泵的主要性能参数
1、流量 m3/h , 与转速、尺寸、结构 有关
2、压头 m(液柱),每N液体获得能量
压头的表示方法:H z p / g H f
扬程 z,升扬高度=z
化工原理各章节知识点总结
化工原理各章节知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)第一章?流体流动质点?含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定?假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法?选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法?在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动?流场中各点流体的速度u?、压强p?不随时间而变化。
轨线与流线?轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体?系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别?理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质?分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能?流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别?流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义?流体流动中的位能、压强能、动能之和保持不变。
平均流速?流体的平均流速是以体积流量相同为原则的。
动能校正因子?实际动能之平均值与平均速度之动能的比值。
均匀分布?同一横截面上流体速度相同。
均匀流段?各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,?故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别?是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性?稳定性是指系统对外界扰动的反应。
化工原理重要知识点总结(五篇)
化工原理重要知识点总结(五篇)第一篇:化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。
(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m 【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】第二篇:混凝土结构原理重要知识点总结1,混凝土结构是以混泥土为主要材料制成的结构,包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和配置各种纤维筋的混凝土结构。
化工原理实验报告小结(3篇)
第1篇随着化工行业的快速发展,化工原理实验在培养学生的实践能力、创新思维和工程素养方面发挥着重要作用。
本文将总结化工原理实验的学习过程,对实验中的关键知识点和操作方法进行梳理,并对实验成果进行分析。
一、实验目的与意义化工原理实验旨在通过实际操作,帮助学生掌握化工过程中涉及的流体力学、传热、传质等基本原理,提高学生的实验技能和工程素养。
通过实验,学生可以加深对理论知识的应用,培养严谨的科学态度和良好的实验习惯。
二、实验内容与方法1. 流体流动阻力测定实验:本实验通过测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,以及流体在不同流量流经全开闸阀时的局部阻力系数,了解流体流动中能量损失的变化规律。
2. 流化床干燥实验:通过实验,掌握流化床干燥器的基本流程及操作方法,测定流化床床层压降与气速的关系曲线,分析物料含水量及床层温度随时间的变化关系,确定临界含水量及恒速阶段的传值系数和降速阶段的比例系数。
3. 精馏实验:通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,绘制x-y图,用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
三、实验结果与分析1. 流体流动阻力测定实验:实验结果表明,摩擦系数与雷诺数Re之间存在一定的关系,符合经验公式描述。
局部阻力系数与流量和阀门开启度有关。
2. 流化床干燥实验:实验结果显示,物料含水量及床层温度随时间呈非线性变化,临界含水量和恒速阶段的传值系数、降速阶段的比例系数均符合实验预期。
3. 精馏实验:实验数据表明,全塔效率及单板效率与理论塔板数密切相关,全回流时的全塔效率较高,而部分回流时的全塔效率相对较低。
四、实验心得与体会1. 实验过程中,严谨的操作态度和细致的观察力至关重要。
只有认真对待每一个实验步骤,才能保证实验结果的准确性。
2. 实验过程中,遇到问题要及时分析原因,寻求解决办法。
这有助于提高学生的分析问题和解决问题的能力。
化工原理各章小结
5、熟悉连续精馏过程,了解板式塔的结构。
6、 掌握简单蒸馏,平衡蒸馏的特点及其应用。
7、精馏塔内多次同时部分气化和部分冷凝是怎样进 行的? 8、什么是理论板?
9、掌握全塔物料衡算式的应用。
10、掌握平衡线方程,精馏段,提馏段操作线方程的 形式,物理意义及三条线的做法 11、什么是回流? 精馏操作为什么必须有回流?说明 回流比对精馏操作的影响?
12、什么是全回流和最小回流比?
13、掌握最小回流比的计算方法 。
14、掌握L和 L′、V 与 V′之间的关系。
15、掌握q线方程及其物理意义。
16、掌握逐板计算法及图解法计算理论塔板数的依据和 步骤,熟悉捷算法计算理论塔板数的方法。 17、什么是芬斯克方程与恩德伍德方程,其适用范围是 什么? 18、间歇精馏的特点是什么? 19、何为恒沸精馏与萃取精馏? 20、沸点、泡点及露点有什么不同?
第五章 传热
1、传热的基本方式有哪几种,各有什么特点? 2、什么是稳定传热和不稳定传热?稳定传热的 特点是什么? 3、热负荷与传热速率有什么区别?掌握热负荷 的不同的计算方法。
4、说明热传导基本定律(傅立叶定律)中各项 的意义。
5、导热系数的物理意义是什么?影响导热系数 的因素是什么?
6、掌握平壁热传导的计算,熟悉圆筒壁的导热计算。 7、导热系数、对流传热分系数及总传热系数有什么 不同?
第九章 萃取
1、什么是萃取?萃取分离的依据是什么?
2、萃取操作分为哪三个基本过程?何谓萃取相 与萃余相?
3、萃取分离液体混合物主要应用于什么情况下 更为经济合理?
4、掌握组成在三角形相图上的表示方法。 5、掌握三角形相图中的液-液相平衡(溶解度 曲线、联结线、辅助线及临界混溶点)。
化工原理各章节知识点总结
化工原理各章节知识点总结化工原理是化学工程专业的基础课程,主要介绍了化学工程的基本概念、理论和技术。
下面是各章节的知识点总结:第一章:化工原理的基本概念和性质1.化工原理的定义和基本任务2.化工原理的基本性质和特点3.化工原理的基本方法和技术第二章:化学平衡和能量平衡1.化学反应平衡的条件和表达式2.平衡常数和平衡常数表达式3.能量平衡的基本原理和方法4.热力学和热力学函数5.熵和化学势的概念和计算第三章:物相平衡1.物质在不同相之间存在的平衡条件2.相平衡的相图和相平衡计算3.蒸馏和萃取等物相平衡的应用第四章:质量平衡和物质迁移1.质量平衡的基本原理和方程2.质量平衡的应用:反应工艺和物料平衡3.物质迁移的基本理论和计算方法第五章:流体力学1.流体的基本概念和性质2.流体的连续性方程和动量方程3.流体的能量方程和压力损失4.流体的流动和阻力的计算第六章:传递现象1.传递现象的基本概念和分类2.传递现象的数学模型和方程3.质量传递、热量传递和动量传递的计算第七章:反应工程基础1.化学反应的速率和速率方程2.反应速率的测定和表达3.反应工程的热力学和动力学分析4.反应器的分析和设计第八章:传热和传质1.传热的基本机制和传热方式2.导热和对流传热的计算3.汽液传质和固液传质的计算第九章:流体传动和流动分布1.流体传动的基本方式和流动性质2.流体传动的计算和分析3.流动分布的原理和应用第十章:分离工程基础1.分离过程的基本概念和分类2.平衡分离的基本理论和计算3.萃取、吸附和蒸馏等分离工艺的应用第十一章:生化反应工程基础1.生物反应器的基本概念和种类2.酶反应和微生物反应的基本原理3.生化反应器的分析和设计以上是化工原理各章节的知识点总结,涵盖了化工原理的核心内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12、流体流动为什么会有阻力?研究静止流体时为 什么没考虑粘度这一物理量?
13、为什么研究流体的流动型态?滞流与湍流各有 什么特点?如何判断流动型态? 14、掌握直管阻力与局部阻力的计算方法。
15、滞流时的摩擦系数为什么跟管壁粗糙度无关?
16、 了解测速管、各种流量计的的结构、操作原理。
第三章 流体输送机械
6、 掌握简单蒸馏,平衡蒸馏的特点及其应用。
7、精馏塔内多次同时部分气化和部分冷凝是怎样进 行的? 8、什么是理论板?
9、掌握全塔物料衡算式的应用。
10、掌握平衡线方程,精馏段,提馏段操作线方程的 形式,物理意义及三条线的做法 11、什么是回流? 精馏 萃取
1、什么是萃取?萃取分离的依据是什么?
2、萃取操作分为哪三个基本过程?何谓萃取相 与萃余相?
3、萃取分离液体混合物主要应用于什么情况下 更为经济合理?
4、掌握组成在三角形相图上的表示方法。 5、掌握三角形相图中的液-液相平衡(溶解度 曲线、联结线、辅助线及临界混溶点)。
6、掌握单级萃取在三角形相图上的表示方法。
第一章 绪论
1、什么是化工生产过程? 2、本课程的主要研究内容有哪些? 3、什么是单元操作?单元操作的特点是什么? 4、什么是单位制?掌握单位换算的基本方法。 5、SI 由哪些基本量和基本单位组成?SI有什 么优越性?
6、目前我国使用什么单位制?由什么单位构成?
第二章 流体流动
1、什么是流体?其特征有哪些?
第八章 液体的蒸馏
1、掌握下列概念:(1)理想溶液和非理想溶液; (2)拉乌尔定律;(3)挥发度和相对挥发度; 2、精馏分离的依据是什么? 3、温度,压力对相对挥发度有何影响?相对挥发度 的物理意义是什么? 4、怎样据饱和蒸气压和相对挥发度计算理想物系的 y-x 数据?
5、熟悉连续精馏过程,了解板式塔的结构。
2、密度、粘度的物理意义分别是什么?掌握理想 气体密度的计算方法。
3、可压缩流体与不可压缩流体的区别是什么? 4、什么是绝压、表压及真空度?它们与大气压强 有何关系? 5、静止流体内部压强的变化规律是什么?其表达 形式有几种?
6、掌握U形管压差计与微差压差计的测压原理及其 有关计算。
7、流体连续性方程的物理意义是什么? 8、稳态流动与非稳态流动有何区别? 9、说明柏氏方程的物理意义及式中各项的物理意义。 10、掌握柏氏方程各种表达式间的换算关系。 11、 掌握柏氏方程在化工生产中四个方面的应用及 计算。
1、掌握离心泵的结构及工作原理。 2、掌握离心泵的主要性能参数及特性曲线。 3、什么是离心泵的气蚀现象与气缚现象?如何避免? 4、离心泵启动前要做哪些准备工作?其目的分别是 什么? 5、按被输送液体性质分类,离心泵主要分为几类? 6、怎样选择合适的离心泵?
第四章 非均相物质的分离
1、熟悉非均相物系的性质、分离目的及分离方法, 掌握非均相物系分离的依据。 2、掌握沉降操作的一些基本概念。
10、什么是恒压过滤?恒压过滤时推动力、阻力及 过滤速率是怎样变化的? 11、掌握恒压过滤的基本方程式,并能进行简单的 计算,熟悉过滤常数的测定方法。
第五章 传热
1、传热的基本方式有哪几种,各有什么特点? 2、什么是稳定传热和不稳定传热?稳定传热的 特点是什么? 3、热负荷与传热速率有什么区别?掌握热负荷 的不同的计算方法。
12、什么是全回流和最小回流比?
13、掌握最小回流比的计算方法 。
14、掌握L和 L′、V 与 V′之间的关系。
15、掌握q线方程及其物理意义。
16、掌握逐板计算法及图解法计算理论塔板数的依据和 步骤,熟悉捷算法计算理论塔板数的方法。 17、什么是芬斯克方程与恩德伍德方程,其适用范围是 什么? 18、间歇精馏的特点是什么? 19、何为恒沸精馏与萃取精馏? 20、沸点、泡点及露点有什么不同?
6、为什么说绝热饱和冷却过程是一个等焓过程? 7、为什么要用热空气而非常温空气作为干燥介质? 8、空气的湿-焓图由哪几组线组成? 9、什么是平衡水分与自由水分? 10、什么是结合水分与非结合水分?
5、真空蒸发有什么优点?
6、多效蒸发是否效数越多越好?为什么?
7、什么是蒸发器的生产能力及生产强度?
8、熟悉单效蒸发及多效蒸发的流程。
9 、在多效蒸发中,并流加料流程与逆流加料流 程各有什么优缺点?
10、平流加料流程适用于何类溶液?
第七章 气体吸收
1、什么是吸收?吸收分离的依据是什么? 2、了解吸收操作的分类。
9、掌握吸收操作线的推导及其物理意义。 10、最小吸收剂用量如何确定? 11、适宜吸收剂用量(适宜液气比)如何选择?改变 吸收剂用量对吸收操作有何影响? 12、掌握填料吸收塔填料层高度的计算(对数平均推 动力法)。
13、分清下列概念:
(1)分子扩散、涡流扩散及对流传质;(2)膜 吸收系数与总吸收系数;(3)亨利系数、溶解度 系数及相平衡常数。(4)传质单元高度与传质单 元数
12、什么是定性温度?什么是特性尺寸?
13、并流与逆流操作各有什么优越性? 14、提高流体的流速是否一定能提高K,从而达到强 化传热的目的?为什么? 15、掌握强化传热的途径。
第六章 蒸发
1、什么是蒸发?蒸发的必备条件是什么?
2、什么是多效蒸发?与单效蒸发比,多效蒸发有什 么优缺点?
3、蒸发操作有哪些特点? 4、什么是溶液的沸点升高?什么是溶液的温度差损 失?造成溶液的温度差损失的原因是什么?
3、掌握重力沉降的基本原理以及沉降速度的定义。
4、掌握重力沉降速度的计算及滞流时阻力系数的 计算。 5、什么是球形度?其物理意义是什么? 6、掌握降尘室的主要性能及工艺尺寸的计算。
7、掌握离心沉降的基本原理、离心沉降速度及其计 算,注意离心沉降速度与重力沉降速度的区别。 8、了解旋风分离器的结构及工作原理。 9、掌握过滤操作的一些基本概念(过滤、滤液、过 滤介质、滤饼、滤布等)。
7、什么是萃取液及萃余液?如何确定最大萃取液 浓度ymax’? 8、温度对萃取操作有何影响? 9、什么是分配系数?熟悉分配曲线的做法。 10、怎样选择萃取剂?
第十章 干燥
1、什么是干燥?干燥过程的本质以及必要条件分 别是什么? 2、什么是对流干燥?为什么说干燥过程是传质和 传热相结合的过程? 3、掌握湿空气的性质。 4、什么是干球温度和湿球温度?什么是绝热饱和 冷却温度? 5、为什么说测湿球温度的过程包含传质和传热过 程?
3、掌握吸收过程与相平衡的关系。
4、当达到气液相平衡状态时,吸收是否继续进行? 为什么? 5、亨利定律有哪几种表达式?不同表达式中各系数 间的关系如何?
6、掌握双膜理论的基本论点。
7、掌握总吸收速率方程式及各吸收系数间的关系。 何谓气膜控制与液膜控制?
8、试从操作线与平衡线在Y-X图中的相对位置说明吸 收与解吸过程。
4、说明热传导基本定律(傅立叶定律)中各项 的意义。
5、导热系数的物理意义是什么?影响导热系数 的因素是什么?
6、掌握平壁热传导的计算,熟悉圆筒壁的导热计算。 7、导热系数、对流传热分系数及总传热系数有什么 不同?
8、分析对流传热的机理及影响的因素。
9、掌握对流传热分系数的物理意义及其准数关联中 各准数的表达式及物理意义。 10、掌握对流传热分系数的计算方法(D-B公式)。 11、掌握換热器的传热计算(包括总传热速率方程式, Q、K、Δtm及A的计算)。