碳纳米管研究进展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管研究进展
摘要:
碳纳米管是一种具有独特结构的一维量子材料,由石墨碳原子层卷曲而成。

纳米材料被誉为21世纪的重要材料,而作为新型纳米材料的碳纳米材料因其本身所拥有的潜在优越性,在化学、物理学及材料学领域具有广阔的应用前景,成为全球科学界各级科研人员争相关注的焦点。

碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。

近年来,美国、日本、德国和中国等国家相继成立了纳米材料研究机构,碳纳米管的研究进展随之加快,并在制备方面取得了突破性进展。

关键词:
碳纳米管、制备、应用、最新研究
正文:
1、碳纳米管的制备:
碳纳米管的制备方法主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等方法。

电弧法——石墨电弧法是最早的、最典型的碳纳米管合成方法。

其原理为电弧室充惰性气体保护,两石墨棒电极靠近,拉起电弧,再拉开,以保持电弧稳定。

放电过程中阳极温度相对阴极较高,所以阳极石墨棒不断被消耗,同时在石墨阴极上沉积出含有碳纳米管的产物。

由于电弧放电剧烈,难以控制进程和产物,合成物中有碳纳米颗粒、无定形炭或石墨碎片等杂质,杂质很难分离。

所以研究者在优化电弧法制取碳纳米管方面做了大量的工作。

为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert将将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管的缺陷。

C.Journet等在阳极中填入石墨粉末和铱的混合物,实现了SWNTs的大量制备。

研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。

近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。

催化裂解法——催化裂解法亦称为化学气相沉积法,其原理是通过烃类或含碳氧化物在催化剂的催化下裂解而成。

目前对化学气相沉积法制备碳纳米管的研究表明,选择合适的催化剂、碳源以及反应温度十分关键。

K.Hernadi等发现碳源的催化活化顺序为:乙炔>丙酮>乙烯>正茂烷>丙烯≥甲醇=甲苯≥甲烷。

Ren等在666℃条件下,在玻璃上通过等频磁控管喷镀法镀上厚度为40nm的金属镍,以乙炔气体作为碳源,氨气作为催化剂,采用等离子体热流体化学蒸气分解
沉积法,得到了在镀有镍层的玻璃上排列整齐的阵列式碳纳米管管束。

此种方法生长的碳纳米管不会缠绕在一起, 易于分散。

近年来,有些研究组鉴于碳纳米管制备方法的不连续性,进行了连续制备碳纳米管的研究, 在催化裂解方法的基础上改进,得到一种新方法,即催化裂解无基体法。

此种方法与原有的有机物催化裂解法的主要区别是没有催化剂载体以及催化剂的制备工艺,催化剂前驱体(二茂铁等)在载气的带动下进入反应炉;产品能
够连续取出,为连续制备创造了实验条件;配有气体涡流装置。

该方法可连续制备碳纳米管,而且制备出的碳纳米管质量较好,管径可得到有效控制,多是直管且平行成束,催化剂颗粒及其它杂质较少。

激光蒸发法——其原理是利用激光束照射至含有金属的石墨靶上,将其蒸发,同时结合一定的反应气体,在基底和反应腔壁上沉积出碳纳米管。

Smalley等制备C60时,在电极中加入一定量的催化剂,得到了单壁碳纳米管。

Thess等改进实验条件,采用该方法首次得到相对较大数量的单壁碳纳米管。

实验在1 473 K条件下,采用50ns的双脉冲激光照射含Ni/Co催化剂颗粒的石墨靶,获得高质量的单壁碳纳米管管束。

这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结,且需要昂贵的激光器,耗费大。

低温固态热解法——低温固态热解法是通过制备中间体来生产碳纳米管的。

首先制备出亚稳定状态的纳米级氮化碳硅(Si-C-N)陶瓷中间体,然后将此纳米陶瓷中间体放在氮化硼坩埚中,在石墨电阻炉中加热分解,同时通入氮气作为保护性气体,大约加热1h左右,纳米中间体粉末开始热解碳原子向表面迁移。

表层热解产物中可获得高比例的碳纳米管和大量的高硅氮化硅粉末。

低温固态热解法工艺的最大优点在于有可能实现重复生产,从而有利于碳纳米管的大规模生产。

热解聚合物法——该方法通过高温分解碳氢化合物来制备碳纳米管。

用乙炔或苯化学热解有机金属原始反应物制备出碳纳米管。

Cho等通过把柠檬酸和甘醇聚酯化作用得到的聚合物在400℃空气气氛下热处理8h,然后冷却到室温,得到了碳纳米管。

在420~450℃下在H2气氛下,用金属Ni作为催化剂,热解粒状的聚乙烯,合成了碳纳米管。

Sen等在900℃下,Ar和H2气氛下热解二茂铁、二茂镍、二茂钴,也得到了碳纳米管。

这些金属化合物热解后不仅提供了碳源,而且同时也提供了催化剂颗粒,它的生长机制跟催化裂解法相似。

离子(电子束)辐射法——在真空炉中,通过离子或电子放电蒸发碳,在冷凝
器上收集沉淀物,其中包含碳纳米管和其他结构的碳。

Chernazatonskii等通过电子束蒸发覆在基体上的石墨合成了直径为10~20nm的向同一方向排列的碳纳米管。

Yamamoto等在高真空环境下用氩离子束对非晶碳进行辐照得到了管壁有10~15nm厚的碳纳米管。

火焰法——该方法是利用甲烷和少量的氧燃烧产生的热量作为加热源。

在炉温达到600~1300℃时, 导入碳氢化合物和催化剂。

该方法制备的碳纳米管结晶度低,并存在大量非晶碳。

但目前对火焰法纳米结构的生长机理还没有很明确的解释。

Richter等人在乙炔、氧、氩气的混合气体燃烧后的碳黑里发现了附着大量非晶碳的单层碳纳米管。

Daschowdhury等通过对苯、乙炔、乙烯和含氧气的混合物燃烧后的碳黑检测,发现了纳米级的球状、管状物。

太阳能法——聚焦太阳光至一坩埚中,使温度上升到3000K,在此高温下,石墨和金属催化剂混合物蒸发,冷凝后生成碳纳米管。

这种方法早期用于生产巴基球,1996年开始用于碳纳米管的生产。

Laplaze 等利用太阳能合成了多壁碳纳米管和但壁碳纳米管组成的绳。

电解法——电解法制备碳纳米管是一种新颖的技术。

该方法采用石墨电极(电解槽为阳极),在约600℃的温度及空气或氩气等保护性气氛中,以一定的电压和电流电解熔融的卤化碱盐(如LiCl),电解生成了形式多样的碳纳米材料,包括包裹或未包裹的碳纳米管和碳纳米颗粒等,通过改变电解的工艺条件可控制生成碳纳米材料的形式。

Andrei等发现在乙炔/液氨溶液中,在n型(100)硅电极上电解可直接生长碳纳米管。

Hus等人以熔融碱金属卤化物为电解液,以石墨为电极,在氩气氛围中电解合成了碳纳米管和葱状结构。

黄辉等以LiCl 、LiCl+SnCl2等为熔盐电解质,采用电解石墨的方法成功制备了碳纳米管和纳米线。

其它方法——Stevens等在50℃的低温下,通过铯与纳米孔状无定形碳的放热反应自发形成碳纳米管。

俄罗斯的Chemozatonskii等在检测用粉末冶金法制备的合金Fe2Ni2C、Ni2Fe2C、Fe2Ni2Co2C 的微孔洞中发现了富勒烯和单层碳纳米管。

日本的Kyotani等采用“模型碳化”的方法,用具有纳米级沟槽的阳极氧化铝为模型,在800℃下热解丙烯,让热解炭沉积在沟槽的壁上,然后再用氢氟酸除去阳极氧化铝膜,得到了两端开口而且中空的碳纳米管。

Matveev 等在233K用乙炔的液氮溶液通过电化学方法合成碳纳米管,这是迄今为止生产碳纳米管所报道的最低温度。

现在对碳纳米管的制备研究较多,但碳纳米管的制备方法和制备工艺中仍存在许多问题有待解决。

例如,某些制备方法得到的碳纳米管生长机理还不明确,影响碳纳米管的产量、质量及产率的因素也不清楚。

另外,目前,无论哪一种方法制备得到的碳纳米管都存在杂质高、产率低等缺点。

这些都是制约碳纳米管研究和应用的关键因素。

如何能得到高纯度、高比表面积和长度、螺旋角等可控的碳纳米管,还有待研究和解决。

2、碳纳米管的应用:
由于CNTs独特的结构,使其具有很好的电学性能和力学性能,因此,被广泛应用于研制CNTs基电子器件、CNTs的纳米复合材料、表面强化等领域。

由于CNTs具有很好的电学性能,特别是经高温退火处理消除部分缺陷后的CNTs,导电性能更高,使得目前关于CNTs的应用研究主要集中在电学领域.CNTs 本身具有端部曲率半径小的结构特点,因此在代替钼针作场发射电极时,具有较低的激发电压,并具有自修补功能,可大大提高视屏系统的效率和功能.通过控制生产工艺,使CNTs中的五边形碳环/七边形碳环集中于管身中部,可改变CNTs 的导电特性,使其具有半导体特性,可用于制作CNTs电子开关和CNTs二极管[6]。

碳纳米管的加人将更有利于发挥该类复合材料的高强度、低膨胀、导电导热性好及耐磨等特性[7]。

碳纳米管增强铜基复合材料具有良好的减摩耐磨性能,该复合材料的磨损过程包含跑合阶段和稳态磨损阶段,在稳态磨损阶段主要发生氧化磨损,同时还发生磨粒磨损;碳纳米管体积分数在12%一15%之间时,其润滑和抑制基体氧化的效果较好,因而复合材料的减摩耐磨性能最佳[8].
由于碳纳米管自身不具有催化表面,不能够直接进行表面镀镍,势必要经过一定的表面处理,纯化后的碳纳米管(100K)敏化和活化等,以达到改善碳纳米管表面的活性的目的.经过上述预处理的碳纳米管具有良好的表面活性,可以直接进行化学镀镍.在碱性条件下,采用硫酸镍为镀液主要成分,柠檬酸钾(K3C6H5O7)为络合剂,次亚磷酸钠(NaH2PO2)为还原剂在碳纳米管表面进行化学镀镍[9]。

在国内清华大学将碳纳米管用于球墨铸铁表面激光熔覆处理取得了一定的表面强化效果。

对于MWPCVD过程中基体(硅片)表面经过碳纳米管处理能够获得较高的金刚石形核密度,碳纳米管存在的SP3杂化键碳促进了MWPCVD的金刚石形核,同时在沉积过程中提高了基体表面碳浓度从而加快金刚石(膜)生长过程.这种增强金刚石彤核的处理方式还具有不损伤基体表面,可利用石英钟罩式MWPCVD设备条件,以及简捷、易行等优点[10].
3、国内外最新研究现状及展望:
目前,各国在实验上对碳纳米管的研究方兴未艾,并都取得了一定的成就,美国发明了纳米秤,日本制成了铂填充的碳纳米管,德国制备出直径为lnm的碳纳米管。

我国个别研究成果虽然走在了世界最前沿,如合成出世界最长的碳纳米管、高质量碳纳米管储氢的研究等,但在纳米科技领域的总体水平与美日欧相比,差距还很大。

各国主要面临以下两个共同问题,使得碳纳米管不能真正得到工业应用。


如何实现高质量碳纳米管的连续批量工业化生产。

碳纳米管制备现状大致是:多壁碳纳米管能较大量生产,单壁碳纳米管多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚、管表面石墨碳的结晶度等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多(如催化剂颗粒的大小、碳源的种类、温度、混合气体的种类及比例等),使制得的碳纳米管都存在杂质高、产率低等缺点,还没有高效的纯化碳纳米管的方法。

②如何更深入研究碳纳米管实际应用问题。

例如,在常温常压下如何解析氢气及加快其储氢放氢速度。

如何提高碳纳米管吸附容量的稳定性和吸附压力的敏感性。

再如,怎样才能制备出性能更为优异或能预期其性能的碳纳米管复合材料。

要解决这些共同难题,就需要研究人员们一方面突破技术关键,进一步研究开发新的、成本低廉、适合于大规模生产碳纳米管的技术,通过建模和模拟来加强生长现象与机理研究;另一方面继续深入研究其应用,把碳纳米管与各个领域结合起来,充分发挥其自身优异的特性。

另外,最近碳纳米管又出现一新的研究方向,即碳纳米管薄膜的润湿性,已有很多学者对其润湿性作出了大量研究。

Jiang等[11]用平板印刷术和等离子体刻蚀技术相结合,制备了具有特殊几何形貌的硅基底,并用化学气相沉积法在其上面沉积了具有立体各向异性微结构阵列碳纳米管薄膜。

研究表明,在不改变薄膜表面的化学组成的情况下,仅仅改变结构参数,薄膜能从超亲水变化到超疏水,这种现象是由于横向和纵向碳纳米管阵列结构的共存即立体各向异性微结构所
引起的。

纵向的碳纳米管阵列提供了疏水的贡献,而横向的碳纳米管阵列提供了亲水性的贡献,并有利于水滴的铺展。

横向和纵向碳纳米管阵列组合方式的改变导致了其薄膜特殊的润湿性性质。

Lau等[12]用PECVD方法获得了准直生长的碳纳米管森林,然后通过HF—CVD的方法用PTFE对其进行了表面修饰,获得了稳定的超疏水表面,液滴可以在其上面自由跳跃直至脱离。

Li等[13]以酞菁络合物为原料,采取高温裂解的方法制备了具有相当均匀长度和外径的阵列碳纳米管薄膜,研究表明,未经处理的阵列碳纳米管薄膜是超疏水和超亲油的,经过氟化(FAS)修饰以后的碳纳米管薄膜表现出了既疏水又疏油的性质,正是纳米结构的存在导致了该表面的超双疏性质。

这一发现为超双疏表面/界面材料提供了新的思路。

我们应该看到,目前所得到的碳纳米管缺陷较多,且不易分散,这大大限制了碳纳米管的性质研究和应用研究。

所以对碳纳米管制备方法的研究显得尤为重要。

另外,纳米尺寸的测量手段也须进一步加强。

总之,随着碳纳米管研究的逐步深入以及纳米科技的快速发展,纳米碳材料将会对全世界的科学和经济产生重大的影响。

相关文档
最新文档