风力发电机组齿轮箱振动测试与分析

合集下载

风电齿轮箱的振动与噪声特性分析

风电齿轮箱的振动与噪声特性分析

风电齿轮箱的振动与噪声特性分析引言:随着可再生能源的快速发展和风力发电机组的普及,风电齿轮箱作为关键部件也承受着越来越大的压力。

振动与噪声是风电齿轮箱存在的一个重要问题,直接影响其安全可靠运行。

因此,对风电齿轮箱振动与噪声特性的分析具有重要意义。

一、风电齿轮箱振动特性分析风电齿轮箱的振动特性是指其在运行过程中产生的振动波动。

振动可以分为水平、垂直和径向振动,其幅值和频率对齿轮箱的运行稳定性和寿命有重要影响。

1. 振动源分析风电齿轮箱振动源主要包括齿轮传动系统、轴承系统、机械齿齿接触以及结构声振等。

其中,齿轮传动系统是主要的振动源,由于齿轮的运动速度和载荷导致了振动源的产生。

2. 振动传递路径齿轮箱的振动传递路径包括两个方面,即基础刚度和振动传递途径。

基础刚度是指机组底座、基础等结构夺取的刚度,用于支撑风电齿轮箱的振动;振动传递途径主要包括内部途径、外部途径和耦合途径。

3. 振动信号分析振动信号是分析风电齿轮箱振动特性的重要手段之一。

通过加速度传感器等装置采集到的振动信号,可以进行时域分析、频域分析和时频域分析等,进而得到振动频谱图、频谱密度图和时频谱图等。

二、风电齿轮箱噪声特性分析风电齿轮箱的噪声特性是指其在运行过程中产生的噪声水平。

噪声是指任何会对人类和环境产生不良影响的声音。

1. 噪声源分析风电齿轮箱噪声源主要包括齿轮传动系统、轴承系统、空气噪声以及流体噪声等。

其中,齿轮传动系统和轴承系统是主要噪声源,由于齿轮的运动和轴承的摩擦等导致噪声产生。

2. 噪声传播路径齿轮箱的噪声传播路径包括实体传播路径和空气传播路径。

实体传播路径是指噪声通过机械结构的传输,如齿轮、轴承、壳体等;空气传播路径是指噪声通过空气传播,如风扇噪声和气动噪声等。

3. 噪声测量与评估通过噪声测量和评估,可以对风电齿轮箱的噪声问题进行有效的监测和控制。

噪声测量通常采用声级计等仪器设备,通过测量声音的强度、频率和时长等参数来评估噪声水平是否符合标准要求。

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析随着风能的发展,风力发电已经成为了一种极具潜力的清洁能源,在全球范围内得到了广泛的应用。

而风力发电机组中的齿轮箱作为核心的传动装置,更是扮演着至关重要的角色。

而齿轮箱的高速轴轴承振动问题是一项不容忽视的挑战,本文将对风电齿轮箱高速轴轴承振动进行应用分析,并就该问题进行深入探讨。

风电齿轮箱中高速轴轴承振动的产生通常会受到多种因素的影响,主要原因可以归纳为以下几点:1. 高速轴轴承的设计和制造误差:高速轴轴承的设计和制造精度不够高,容易导致轴承振动增大。

2. 高速轴轴承安装偏差:高速轴轴承的安装偏差过大,会导致轴承载荷分布不均匀,从而造成振动。

3. 高速轴轴承尺寸选用不当:高速轴轴承的尺寸选择不当,无法满足齿轮箱高速旋转的要求,也会导致轴承振动增大。

4. 高速旋转带来的惯性力和冲击力:高速轴在运转时,惯性力和冲击力对轴承的影响是不容忽视的。

5. 高速轴轴承磨损或损坏:高速轴轴承磨损严重或损坏, 会直接导致轴承振动大增。

以上这些因素相互作用,都会导致风电齿轮箱高速轴轴承振动的产生。

二、风电齿轮箱高速轴轴承振动的影响风电齿轮箱高速轴轴承振动严重会对风力发电机组的正常运行产生严重的影响:1.增加齿轮箱和轴承的磨损:高速轴轴承持续的振动将导致齿轮箱和轴承的磨损加快,缩短其使用寿命。

2. 产生噪音:高速轴轴承的持续振动会引起齿轮箱的噪音增大, 对周围环境和人员带来负面影响。

3. 增加能耗:齿轮箱振动会引起轴承摩擦阻力增大,导致额外的能量消耗,增加了发电成本。

4. 影响传动系统的稳定性:齿轮箱振动也会影响传动系统的稳定性,甚至可能导致机组的紊乱运行。

风电齿轮箱高速轴轴承振动问题不容忽视,需要进行深入的应用分析及解决。

针对风电齿轮箱高速轴轴承振动问题,需要在设计、制造、安装和运行中进行全面的应用分析和对策研究:1. 优化轴承设计和选材:在高速轴轴承的设计和选择上,需严格按照实际工况要求进行优化,选取适合的轴承材料和结构,以提高其承载能力和抗振能力。

风力发电机组异常振动测试与诊断分析

风力发电机组异常振动测试与诊断分析

风力发电机组异常振动测试与诊断分析风能作为一种清洁能源,发展迅速。

由于风电机组通常在野外,环境条件恶劣,而且容易发生故障,因此维护保养需要耗费大量的人力物力。

我国在风机故障诊断方面开展了大量的研究,并取得了丰硕的成果。

给出了各种状态监测方法和信息融合诊断技术。

这些研究大多基于数值计算和理论分析,并提出了各种控制措施。

但由于风电机组的复杂性和运行环境的多变性,在设计之初就要考虑风电机组的振动特性,进行优化设计,并进行相应的试验验证,以避免出现异常振动。

标签:风力发电机组;异常振动测试;诊断1研究概况某风力发电机组电机整体通过4个隔振器弹性安装在基座上,电机-隔振器-基座组成的电机系统与增速齿轮箱所在的塔筒基座通过8个螺栓纵向连接,该基座下部悬空,以齿轮箱安装基座面为基准呈悬臂梁状态。

箱体上布置三条横向加强筋,铁芯与横向加强筋通过4个点焊接刚性固定。

发电机工作方式为水冷,通过左侧面的进出水口循环,水箱安装在电机顶部的箱体上。

风力发电机运行转速范围为600rpm~1380rpm,正常并网发电转速为900rpm~1200rpm。

2振动特性2.1齿轮啮合频率啮合频率是两个齿轮转动一个节面角所需时间的倒数,可由式(1)确定。

(1)式中:n为主轴转速即风轮转速,rpm;z为齿数。

风电机组齿轮箱采用1级行星/2级平行轴传动结构,如图1所示。

第一级为行星轮系,行星齿轮架为输入端,内齿圈固定,太阳齿轮为输出端。

主要参数有:太阳齿轮齿数Z2、行星齿轮齿数Z3、内齿圈齿数Z4。

当一级行星轮系传动比为I1,内齿圈转速N4=0,太阳齿轮转速N2=I1·n,行星齿轮转速N3=n,即可计算出太阳轮、行星齿轮和内齿圈的啮合频率。

以此类推,容易得出中间轴及高速轴齿轮的啮合频率计算方法。

2.2轴承通过频率轴承的特征频率与自身尺寸有关,计算公式如下:内圈通过频率:外圈通过频率:滚动体特征频率:保持架固有频率:由公式及参数,便可求出理论轴承特征频率,在实际应用过程中发现,计算得出的理论特征频率与实际特征频率极其接近。

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析随着可再生能源的发展和推广,风力发电已经成为一种重要的清洁能源,其发电效率高,无污染,具有较为广阔的应用前景。

而风力发电机组中的齿轮箱作为传动装置的核心部件,其性能稳定与否直接影响到发电机组的工作效率和可靠性。

在风力发电机组的齿轮箱中,高速轴轴承是一个至关重要的部件,它的振动状态对齿轮箱的正常运转至关重要。

对风电齿轮箱高速轴轴承振动进行应用分析,对于保障风力发电机组的安全运行,提升其工作效率具有重要意义。

一、风电齿轮箱高速轴轴承的功能及振动特点风电齿轮箱高速轴轴承主要承受齿轮箱旋转部分的重量和转矩,并传递给风力发电机组的发电机部分。

高速轴轴承的正常运转对整个发电机组的工作效果至关重要。

一般来说,高速轴轴承将产生由以下几个方面引起的振动:1. 高速运转时的离心力。

齿轮箱高速轴转速较高,离心力对轴承的振动产生了较大影响。

离心力会导致轴承内部产生一定的振动,如果不及时采取措施加以防护,将会加剧轴承的损耗。

2. 轴承自身的摩擦和撞击。

高速轴轴承在长时间运转中,由于受到摩擦和碰撞,易产生较大的振动。

这些摩擦和撞击不仅容易造成轴承的损坏,还会影响整个齿轮箱的运转效率。

3. 温度的升高。

高速轴轴承在长时间运转中,受到摩擦和离心力的影响,容易产生较高的温度。

当温度升高超出一定范围时,将会产生一定的振动,影响齿轮箱的正常工作。

风电齿轮箱高速轴轴承的振动特点是非常值得我们关注的,对于振动的分析及防护将有助于提升齿轮箱的工作效率和延长其使用寿命。

对于风电齿轮箱高速轴轴承的振动进行监测是非常必要的,通过对振动状态的实时监测,可以及时发现轴承的异常情况并采取相应的措施进行维修,以保障齿轮箱的正常运转。

目前,主流的风电齿轮箱高速轴轴承振动监测方法主要有以下几种:1. 振动传感器监测。

通过在高速轴轴承处安装振动传感器,可以实时监测高速轴轴承的振动状态,一旦发现异常情况,可以及时预警并采取相应的维修措施。

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析随着风电技术的快速发展,风电齿轮箱成为换能系统中的重要组成部分之一。

在运行过程中,风电齿轮箱的高速轴轴承振动问题备受关注,严重影响着齿轮箱的性能和寿命。

风电齿轮箱高速轴轴承振动主要有以下两个问题:一是振动过大,导致齿轮箱噪声增大、寿命缩短和运行不稳定;二是质量不稳定性大,对于齿轮箱的故障诊断和维护带来极大的难度。

为了解决这些问题,需要对风电齿轮箱高速轴轴承振动进行应用分析。

具体步骤如下:一、采集振动信号首先,需要在风电齿轮箱高速轴轴承处安装振动传感器,采集振动信号。

通常采用加速度传感器进行振动信号的采集,其可将振动信号转换成电信号,再通过滤波和放大处理后进行记录。

二、信号处理采集到的振动信号通常包括轴承自频率、齿轮啮合频率、电机频率和高次谐波等。

需要将这些信号进行滤波、降噪和去除杂波,以便更好地分析和诊断。

三、频谱分析频谱分析是常用的分析方法之一,它能够将时域信号转换成频域信号,进而反映出不同频率的信号成分和各自的频率强度。

通常采用快速傅里叶变换(FFT)进行频谱分析,得到的频谱图能够清晰反映出故障产生的频率和强度,便于对齿轮箱的振动进行评估和故障诊断。

四、时域分析时域分析是通过对振动信号的幅值、频率特征、周期分析等进行分析,来评估齿轮箱的工作状态和健康状况。

通过时域分析可以得到振动信号的整体趋势和变化规律,便于对齿轮箱的故障进行预警和维护。

综上所述,风电齿轮箱高速轴轴承振动的应用分析是一项非常重要的技术工作,它能够评估齿轮箱的工作状态和健康状况,及时发现并解决故障,保证其正常运行和寿命。

未来,随着大数据、云计算和人工智能技术的不断发展和深入应用,风电齿轮箱高速轴轴承振动分析将会愈加精准和智能化。

高原型风力发电用齿轮箱的振动信号分析与预警

高原型风力发电用齿轮箱的振动信号分析与预警

高原型风力发电用齿轮箱的振动信号分析与预警随着全球对可再生能源的需求不断增加,风力发电作为一种绿色能源逐渐得到了广泛应用。

在高原地区,风能资源丰富且稳定,因此高原型风力发电设备具有巨大的潜力。

然而,高原地区的特殊气候和地理条件会对风力发电设备的运行产生一系列挑战,其中之一就是齿轮箱的振动问题。

齿轮箱作为风力发电机组的核心组件,承担着将风轮的旋转运动转化为发电机的动力传递任务。

由于高原地区缺氧和低温的环境特点,齿轮箱在工作过程中面临着更大的摩擦和振动。

这些振动信号可以提供有关齿轮箱工作状态和故障信息的重要线索。

因此,对高原型风力发电用齿轮箱的振动信号进行分析和预警,可以及时识别故障,提高设备的可靠性和安全性。

振动信号分析是齿轮箱故障诊断的一种常用方法。

通过监测齿轮箱的振动信号,并利用信号处理和频谱分析等方法解析信号中的频率成分和振幅变化,可以判断齿轮箱是否存在故障。

常见的故障类型包括齿轮磨损、齿轮啮合不良、轴承损坏等。

通过对振动信号的分析,可以识别出这些故障,并根据故障特征预测故障的发展趋势,从而采取相应的维修措施。

在高原地区的气候条件下,温度和压力变化会导致齿轮箱的热膨胀和变形,进一步增加了振动的产生。

因此,除了对振动信号进行分析,还需要考虑周围环境因素对振动的影响。

这可以通过建立与齿轮箱振动信号的时序数据相对应的气象数据进行对比分析。

通过对比分析,可以进一步确定故障是由于气候因素还是其他机械故障引起的。

对于高原型风力发电用齿轮箱的振动信号进行预警,可以采用传统方法和智能化方法相结合的方式。

传统方法包括设置振动传感器、安装数据采集设备和振动检测系统等,通过实时监测并与设定的阈值进行比较,当振动信号超过阈值时,系统会发出预警信息,提醒维护人员进行检修。

这种方法适用于简单的故障预警和现场操作。

而随着智能化技术的快速发展,可以借助机器学习和人工智能算法对振动信号进行分析和预警。

通过建立大数据平台,收集和整理大量的风力发电用齿轮箱振动信号数据,结合机器学习模型进行训练和优化,可以实现对不同类型故障的自动诊断和预测。

风力发电机组齿轮箱振动测试与分析

风力发电机组齿轮箱振动测试与分析

风力发电机组齿轮箱振动测试与分析齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。

我国风电场中安装的风力发电机组多为进口机组。

因为在恶劣环境下工作,其损坏率高达40%~50%。

随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。

本文就齿轮箱的故障诊断作一些探索性研究。

一、齿轮箱振动测试采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。

齿轮箱特征频率见表1。

表1 齿轮箱特征频率表Hz二、信号分析1.统计分析由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。

表2 4#机组幅域统计表 m/s2表2 5#机组幅域统计表m/s25#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在故障。

2.时域分析通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且有明显的周期性,其频率约大20Hz。

3.频坷分析由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率的幅值不对称)。

从5#机组功率谱密度函数(图7)可以看出,在频率177Hz、196Hz、531Hz及其倍频处幅值和4#机组(图8)相应测点相比成倍数增大。

而177Hz是高速轴转频的7倍频,196Hz、531 Hz是齿轮箱第II级、第I级的啮合频率,因而可判断故障出现在第II级、第Ⅲ级。

4.特殊分析在倒频谱(图9、图10)中可以看到,4#和5#机组的倒拼图中都有一个明显的频率为9.8Hz的尖峰,这个频率与中间轴的转频相同,说明中间轴的回转误差较大,是主要的调制源。

风力发电增速齿轮箱的动态特性和振动响应分析

风力发电增速齿轮箱的动态特性和振动响应分析

风力发电增速齿轮箱的动态特性和振动响应分析引言:随着全球对可再生能源的需求增长以及环境保护意识的提高,风力发电作为一种清洁、可再生的能源形式,越来越受到重视。

风力发电机组的核心部件之一是齿轮箱,它负责将风轮传递的力转化为发电机可以利用的电能。

齿轮箱的性能对风力发电机组的功率输出和寿命具有重要影响。

因此,了解风力发电增速齿轮箱的动态特性和振动响应分析,对于优化设计和提高可靠性至关重要。

1. 风力发电增速齿轮箱的动态特性分析风力发电增速齿轮箱是风力发电机组中一个关键的传动装置,其主要功能是将风轮转速提高到发电机工作转速。

为了确保高效的功率输出和稳定的运行,齿轮箱的动态特性需要被全面了解和分析。

主要的动态特性分析包括以下几个方面:1.1 齿轮传动特性分析齿轮传动是齿轮箱中传递力和扭矩的主要方式,了解齿轮传动的动态特性对于分析齿轮箱的性能至关重要。

通过建立齿轮传动系统的动力学模型,可以分析齿轮间的接触力、动力破坏等问题,以及齿轮箱在不同工况下的传递效率和能量损耗情况。

1.2 轴承特性分析轴承作为齿轮箱中支撑齿轮和传递力的关键部件,其性能对齿轮箱的工作稳定性和寿命具有重要影响。

轴承的动态特性包括刚度、阻尼和阻力等参数,通过分析轴承的动态性能,可以预测轴承在不同振动频率下的工作状态,为齿轮箱的优化设计和性能改进提供依据。

1.3 动力学模态分析齿轮箱的动力学模态分析可以揭示其固有的振动特性。

通过对齿轮箱进行模态分析,可以获得其固有频率、振型和振动模态。

这些信息对于了解齿轮箱的振动特性以及振动源的定位和控制具有重要意义。

同时,在齿轮箱设计和优化过程中,动力学模态分析也是一种常用的评估方法。

2. 风力发电增速齿轮箱的振动响应分析振动是齿轮箱故障的主要表现之一,对于风力发电增速齿轮箱的振动响应进行分析可以提前发现潜在的故障,确保机组的安全稳定运行。

主要的振动响应分析包括以下几个方面:2.1 振动传感器的安装振动传感器的正确安装对于测量和分析齿轮箱的振动响应至关重要。

风电齿轮箱的振动原理及常见故障分析

风电齿轮箱的振动原理及常见故障分析

目录摘要 (3)Abstract (4)第1章绪论 (5)1.1 课题研究的背景 (5)1.1.1 全球风电发展状况 (5)1.1.2 福建风电发展状况 (6)1.2 课题研究的目的及意义 (6)1.3 国内外研究现状 (7)1.3.1 国外研究动态 (8)1.3.2 国内研究动态 (8)1.4 本文的主要内容及架构 (9)1.5 本章小结 (10)第2章风电齿轮箱的振动原理及常见故障分析 (10)2.1 风电齿轮箱的基本结构和振动原理 (10)2.1.1 风电齿轮箱的主要结构组成 (10)2.1.2 风电齿轮箱的振动原理 (11)2.2 风电齿轮箱常见故障形式 (11)2.2.1 常见齿轮类故障分析 (12)2.2.2 常见轴承类故障分析 (13)2.3 风电齿轮箱振动信号特征分析 (14)2.3.1 齿轮箱振动信号的特征 (14)2.3.2 齿轮箱故障特征频率的计算 (16)2.4 本章小结 (19)第3章常用风电齿轮箱故障诊断方法 (20)3.1 时域分析法 (20)3.2 频域分析法 (1)3.2.1 频谱分析法 (21)3.2.2 倒频谱分析法 (22)3.2.3 Hilbert包络解调 (23)3.2.4 频谱细化分析 (24)3.2.5 小波包分析法 (25)3.4 本章小结 (27)第4章基于LabVIEW的风机齿轮箱故障诊断系统的设计 (27)4.1 开发系统LabVIEW简介 (27)4.2 风电齿轮箱故障诊断系统的设计要求及架构 (28)4.3 风电齿轮箱故障特征量提取系统的硬件搭建 (29)4.4离线故障诊断系统简介 (30)4.5系统初始化设置模块 (30)4.6时域特征提取模块 (31)4.7频域特征提取模块 (32)4.7.1 Hilbert包络解调分析 (32)4.7.2 功率谱分析 (33)4.7.3 倒频谱分析 (34)4.8特征频率的计算 (34)4.9风电齿轮箱故障实例分析 (35)4.10本章小结 (37)第5章结语与展望 (37)5.1 总结 (37)5.2 展望 (38)致谢 (38)参考文献 .................................................................................................................... 错误!未定义书签。

风力发电增速齿轮箱的振动信号处理和故障诊断算法

风力发电增速齿轮箱的振动信号处理和故障诊断算法

风力发电增速齿轮箱的振动信号处理和故障诊断算法引言随着风力发电行业的迅速发展,风力发电机组在电力产业中扮演着重要角色。

然而,由于工作环境恶劣且处于长期运行状态,风力发电机组的齿轮箱常常会出现故障。

通过对齿轮箱振动信号进行处理和故障诊断算法的开发,可以实现对风力发电机组的实时监测和准确的故障诊断,进一步提高风力发电机组的可靠性和可用性。

一、风力发电机组的齿轮箱振动信号处理风力发电机组的齿轮箱振动信号包含丰富的故障信息,如齿轮损伤、轴承故障等。

处理振动信号的主要目标是提取有用的故障特征信号,并降低其他噪声干扰。

1. 振动信号采集与预处理振动信号的采集是故障诊断的基础。

通过安装合适的振动传感器,可以实时监测风力发电机组的齿轮箱振动信号。

在采集信号之前,需要对信号进行预处理,如滤波去除高频噪声、降采样等,以提高信号的质量和信噪比。

2. 振动信号的时频分析时频分析可以将振动信号从时域转化为频域,提供更多关于故障特征的信息。

常用的时频分析方法包括短时傅里叶变换(STFT)、小波变换等。

通过对振动信号进行时频分析,可以得到故障频率、能量分布等特征。

3. 特征提取与选择从时频分析的结果中提取和选择适合故障诊断的特征。

常见的特征包括频谱特征、统计特征、时域特征等。

特征提取的目的是将原始信号映射到一个低维空间,保留关键信息,并减少噪声和冗余信息的影响。

二、风力发电机组齿轮箱的故障诊断算法基于振动信号处理的齿轮箱故障诊断算法可以实现对风力发电机组的实时监测和故障诊断,及时发现和预测潜在故障。

1. 基于模式识别的故障诊断算法模式识别技术在故障诊断领域有着广泛应用。

通过构建合适的特征向量和分类模型,可以对齿轮箱振动信号进行分类识别,判断是否存在故障。

常用的模式识别算法包括支持向量机(SVM)、人工神经网络(ANN)等。

2. 基于机器学习的故障诊断算法机器学习算法可以通过学习振动信号的模式和规律,实现自动化的故障诊断。

常用的机器学习算法包括决策树、随机森林、深度学习等。

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析

风电齿轮箱高速轴轴承振动的应用分析风电齿轮箱是由多个组件组成的机械设备,在风力发电系统中起到重要的传动作用。

齿轮箱的高速轴轴承振动是该设备运行中一个常见的问题,对于风电齿轮箱的性能和寿命都有很大的影响。

对高速轴轴承振动进行应用分析非常必要。

高速轴轴承振动是指齿轮箱运行时,由于载荷、速度等因素引起的轴承在水平、垂直和径向方向上的振动情况。

这种振动会导致轴承和其他部件的磨损加剧,甚至引发故障,从而影响整个风力发电系统的运行效果。

应用分析主要包括以下几个方面:1. 振动原因分析:通过监测高速轴轴承的振动情况,分析振动的源头,包括齿轮箱的结构设计是否合理、轴承安装是否正确、轴承材质和制造工艺是否达标等因素。

通过分析,找出引起高速轴轴承振动的主要原因,为进一步解决此问题提供依据。

2. 振动信号分析:采用振动传感器等设备对高速轴轴承的振动信号进行监测和采集,获取振动信号的频谱、幅值、相位等参数。

通过对频谱图的分析,可以获得振动信号的频率分布情况,了解高速轴轴承振动的频率特征,从而判断是否存在故障。

3. 振动模态分析:通过有限元分析等方法,对高速轴轴承进行模态分析,得到其振动模态和振型,进一步了解振动的特性和影响因素。

通过模态分析,可以确定高速轴轴承的共振频率,为设计和优化提供参考。

4. 故障诊断和预测:通过对高速轴轴承振动信号的分析,可以识别出不同类型的故障特征,如滚珠故障、内外圈故障等。

结合历史数据和磨损指标,可以进行故障预测和寿命评估,及时采取维修措施,避免发生严重故障。

5. 优化设计和改进措施:通过分析高速轴轴承振动的原因和特点,对齿轮箱的结构设计、轴承的选择和安装方式等进行优化,提高整个系统的可靠性和性能。

根据故障诊断的结果,采取相应的改进措施,延长设备的使用寿命。

高速轴轴承振动的应用分析是解决风电齿轮箱问题的重要手段,可以帮助提高设备的可靠性和性能,减少故障的发生,提高风力发电系统的运行效率。

风力发电增速齿轮箱的故障诊断与健康监测方法

风力发电增速齿轮箱的故障诊断与健康监测方法

风力发电增速齿轮箱的故障诊断与健康监测方法随着对可再生能源的需求增加,风力发电正逐渐成为人们关注的热点。

而风力发电机组中的齿轮箱作为关键部件,对于风力发电机组的性能和可靠性具有重要作用。

因此,对风力发电增速齿轮箱的故障诊断与健康监测方法进行研究具有重要意义。

一、齿轮箱故障诊断方法1. 振动信号分析法振动信号分析法是一种常用的齿轮箱故障诊断方法。

通过对齿轮箱的振动信号进行分析,可以判断齿轮箱是否存在故障。

常用的振动参数有振动加速度、振动速度和振动位移等。

通过测量这些参数的变化情况,可以判断齿轮箱是否发生故障,并确定故障类型。

2. 声波信号分析法声波信号分析法是一种通过分析齿轮箱中的声波信号来判断故障的方法。

由于齿轮箱故障会产生特定的声波信号,通过对这些信号进行分析,可以判断齿轮箱是否存在故障。

常用的声波参数有声压级、声功率级和声能级等。

通过测量这些参数的变化情况,可以判断齿轮箱是否存在故障,并确定故障类型。

3. 温度信号分析法温度信号分析法是一种通过分析齿轮箱中的温度信号来判断故障的方法。

由于齿轮箱故障会导致温度的变化,通过对温度信号进行分析,可以判断齿轮箱是否存在故障。

常用的温度参数有温度变化率、最大温度和平均温度等。

通过测量这些参数的变化情况,可以判断齿轮箱是否存在故障,并确定故障类型。

二、齿轮箱健康监测方法1. 振动数据采集与分析方法对于齿轮箱的健康监测,振动数据的采集与分析是非常重要的。

通过在齿轮箱中设置振动传感器,采集振动数据,并对这些数据进行分析,可以判断齿轮箱的健康状态。

常用的分析方法有时域分析、频域分析和小波分析等。

通过对振动数据的分析,可以判断齿轮箱是否存在故障,并进行健康评估。

2. 油液分析方法齿轮箱中的油液包含了大量的信息,通过对油液的分析,可以判断齿轮箱的健康状态。

常用的油液分析指标有油温、循环流量和油液粘度等。

通过对这些指标的变化情况进行分析,可以判断齿轮箱是否存在故障,并进行健康评估。

风力发电机组异常振动测试与诊断分析

风力发电机组异常振动测试与诊断分析

风力发电机组异常振动测试与诊断分析摘要:随着风电的迅速发展,机组存在的许多问题也开始凸显,如机组故障频发、发电量不高、电网接入等问题。

风力发电机组中,叶轮、主轴、齿轮箱、发电机等是引起机组停机、故障、事故的主要部件。

对机组主要零部件进行“体检”,本文通过分析主轴、齿轮箱、发电机等主传动链条上零部件的振动特性,判断故障类型,为机组质量保证检测、健康运行维护策略等提供重要的技术支持和参考。

本文主要分析风力发电机组的异常振动测试和诊断分析关键词:振动测试;振动分析;风力发电机组引言风能作为一种清洁能源正在以极快的速度发展。

由于风力发电机组通常在野外,环境条件恶劣,容易发生故障,维修保养需要大量人力和费用。

国内开展了大量的风机故障诊断研究,取得了丰硕的成果,提供了形式多样的状态监测方法和信息融合诊断技术。

这些研究大部分基于数值计算和理论分析,提出了各种控制措施,但由于风力发电机组的复杂性和运行环境的多变性,在设计之初需要考虑机组的振动特性,进行优化设计,开展相应的试验验证,以免发生异常振动。

1、试验对象电动机整体通过4个防振器弹性地安装在基座上,由电动机-防振器-基座构成的电动机系统和增速齿轮箱所在的塔基座通过8个螺栓纵向连接,该基座下部以齿轮箱安装基座面为基准呈悬臂梁状态箱体上配置有3根横肋,铁芯和横肋通过4点焊接固定刚性。

发电机采用空气-空气的冷却系统,发电机内部的风扇和转子的共同作用产生发电机内部的空气循环,由一个装在驱动端的轴流式风扇来吸入外部的空气,电机外部的空气从驱动端被吸入,利用空气的流动将热交换器散热铝管处的空气热量排出发电机,达到冷却的效果。

以明阳1.5MW机组为例,正常并网发电转速为1750r/min。

反映出该型发电机组已安装在某风场,几个机组运行中的振动较大。

为了明确电机异常振动的原因,(1)实施试验台架的振动试验(2)改进风电现场振动试验(3)前后的转子振动试验。

此次振动测试使用的仪器为丹麦BK8204IEPE型锤、丹麦BK4507B/4508BTEDS型智能传感器、丹麦BK3660D多通道数据采集分析系统和丹麦BK的模态分析软件。

风力发电增速齿轮箱的动态性能测试与分析方法研究

风力发电增速齿轮箱的动态性能测试与分析方法研究

风力发电增速齿轮箱的动态性能测试与分析方法研究随着可再生能源在当今能源领域的重要性不断增加,风力发电作为一种可再生和清洁能源的重要来源,受到了广泛的关注。

而在风力发电机组中,齿轮箱作为其核心组成部分之一,承担着将风轮的旋转运动转换为发电机高速旋转运动的重要角色。

因此,对齿轮箱的性能进行动态测试和分析,以确保其工作性能和可靠性显得尤为重要。

动态性能测试是通过对风力发电增速齿轮箱进行负载试验来实现的。

该试验主要包括对齿轮箱的承载能力、转矩传递能力、振动噪声以及温度等方面进行测量和评估。

以下介绍一些常用的动态性能测试方法。

首先,对于齿轮箱的承载能力测试,可以通过将不同的负载施加在齿轮箱上,并记录下各项参数的变化来评估其受力情况。

例如,可以通过在不同转速下施加不同负载,并监测齿轮箱的传动效率、转矩以及温度等参数来判断其承载能力的变化情况。

其次,对于齿轮箱的转矩传递能力测试,可以利用专门设计的扭矩传感器来实时监测齿轮箱的转矩输出情况。

通过在不同负载和转速条件下进行测试,可以得到转矩输出与输入之间的转差系数,以评估齿轮箱的转矩传递能力的稳定性和可靠性。

另外,振动噪声测试是评估齿轮箱动态性能的重要指标之一。

利用加速度传感器和振动分析仪等设备,可以对齿轮箱进行振动测量,获取其振动参数,并通过对比设计规范来判断其振动性能是否符合要求。

振动测试能够帮助发现齿轮箱中的故障现象,为其后续的维修和保养工作提供参考依据。

最后,温度测试也是齿轮箱动态性能测试中的一项关键内容。

风力发电机组在运行中会产生大量的热能,而齿轮箱由于传动效率和转速等因素的影响,往往会遭受较高的温度。

因此,对齿轮箱的温度进行实时监测非常重要。

通过安装温度传感器并记录下不同工况下的数据,可以帮助判断齿轮箱的散热效果以及温度稳定性,从而为其设计和使用提供依据。

总的来说,风力发电增速齿轮箱的动态性能测试与分析方法研究是保障整个风力发电系统正常运行的重要环节。

低风速风力发电机组用齿轮箱的振动特性分析

低风速风力发电机组用齿轮箱的振动特性分析

低风速风力发电机组用齿轮箱的振动特性分析一、引言在风力发电系统中,齿轮箱是将风能转化为电能的关键组件之一。

然而,在低风速运行时,齿轮箱的振动特性成为一个值得深入研究的问题。

本文旨在对低风速风力发电机组用齿轮箱的振动特性进行分析,为改善发电系统的可靠性提供参考。

二、齿轮箱的振动特性分析1. 振动起因低风速条件下,风力发电机组的转速较低,导致齿轮箱受到非理想载荷条件的影响,使其产生振动。

这种振动可以由多个因素引起,如齿轮啮合、轴承失效、齿轮偏心、不平衡质量等。

2. 振动传递与放大机制低风速条件下,齿轮箱的振动不仅会在齿轮箱本身内部产生,还会通过机械结构传递到其他部件,如发电机、塔架等。

振动在传递的过程中可能会受到放大,导致系统的振动响应更为显著。

因此,了解振动传递与放大的机制对于分析齿轮箱的振动特性十分重要。

3. 振动评估方法为了准确评估齿轮箱的振动特性,需要采用合适的振动评估方法。

常见的方法包括测量齿轮箱的振动加速度、路径分析法、频域分析法等。

这些方法可以帮助我们了解齿轮箱的振动频率、振动幅值以及振动模态等重要参数,从而对齿轮箱的工作状态进行评估。

三、齿轮箱振动特性分析的影响因素1. 齿轮参数齿轮箱的设计参数对其振动特性有着重要影响。

例如,齿轮的型号、齿轮的啮合角度、齿轮模数等参数都会影响到齿轮箱的振动。

通过合理设计这些参数,可以减小齿轮箱的振动响应。

2. 轴承刚度和阻尼轴承的刚度和阻尼对振动特性产生重要影响。

合适的轴承刚度可以减小齿轮箱的共振现象,而适当的阻尼可以减小振动的幅值。

3. 径向间隙和偏心度径向间隙和偏心度是导致齿轮箱振动的常见因素。

合理控制齿轮箱的径向间隙和减小齿轮的偏心度可以有效降低振动响应。

四、改善低风速风力发电机组用齿轮箱的振动特性的措施1. 优化设计通过合理设计齿轮箱的参数,如齿轮的型号、啮合角度等,以及优化轴承的刚度和阻尼,可以减小齿轮箱的振动响应。

此外,合理控制齿轮箱的径向间隙和减小齿轮偏心度也是改善振动特性的一种方法。

风力发电机组齿轮箱故障分析及检修

风力发电机组齿轮箱故障分析及检修

风力发电机组齿轮箱故障分析及检修齿轮箱是风力发电机组中非常重要的一个组成部分,它起到传递风机机组运动和与发电机连接的作用。

由于齿轮箱工作环境的特殊性和长期工作的高负荷,它可能会遇到各种各样的故障。

本文将分析几种常见的齿轮箱故障以及相应的检修方法。

1.齿轮箱振动过大:振动过大是齿轮箱故障中最常见和最重要的问题之一、当齿轮箱振动过大时,会导致齿轮磨损加剧,同时也会对其他部件造成损害。

另外,振动过大还会影响系统的运行效率和可靠性。

检修方法:-检查齿轮箱支撑结构是否完好,并进行必要的修复或更换。

-检查齿轮箱内部的齿轮轴承是否磨损,如有需要及时更换。

-检查齿轮箱油液的质量和量是否符合要求,并及时更换。

-检查齿轮箱的齿轮间隙是否过大,如有需要及时调整。

2.齿轮磨损:齿轮箱中的齿轮长期工作,会导致齿轮表面磨损。

齿轮磨损不仅会影响齿轮传动的可靠性和效率,还会增加设备的噪音和振动。

检修方法:-检查齿轮箱内部的齿轮和齿轮轴承是否磨损严重,如有需要及时更换。

-检查齿轮箱的润滑系统是否正常工作,及时添加润滑剂。

-检查齿轮箱的齿轮间隙是否适当,如不适当需进行调整。

3.轴承故障:齿轮箱中的轴承是支撑齿轮和传递力的重要部件,长期工作会导致轴承磨损和损坏。

检修方法:-检查齿轮箱中的轴承是否磨损或损坏,如有需要及时更换。

-检查轴承安装是否正确,确保轴承在运行期间不会发生偏移或过紧。

4.油液问题:齿轮箱中的油液起到润滑和冷却作用,长期使用会导致油液老化和污染。

油液老化和污染会影响齿轮、轴承和密封件的寿命。

检修方法:-检查齿轮箱内部的油液质量和量是否正常,如有需要及时更换。

-定期清洗和更换油液过滤器,避免油液中的杂质对齿轮箱的影响。

5.密封问题:齿轮箱中的密封件是避免油液泄漏和防止外部杂质进入的重要部件,长期使用会导致密封件老化和损坏。

检修方法:-定期检查和更换齿轮箱的密封件,确保密封性能正常,避免油液泄漏和杂质进入。

总结:齿轮箱是风力发电机组中一个重要的组成部分,其故障会直接影响整个系统的运行效率和可靠性。

浅谈风力发电机组齿轮箱常见故障分析及检测方法_1

浅谈风力发电机组齿轮箱常见故障分析及检测方法_1

浅谈风力发电机组齿轮箱常见故障分析及检测方法发布时间:2022-10-10T07:53:52.475Z 来源:《中国电业与能源》2022年6月11期作者:何杨张、沈忠明[导读] 在过去的几年中,风力发电工业得到了极大的发展。

然而,风力发电机组经历了各种各样的故障,导致了成本的增加。

风力发电机齿轮箱是最关键的部件,故障率高,维修时间长。

何杨张、沈忠明中广核新能源投资(深圳)有限公司云南分公司摘要:在过去的几年中,风力发电工业得到了极大的发展。

然而,风力发电机组经历了各种各样的故障,导致了成本的增加。

风力发电机齿轮箱是最关键的部件,故障率高,维修时间长。

本文介绍了风力发电机组齿轮箱的常见故障及其根本原因,然后重点研究了风力发电机齿轮箱的故障诊断和监测技术,论述了风力发电机齿轮箱状态监测与故障诊断技术的研究现状和发展趋势,设计了风力发电机齿轮箱状态监测与故障诊断模拟台。

关键词:风力发电机组;齿轮箱;故障诊断前言:风能是世界上发展最快的可再生能源。

近年来,世界各国对风力发电的利用进行了大量的研究和开发。

但风力发电机组容易损坏,尤其是齿轮箱等关键部件容易发生故障。

在组成风力发电机的各个子系统中,齿轮箱被证明是造成最长的停机时间和最昂贵的维护。

因此,提高风力发电机组的可靠性和减少停机时间是风力发电行业必须解决的问题。

检测变速箱的早期故障可以减少发生灾难性故障的机会。

如齿轮表面出现点蚀故障时,可用齿轮涂层修复齿轮表面,当轴承出现故障时,齿轮箱可以开始低速运转等待修复,从而合理安排维护。

齿轮箱位于轮毂和发电机之间,用于将风力发电机转子产生的缓慢旋转的高扭矩功率转换为发电机使用的高速低扭矩功率。

风力发电机齿轮箱由三个主要部件组成: 齿轮、轴承和轴。

1风力发电机组齿轮箱故障分析1.1齿轮损坏1.1.1齿轮箱齿面磨损齿轮箱在低温工作时,由于低温和润滑剂固化使润滑剂达不到润滑部分而引起磨损;齿轮箱在高温工作时,由于电机加热引起的高温使润滑油温度异常升高,导致机械润滑剂失效而引起齿轮磨损;齿面磨损的另一个原因是外来物的进入。

风力发电机组齿轮箱振动测试及分析

风力发电机组齿轮箱振动测试及分析

中间轴转速 n1 = n 5 , 小齿轮转速 n 7 = I3· n1 , 高速 级啮合频率均为: n z f z3 = 7 7 60 高速轴转动频率为: n f r7 = 7 60
1 037.71 31.73 72.79 314.08
1 867.89 57.11 131.02 565.34
(7)
一台机组的不同测点处, 测得振动信号包含的机 (8) 组故障信息基本相同。由于篇幅有限, 这里仅列 出 F-10 机组中间轴垂直测点及 F-16 机组输入轴 水平测点的时频域分析结果。 F-10 机组齿轮箱中间轴振动时域波采集的加 速度信号前 10 s 出现异常, 与后面 50 s 的振动波形 相差很大, 可能是电磁干扰的影响。因此, 剔除前 10 s 的数据, 做进一步分析。 F-10 机组中间轴垂 直 振 动 信 号 0~2 000 Hz 范 围 内 的 速 度 谱 出 现 峰 值, 如表 3 所示。
输入轴
内齿圈
z2
z4 z6
太阳轮轴
z7
太阳轮
高速轴

输出轴
行星轮
z3
z5
中间轴
z1
图 1 G58-850 风力发电机组齿轮箱结构图
是固定的, 太阳轮是输出端。主要参数有 : 太阳轮 齿数 z 2 , 行星轮齿数 z3 , 内齿圈齿数 z 4 。
n 4 =0, 太阳轮转速 n 2 = I1·n , 行星轮公转速度 n3 =
设第二级中间级传动比为 I 2 , 大齿轮转速为太
专题研究 中间轴转动频率为: n f r5 = 5 60 2.3 第三级高速级定轴传动 小齿轮齿数 z 7 。 z1 ,
东北水利水电
2017 年第 12 期
表 2 齿轮箱振动特征频率

海上风力发电用齿轮箱的故障检测与诊断方法

海上风力发电用齿轮箱的故障检测与诊断方法

海上风力发电用齿轮箱的故障检测与诊断方法随着全球对可再生能源的需求增加,海上风力发电正成为一种越来越受关注的发电方式。

然而,海上环境条件的恶劣和齿轮箱作为风力发电机的关键部件之一,经常容易出现故障。

因此,开发有效的齿轮箱故障检测与诊断方法对于维护海上风力发电的可靠性和经济性非常重要。

故障检测与诊断方法是通过对齿轮箱的运行状态进行实时监测,以及对可能存在的故障进行诊断和判断,从而及时采取措施进行维修或更换。

目前,存在许多有效的齿轮箱故障检测与诊断方法,下面将介绍几种常用的方法。

首先,振动分析是一种非常常见也非常有效的故障检测与诊断方法。

通过分析齿轮箱的振动特征和频谱图,可以判断齿轮箱是否存在故障。

例如,当齿轮箱齿轮出现断裂或磨损时,会产生特定的频谱峰值,通过振动分析可以准确地诊断故障类型和位置。

此外,振动分析还可以确定故障的严重程度,从而及时采取措施进行修复。

其次,声学发射技术也是一种常用的齿轮箱故障检测与诊断方法。

声学发射是指将材料的机械能转换为声波信号的过程。

当齿轮箱出现故障时,会产生特定的声波信号,通过检测和分析这些信号可以判断故障的类型和位置。

声学发射技术具有非侵入性、实时性和准确性等优点,已被广泛应用于齿轮箱故障的监测与诊断。

另外,热红外成像技术也是一种常用的非接触式故障检测与诊断方法。

该技术通过检测齿轮箱的温度分布情况,可以判断齿轮箱是否存在过载、摩擦和润滑不良等故障。

热红外成像技术具有高分辨率、实时性和全面性等优点,可以帮助维护人员更加准确地判断齿轮箱的健康状态,并及时采取相应措施。

此外,还有基于机器学习的故障检测与诊断方法,该方法利用大数据和人工智能技术,通过建立故障模型和分类器,可以实现对齿轮箱故障的准确诊断。

例如,可以利用监督学习算法对已知故障的齿轮箱数据进行训练,建立故障分类模型,然后对未知数据进行分类,从而诊断故障类型和位置。

机器学习方法具有较高的准确性和实时性,可以提高故障检测与诊断的效率和精度。

低风速风力发电齿轮箱的振动与声响分析

低风速风力发电齿轮箱的振动与声响分析

低风速风力发电齿轮箱的振动与声响分析风力发电齿轮箱是风力发电机组中的重要组成部分,其安全可靠的运行对于整个发电系统的稳定性和效率至关重要。

然而,由于长期运行和环境因素的影响,齿轮箱常常会出现振动与声响问题。

本文将对低风速风力发电齿轮箱的振动与声响进行分析,并提出相应的解决方案。

首先,我们需要了解低风速风力发电齿轮箱振动与声响的原因。

一方面,齿轮箱内部的齿轮传动过程中会产生振动,这是由于齿轮啮合时的冲击和振动力所引起的。

另一方面,齿轮箱的结构设计、制造工艺以及零部件材料等也会对振动与声响产生影响。

此外,外部环境条件如气候、温度和湿度等也会对齿轮箱的振动与声响产生影响。

针对低风速风力发电齿轮箱的振动问题,我们可以采取以下解决方案。

首先,优化齿轮箱的结构设计和制造工艺,确保齿轮的精度和配合度。

齿轮的安装应严格按照规范要求进行,避免偏心和不平衡现象。

其次,合理选择齿轮材料和热处理工艺,提高齿轮的硬度和耐磨性,减少齿面磨损和漏油现象。

在减少低风速风力发电齿轮箱声响方面,我们可以采取以下措施。

首先,加强齿轮箱的减震措施,例如采用隔振垫和减振橡胶等材料来减少振动传递和噪声产生。

其次,提高齿轮和轴承的润滑性能,合理选择润滑剂和润滑方式,减少摩擦和磨损。

此外,定期检查和维护齿轮箱,及时更换磨损严重的零部件,以确保系统的正常运行。

针对低风速风力发电齿轮箱振动与声响问题,我们还可以使用振动监测和故障诊断技术进行实时监测和分析。

通过安装振动传感器和声学传感器等设备,可以实时获取齿轮箱的振动与声响数据。

通过对数据的分析和处理,可以精确判断齿轮箱的运行状态和存在的问题,并及时采取相应的措施进行修复。

此外,合理的运行和维护风力发电齿轮箱也是减少振动与声响的重要因素。

在风力发电机组的运行过程中,应注意合理匹配风速和功率输出,避免过载和过速运行。

定期检查和维护风力发电机组,及时清理齿轮箱和润滑系统,确保其正常运行。

此外,应建立完善的维护记录和故障分析体系,为后续的运行维护提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电机组齿轮箱振动测试与分析
齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。

我国风电场中安装的风力发电机组多为进口机组。

因为在恶劣环境下工作,其损坏率高达40%~50%。

随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。

本文就齿轮箱的故障诊断作一些探索性研究。

一、齿轮箱振动测试
采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。

齿轮箱特征频率见表1。

表1 齿轮箱特征频率表Hz
二、信号分析
1.统计分析
由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。

表2 4#机组幅域统计表 m/s2
表2 5#机组幅域统计表m/s2
5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在故障。

2.时域分析
通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且有明显的周期性,其频率约大20Hz。

3.频坷分析
由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率的幅值不对称)。

从5#机组功率谱密度函数(图7)可以看出,在频率177Hz、196Hz、531Hz及其倍频处幅值和4#机组(图8)相应测点相比成倍数增大。

而177Hz是高速轴转频的7倍频,196Hz、531 Hz是齿轮箱第II级、第I级的啮合频率,因而可判断故障出现在第II级、第Ⅲ级。

4.特殊分析
在倒频谱(图9、图10)中可以看到,4#和5#机组的倒拼图中都有一个明显的频率为9.8Hz的尖峰,这个频率与中间轴的转频相同,说明中间轴的回转误差较大,是主要的调制源。

对比包络解调谱(图11、图12)可以看出,5#机组19.5Hz、39.1Hz和58.6Hz (中间轴转频的2倍频、4倍频和6倍频)就是调制的频率,说明中间轴发生了故障。

从图13、图14可以看到,齿轮箱的频谱以第Ⅱ级、第Ⅲ级齿轮啮合频率(196Hz、531Hz)及其倍频为中心频率,以中间轴的转频及其倍频为调制频率形成上下边频带。

据以上分析,可以确定该齿轮箱的第Ⅱ级和第Ⅲ级轴、齿轮、轴承存在缺陷,拆检结果与诊断结果相符。

三、结论
1.拆检结果证明,用上述方法可以快速、准确地判断出待检齿轮箱是否存在故障以及故障所在。

2.风力发电机组工作环境十分恶劣,输入载荷变化频繁,故障率非常高,维修困难。

建议加强机组安全保护方面的设计(如加装机组状态监测系统等)。

3.风力发电机组由于结构复杂,转速变化频繁,故障类型多,有必要采用多种
手段(如噪声测试、油液分析等)进行综合精密故障诊断。

(注:范文素材和资料部分来自网络,供参考。

只是收取少量整理收集费用,请
预览后才下载,期待你的好评与关注)
11 / 11。

相关文档
最新文档