运筹学教案_排队论1讲解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pn (0) 0
………(1)
当n=0时,则
dP0 (t ) P0 (t ) dt P0 (0) 1
∴
瞬态方 程
………(2)
(1)、(2)两式求导并令导数为0,得稳态概率:
P0 ( t ) e t (没有顾客到达的概率)
( t ) t Pn (t ) e n!
n
15
§3.2 理论分布
1.泊松分布
在概率论中,我们曾学过泊松分布,设随机变 量为X,则有:
P{x n}
e
n
n!
n=0,1,2,…
( 1)
式中λ 为常数(λ >0),称X服从参数为λ 的泊松分布, 若在上式中引入时间参数t,即令λ t代替λ ,则有:
( t ) n t Pn{t } e n!
含优化设计与优化运营。 问题1 系统中顾客数=平均队列长(Lq)+1?
11
§2.3 排队论主要知识点
• 排队系统的组成与特征 • 排队系统的模型分类 • 顾客到达间隔时间和服务时间的经验分布与 理论分布 • 稳态概率Pn的计算 • 标准的M/M/1模型([M/M/1]:[∞/∞/FCFS]) • 系统容量有限制的模型[M/M/1]:[N/∞/FCFS] • 顾客源有限模型[M/M/1][∞/M/ FCFS] • 标准的[M/M/C]模型[M/M/C]:[∞/∞/FCFS]
7
§2 排队论基本理论总廓
§2.1 排队论研究的基本问题
1.排队系统的统计推断 :即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。 2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。 3. 最优化问题:即包括最优设计 ( 静态优化 ) , 最优运营(动态优化)。
2. 排队规则
1)顾客到达后接受服务分为即时制(损失制) 和等待制。即时制不形成队列,而对于等待制将 会形成队列,顾客可以按下规则接收服务: (1)先到先服务 FCFS (2)后到先服务 LCFS (3)随机服务RAND (4)有优先权服务 PR。 2 )从队列的空间可分为有容量限制和无容量 限制。 3)从队列数可分为单列和多列。
12
• • • •
• • •
•
Baidu Nhomakorabea
M/M/C型系统和C个M/M/1型系统 系统容量有限制的多服务台模型(M/M/C/N/∞) 顾客源为有限的多服务台模型(M/M/C/∞/M) 一般服务时间的(M/G/1)模型 – Pollaczek-Khintchine(P-K) 公式 –定长服务时间 M/D/1模型 爱尔朗服务时间M/Ek/1模型 排队系统优化 M/M/1 模型中的最优服务率u – 标准的M/M/1Model – 系统容量为N的情形 M/M/C模型中最优服务台数C 13
¼ 1 Å ¶ Í Ó Ï µ Í ³ Ê ¾ Ò â Í ¼
2
1. 输入过程
输入即为顾客的到达,可有下列情况:
1)顾客源可能是有限的,也可能是无限的。 2)顾客是成批到达或是单个到达。 3)顾客到达的间隔时间可能是随机的或确定的。 4)顾客到达可能是相互独立的或关联的。所谓 独立就是以前顾客的到达对以后顾客的到达无影响。 5)输入过程可以是平稳的(stationary)或说 是对时间齐次的(Homogeneous in time),也可以 是非平稳的。输入过程是平稳的是指顾客相继到达 的间隔时间分布和参数(均值、方差)与时间无关; 非平稳的则是与时间相关,非平稳的处理比较困难。 3
第五章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。 1909 年,丹麦哥本哈根电子公司电话工程师 A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
1
§1 排队系统的基本概念
§1.1 排队系统的组成与特征
排队系统一般有三个基本组成部分:1.输 入过程;2.排队规则;3.服务机构。现分别说 明:
Ë ¿ ¹ Í µ ½ ´ ï · þ Î ñ ¹ æ Ô ò ë È À ¥
Ë ¿ ¹ Í Ô ´
Å ¶ Ó ½ á ¹
Å ¶ Ó ¹ æ Ô ò
þ Î · ñ » ú ¹
经验分布是对排队系统的某些时间参数根据 经验数据进行统计分析,并依据统计分析结果假 设其统计样本的总体分布,选择合适的检验方法 进行检验,当通过检验时,我们认为时间参数的 经验数据服从该假设分布。 分布的拟合检验一般采用2检验。由数理统 计的知识我们知:若样本量n充分大(n≥50),则 当假设H0为真时,统计量总是近似地服从自由度 为k-r-1的 2分布,其中k为分组数,r为检验分 布中被估计的参数个数。
§3 到达间隔时间分布和服务时间 的分布
一个排队系统的最主要特征参数是 顾客的到达间隔时间分布与服务时间分 布。要研究到达间隔时间分布与服务时 间分布需要首先根据现存系统原始资料 统计出它们的经验分布(见P315—319), 然后与理论分布拟合,若能照应,我们 就可以得出上述的分布情况。
14
§3.1 经验分布
9
求解状态概率Pn(t)方法是建立含Pn(t)的微分差 分方程,通过求解微分差分方程得到系统瞬态解,由 于瞬态解一般求出确定值比较困难,即便求得一般也 很难使用。因此我们常常使用它的极限(如果存在的 话) : lim p (t ) p n
t
n
称为稳态(steady state)解,或称统计平衡状态 (Statistical Equilibrium State)的解。 稳态的物理意义见右图, pn 系统的稳态一般很快都 能达到,但实际中达不 到稳态的现象也存在。 值得注意的是求稳态概 率Pn并不一定求t→∞的 稳定状态 过渡状态 极限,而只需求Pn’(t)=0 10 图3 排队系统状态变化示意图 即可。
P{x(tn ) n |x(t1 )x1 ,x(t2 )x2 ,...,x(tn1 )xn1 } P{x(tn ) n |x(tn1 )xn1 }
也就是说过程在t+Δ t所处的状态与t以前所处的状 态无关。 ②平稳性:即对于足够小的Δ t,有:
P1 ( t,t t ) t ( t )
4
3. 服务机构
1 )服务机构可以是单服务员和多服务员服务, 这种服务形式与队列规则联合后形成了多种不同队 列,不同形式的排队服务机构,如:
1 1 . . 2 n . . 1 2 ¡ ¡ £ £ £ ¡ n ¥ ¶ µ Ó ¶ à · þ Î ñ Ì ¨£ ¨² ¢ Á Ð £ ©
¥ ¶ µ Ó µ ¥ · þ Î ñ Ì ¨
t
3.根据排队系统对应的理论模型求出用以判断系统 运行优劣的基本数量指标的概率分布或特征数。 数量指标主要包括:
(1)平均队长(Ls):系统中的顾客数。 平均队列长(Lq):系统中排队等待服务的顾客数。 系统中顾客数Ls =系统中排队等待服务的顾客数Lq +正被 服务的顾客数c (2)平均逗留时间(Ws):指一个顾客在系统中的停留时间。 平均等待时间(Wq):指一个顾客在系统中排队等待的时间。 (3)忙期:指从顾客到达空闲服务机构起到服务机构再次为 空闲这段时间长度。(忙期和一个忙期中平均完成服务顾客 数都是衡量服务机构效率的指标,忙期关系到工作强度) 4.排队系统指标优化
在[t,t+Δ t]内有一个顾客到达的概率与t无关, 18 而与Δ t成正比。
λ >0 是常数,它表示单位时间到达的顾客数,称 为概率强度。
③ 普通性:对充分小的 Δ t,在时间区间( t,t+Δ t) 内有2个或2个以上顾客到达的概率是一高阶无穷小. 即
P (t , t t ) o(t )
8
§2.2 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过 研究排队系统运行的效率指标,估计服务质 量,确定系统的合理结构和系统参数的合理 值,以便实现对现有系统合理改进和对新建 系统的最优设计等。 排队问题的一般步骤: 1. 确定或拟合排队系统顾客到达的时间 间隔分布和服务时间分布(可实测)。 2. 研究系统状态的概率。系统状态是指 系统中顾客数。状态概率用Pn(t)表示,即在t 时刻系统中有n个顾客的概率,也称瞬态概率。
2.负指数分布
可以证明当输入过程是泊松流时,两顾客相继到 达的时间间隔T独立且服从负指数分布。(等价)
E[T ] 1
1 Var[T ] 2
λ 表示单位时间内顾客平均到达数。 1/λ 表示顾客到达的平均间隔时间。
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数 D.G.Kendall,1953提出了分类法,称为Kendall 记号(适用于并列服务台)即:[X/Y/Z]:[A/B/C]
6
式中:X——顾客相继到达间隔时间分布。 M—负指数分布Markov,D—确定型分布Deterministic, Ek—K阶爱尔朗分布Erlang, GI— 一般相互独立随 机分布(General Independent), G —一般随机分布。 Y——填写服务时间分布(与上同) Z——填写并列的服务台数 A——排队系统的最大容量 B——顾客源数量 C——排队规则 如 [M/M/1]:[∞/∞/FCFS]即为顾客到达为泊松过 程,服务时间为负指数分布,单台,无限容量,无 限源,先到先服务的排队系统模型。
( t )k k!
级数
∴
k 0
2 n x x ex 1 x ... ... 2! n! k ( t ) t t t e E[ N(t )] e t e t
k!
同理方差为:
Var(N(t )) t
21
顾客到达过程是一个泊松过程(泊松流)。
Pn{t1, t 2} P{N (t 2) N (t1) n}
(t2>t1,n≥0)
当Pn(t1,t2)符合下述三个条件时,顾客到达过程 就是泊松过程(顾客到达形成普阿松流)。
17
普阿松流具有如下特性:
. t0 t1 . t2 . … . . tn-1 tn . .
① 无后效性:各区间的到达相互独立, 即 Markov 性。
n2 n
P0+P1+P≥2=1
由此知,在(t,t+Δ t)区间内没有顾客到达的概率 为:
P 0 (t , t t ) 1 t o(t )
令t1=0,t2=t,则P(t1,t2)=Pn(0,t)=Pn(t)
在上述假设下,t时刻系统中有n个顾客的概率pn(t):
19
dPn (t ) Pn (t ) Pn 1 (t ) dt
t>0,n=0,1,2,…
( 2)
与时间有关的随机变量的概率,是一个随机过程, 即泊松过程。 16
在一定的假设条件下 一个泊松过程。
顾客的到达过程就是
若设N(t)表示在时间区间 [0,t)内到达的顾客数 (t>0),Pn(t1,t2) 表 示 在 时 间 区 间 [t1,t2)(t2>t1) 内 有 n(≥0)个顾客到达的概率。即:
à ¶ ¶ Ó ¶ à · þ Î ñ Ì ¨£ ¨² ¢ Á Ð )
1 1 2 ... n 2 3 ¥ ¶ µ Ó ¶ à · þ Î ñ Ì ¨£ ¨´ ® Á Ð £ © ì º » Ï Ð Î Ê ½
1
2
5
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
……(3)
(n个顾客到达的概率) (4)
20
期望
E[ N (t )] nPn (t ) e t
n 1
e
t
t
n 1
(t ) (n 1)!
k0
n 1 n 1
(t )n n n!
t E [ N ( t )] e t 令k=n-1,则:
………(1)
当n=0时,则
dP0 (t ) P0 (t ) dt P0 (0) 1
∴
瞬态方 程
………(2)
(1)、(2)两式求导并令导数为0,得稳态概率:
P0 ( t ) e t (没有顾客到达的概率)
( t ) t Pn (t ) e n!
n
15
§3.2 理论分布
1.泊松分布
在概率论中,我们曾学过泊松分布,设随机变 量为X,则有:
P{x n}
e
n
n!
n=0,1,2,…
( 1)
式中λ 为常数(λ >0),称X服从参数为λ 的泊松分布, 若在上式中引入时间参数t,即令λ t代替λ ,则有:
( t ) n t Pn{t } e n!
含优化设计与优化运营。 问题1 系统中顾客数=平均队列长(Lq)+1?
11
§2.3 排队论主要知识点
• 排队系统的组成与特征 • 排队系统的模型分类 • 顾客到达间隔时间和服务时间的经验分布与 理论分布 • 稳态概率Pn的计算 • 标准的M/M/1模型([M/M/1]:[∞/∞/FCFS]) • 系统容量有限制的模型[M/M/1]:[N/∞/FCFS] • 顾客源有限模型[M/M/1][∞/M/ FCFS] • 标准的[M/M/C]模型[M/M/C]:[∞/∞/FCFS]
7
§2 排队论基本理论总廓
§2.1 排队论研究的基本问题
1.排队系统的统计推断 :即通过对排队系统主 要参数的统计推断和对排队系统的结构分析,判 断一个给定的排队系统符合于哪种模型,以便根 据排队理论进行研究。 2.系统性态问题:即研究各种排队系统的概率 规律性,主要研究队长分布、等待时间分布和忙 期分布等统计指标,包括了瞬态和稳态两种情形。 3. 最优化问题:即包括最优设计 ( 静态优化 ) , 最优运营(动态优化)。
2. 排队规则
1)顾客到达后接受服务分为即时制(损失制) 和等待制。即时制不形成队列,而对于等待制将 会形成队列,顾客可以按下规则接收服务: (1)先到先服务 FCFS (2)后到先服务 LCFS (3)随机服务RAND (4)有优先权服务 PR。 2 )从队列的空间可分为有容量限制和无容量 限制。 3)从队列数可分为单列和多列。
12
• • • •
• • •
•
Baidu Nhomakorabea
M/M/C型系统和C个M/M/1型系统 系统容量有限制的多服务台模型(M/M/C/N/∞) 顾客源为有限的多服务台模型(M/M/C/∞/M) 一般服务时间的(M/G/1)模型 – Pollaczek-Khintchine(P-K) 公式 –定长服务时间 M/D/1模型 爱尔朗服务时间M/Ek/1模型 排队系统优化 M/M/1 模型中的最优服务率u – 标准的M/M/1Model – 系统容量为N的情形 M/M/C模型中最优服务台数C 13
¼ 1 Å ¶ Í Ó Ï µ Í ³ Ê ¾ Ò â Í ¼
2
1. 输入过程
输入即为顾客的到达,可有下列情况:
1)顾客源可能是有限的,也可能是无限的。 2)顾客是成批到达或是单个到达。 3)顾客到达的间隔时间可能是随机的或确定的。 4)顾客到达可能是相互独立的或关联的。所谓 独立就是以前顾客的到达对以后顾客的到达无影响。 5)输入过程可以是平稳的(stationary)或说 是对时间齐次的(Homogeneous in time),也可以 是非平稳的。输入过程是平稳的是指顾客相继到达 的间隔时间分布和参数(均值、方差)与时间无关; 非平稳的则是与时间相关,非平稳的处理比较困难。 3
第五章 排队论(Queuing Theory)
排队论(queuing),也称随机服务系统理论,是 运筹学的一个主要分支。 1909 年,丹麦哥本哈根电子公司电话工程师 A. K. Erlang的开创性论文“概率论和电话通讯理论” 标志此理论的诞生。排队论的发展最早是与电话, 通信中的问题相联系的,并到现在是排队论的传统 的应用领域。近年来在计算机通讯网络系统、交通 运输、医疗卫生系统、库存管理、作战指挥等各领 域中均得到应用。
1
§1 排队系统的基本概念
§1.1 排队系统的组成与特征
排队系统一般有三个基本组成部分:1.输 入过程;2.排队规则;3.服务机构。现分别说 明:
Ë ¿ ¹ Í µ ½ ´ ï · þ Î ñ ¹ æ Ô ò ë È À ¥
Ë ¿ ¹ Í Ô ´
Å ¶ Ó ½ á ¹
Å ¶ Ó ¹ æ Ô ò
þ Î · ñ » ú ¹
经验分布是对排队系统的某些时间参数根据 经验数据进行统计分析,并依据统计分析结果假 设其统计样本的总体分布,选择合适的检验方法 进行检验,当通过检验时,我们认为时间参数的 经验数据服从该假设分布。 分布的拟合检验一般采用2检验。由数理统 计的知识我们知:若样本量n充分大(n≥50),则 当假设H0为真时,统计量总是近似地服从自由度 为k-r-1的 2分布,其中k为分组数,r为检验分 布中被估计的参数个数。
§3 到达间隔时间分布和服务时间 的分布
一个排队系统的最主要特征参数是 顾客的到达间隔时间分布与服务时间分 布。要研究到达间隔时间分布与服务时 间分布需要首先根据现存系统原始资料 统计出它们的经验分布(见P315—319), 然后与理论分布拟合,若能照应,我们 就可以得出上述的分布情况。
14
§3.1 经验分布
9
求解状态概率Pn(t)方法是建立含Pn(t)的微分差 分方程,通过求解微分差分方程得到系统瞬态解,由 于瞬态解一般求出确定值比较困难,即便求得一般也 很难使用。因此我们常常使用它的极限(如果存在的 话) : lim p (t ) p n
t
n
称为稳态(steady state)解,或称统计平衡状态 (Statistical Equilibrium State)的解。 稳态的物理意义见右图, pn 系统的稳态一般很快都 能达到,但实际中达不 到稳态的现象也存在。 值得注意的是求稳态概 率Pn并不一定求t→∞的 稳定状态 过渡状态 极限,而只需求Pn’(t)=0 10 图3 排队系统状态变化示意图 即可。
P{x(tn ) n |x(t1 )x1 ,x(t2 )x2 ,...,x(tn1 )xn1 } P{x(tn ) n |x(tn1 )xn1 }
也就是说过程在t+Δ t所处的状态与t以前所处的状 态无关。 ②平稳性:即对于足够小的Δ t,有:
P1 ( t,t t ) t ( t )
4
3. 服务机构
1 )服务机构可以是单服务员和多服务员服务, 这种服务形式与队列规则联合后形成了多种不同队 列,不同形式的排队服务机构,如:
1 1 . . 2 n . . 1 2 ¡ ¡ £ £ £ ¡ n ¥ ¶ µ Ó ¶ à · þ Î ñ Ì ¨£ ¨² ¢ Á Ð £ ©
¥ ¶ µ Ó µ ¥ · þ Î ñ Ì ¨
t
3.根据排队系统对应的理论模型求出用以判断系统 运行优劣的基本数量指标的概率分布或特征数。 数量指标主要包括:
(1)平均队长(Ls):系统中的顾客数。 平均队列长(Lq):系统中排队等待服务的顾客数。 系统中顾客数Ls =系统中排队等待服务的顾客数Lq +正被 服务的顾客数c (2)平均逗留时间(Ws):指一个顾客在系统中的停留时间。 平均等待时间(Wq):指一个顾客在系统中排队等待的时间。 (3)忙期:指从顾客到达空闲服务机构起到服务机构再次为 空闲这段时间长度。(忙期和一个忙期中平均完成服务顾客 数都是衡量服务机构效率的指标,忙期关系到工作强度) 4.排队系统指标优化
在[t,t+Δ t]内有一个顾客到达的概率与t无关, 18 而与Δ t成正比。
λ >0 是常数,它表示单位时间到达的顾客数,称 为概率强度。
③ 普通性:对充分小的 Δ t,在时间区间( t,t+Δ t) 内有2个或2个以上顾客到达的概率是一高阶无穷小. 即
P (t , t t ) o(t )
8
§2.2 排队问题求解(主要指性态问题)
求解一般排队系统问题的目的主要是通过 研究排队系统运行的效率指标,估计服务质 量,确定系统的合理结构和系统参数的合理 值,以便实现对现有系统合理改进和对新建 系统的最优设计等。 排队问题的一般步骤: 1. 确定或拟合排队系统顾客到达的时间 间隔分布和服务时间分布(可实测)。 2. 研究系统状态的概率。系统状态是指 系统中顾客数。状态概率用Pn(t)表示,即在t 时刻系统中有n个顾客的概率,也称瞬态概率。
2.负指数分布
可以证明当输入过程是泊松流时,两顾客相继到 达的时间间隔T独立且服从负指数分布。(等价)
E[T ] 1
1 Var[T ] 2
λ 表示单位时间内顾客平均到达数。 1/λ 表示顾客到达的平均间隔时间。
§1.2 排队系统的模型分类
上述特征中最主要的、影响最大的是: • 顾客相继到达的间隔时间分布 • 服务时间的分布 • 服务台数 D.G.Kendall,1953提出了分类法,称为Kendall 记号(适用于并列服务台)即:[X/Y/Z]:[A/B/C]
6
式中:X——顾客相继到达间隔时间分布。 M—负指数分布Markov,D—确定型分布Deterministic, Ek—K阶爱尔朗分布Erlang, GI— 一般相互独立随 机分布(General Independent), G —一般随机分布。 Y——填写服务时间分布(与上同) Z——填写并列的服务台数 A——排队系统的最大容量 B——顾客源数量 C——排队规则 如 [M/M/1]:[∞/∞/FCFS]即为顾客到达为泊松过 程,服务时间为负指数分布,单台,无限容量,无 限源,先到先服务的排队系统模型。
( t )k k!
级数
∴
k 0
2 n x x ex 1 x ... ... 2! n! k ( t ) t t t e E[ N(t )] e t e t
k!
同理方差为:
Var(N(t )) t
21
顾客到达过程是一个泊松过程(泊松流)。
Pn{t1, t 2} P{N (t 2) N (t1) n}
(t2>t1,n≥0)
当Pn(t1,t2)符合下述三个条件时,顾客到达过程 就是泊松过程(顾客到达形成普阿松流)。
17
普阿松流具有如下特性:
. t0 t1 . t2 . … . . tn-1 tn . .
① 无后效性:各区间的到达相互独立, 即 Markov 性。
n2 n
P0+P1+P≥2=1
由此知,在(t,t+Δ t)区间内没有顾客到达的概率 为:
P 0 (t , t t ) 1 t o(t )
令t1=0,t2=t,则P(t1,t2)=Pn(0,t)=Pn(t)
在上述假设下,t时刻系统中有n个顾客的概率pn(t):
19
dPn (t ) Pn (t ) Pn 1 (t ) dt
t>0,n=0,1,2,…
( 2)
与时间有关的随机变量的概率,是一个随机过程, 即泊松过程。 16
在一定的假设条件下 一个泊松过程。
顾客的到达过程就是
若设N(t)表示在时间区间 [0,t)内到达的顾客数 (t>0),Pn(t1,t2) 表 示 在 时 间 区 间 [t1,t2)(t2>t1) 内 有 n(≥0)个顾客到达的概率。即:
à ¶ ¶ Ó ¶ à · þ Î ñ Ì ¨£ ¨² ¢ Á Ð )
1 1 2 ... n 2 3 ¥ ¶ µ Ó ¶ à · þ Î ñ Ì ¨£ ¨´ ® Á Ð £ © ì º » Ï Ð Î Ê ½
1
2
5
2)服务方式分为单个顾客服务和成批顾客服务。 3)服务时间分为确定型和随机型。 4)服务时间的分布在这里我们假定是平稳的。
……(3)
(n个顾客到达的概率) (4)
20
期望
E[ N (t )] nPn (t ) e t
n 1
e
t
t
n 1
(t ) (n 1)!
k0
n 1 n 1
(t )n n n!
t E [ N ( t )] e t 令k=n-1,则: