[精编]西安建筑科技大学大学物理作业答案
大学物理活页作业答案(全套)
![大学物理活页作业答案(全套)](https://img.taocdn.com/s3/m/25bdb82c376baf1ffc4fad83.png)
1 1 m( u V ) 2 MV 2 mgR 2 2
解得:
V m
2 gR ;u M ( M m)
2( M m ) gR M
(2) 当 m 到达 B 点时,M 以 V 运动,且对地加速度为零,可看成惯性系,以 M 为参考系
N mg mu 2 / R
N mg mu 2 / R mg 2( M m )mg / M
6.解: (1) FT cos FN sin ma
FT sin FN cos mg
FT mg sin ma cos ;
(2)F N=0 时;a=gcotθ
FN mg cos ma sin
7.解: o m 2 R mg 8.解:由牛顿运动定律可得
N
Mmg 2( M m )mg 3 M 2m mg M M
2 质点运动学单元练习二答案—10
6. 刚体转动单元练习(一)答案
1.B 2.C 3.C 4.C 5.v = 1.23 m/s ;an = 9.6 m/s 2 ;α = –0.545 rad/ s 2 ;N = 9.73 转。 6.
dv ( SI ) ; a 2i dt
( SI )
(2)由切向加速度和法向加速度的定义
at
d 2t 4t 2 4 dt t2 1 2 t2 1
( SI )
a n a 2 a t2 v2 2 t2 1 an
( SI )
(3)
3/2
( SI )
1 1 1 2 mv 12 m2v 2 (m1 m2 )v 2 2 2 2 1 m1 m2 (v 1 v 2 ) 2 /(m1 m2 ) 2
西安科技大学物理作业答案
![西安科技大学物理作业答案](https://img.taocdn.com/s3/m/3696a7a5c8d376eeaeaa31fe.png)
质点运动学、牛顿运动定律一、选择题:1. B 2.B 3.C 4.B 5.B 6.B 7.D 8.B 9.C 10.B 11.D 二、填空题:1、 8m ,10m2、 )( 421 23m t t x -+=3、 212t + , 2 m/s 2 ; 212tt + , 212t + 4、 t R 2 , 0 π 5. 2g ;26、 v =三、计算题:1.解:由牛顿定律有 )sin (cos θμθF P F -= 即 θμθμsin cos +=P F 令 θμθsin cos +=y0cos sin d d =+-=θμθθy得 θμtg =,即μθ1tg -=,且 π<<210θ.又 0sin cos d d 22<--=θμθθy故θμtg =,即μθ1tg -=时, y 有极大值,F 有极小值,最省力.2.解:2v k v dx dv dt dx dx dv dt dv -=⋅=⋅= , dx k vdv ⋅-=∴⎰⎰⋅-=x v v dx k dv v 0 10 , x k v v ln0-= ∴ x k e v v -= 03.解:对1m :1 1 1 a m T g m F =--μ,对2m :2222 1a m g m T =-μ,2 1, 2a a = 12 122 12122 22 (2)142 2 F m g m g F g m m a m m m m μμμ---+∴==++;21 1 2222'42 2m m g m F m g m a m T F +-⋅=+==μμF功和能 动量和冲量一、选择题:1. C 2.A 3.B 4.A 5.B 6.B 7.B 8。
B 9. B 10. E 二、填空题:1、d mv 8 3 202、J 5.67.3、18mgL 4. (1) 0, (2) 不守恒; (3))( 3s N i ⋅5. l m M m ⋅+-6. )( 18s N i ⋅7. , 6 gh m 垂直斜面指向斜面左下方8、 2:1三、计算题:1.设小球离开木块的瞬间对桌面的速度为 v ,木块对桌面的速度为 u , 则由水平方向动量守恒得:0 =+u M v m ,又由小球、木块和地球组成的系统机械能守恒得:R mg u M v m2 1 2 122=+解得:v M m u M m R g M v ⋅-=+=,2;小球自分离到落到桌面历时: 2 gh t =)(2 )( Mh R m M t u v S +=-=∴2、解:用动能定理,⎰⎰+==-402402d 610d 021x x x F m )(v 3210x x +==168解得 v =13 m/s刚体力学一、 选择题:1.B 2.C 3.C 4.D 5.A,B 6.D 7.B 8.A 9.B,C 10.A 。
西安工程大学大学物理练习册答案
![西安工程大学大学物理练习册答案](https://img.taocdn.com/s3/m/34bfa52fccbff121dd368321.png)
第一单元 质点运动学一、选择题1.A2.D3.C4.A5.B6.C7.D8.D9. D 10. D二.填空题1.瞬时加速度 t 1到t 3时间内的平均加速度4d t t ⎰v4d t t ⎰v2.圆周运动,匀速率曲线运动,变速率曲线运动3. px y 2=2ut p u t 2±j putpu i u2±=v4.1+=1v v kt 5. 0v l -h h v =v l -h lv = 6. )2(sec 2θπω-=D v7. 2.67rad8. 22-16=x v9. j i 3-2 j i4-2 j 2-10. t 3+8t -628 -628 8三、计算题1.解:由)2-0(142j t i t r +=得: j t i4-4=v由已知:024-83==⋅t t r v得t =0s 、s 3=t2.解:v =R ω =ARt 2由已知:t =1s ,v =4m/s 得A=2在t=2s 时 v =R ω =ARt 2=2×2×22=16m/sn n n R ARt n R t a 1281621622222d d 222+=+⨯⨯⨯=+=+=ττττv v vm/s 1291281622=+=a 23.解:由题意可知θsin t g a -=θsin d d d d d d d d t g st s s t a -====vv v v s g d sin d θ-=v v ①从图中分析看出syd d sin =θ y s d d sin =θ ②将②代入①得dy d sin d g s g --=θv v⇒-=⎰⎰yy y g 0d d vv v v )(2022y y g -+=v v 第二单元 质点动力学参考答案一、选择题1.B 2C 3.D 4.D 5.B 6. E 7. C 8.C 9.B 10.C 11.C 12.B 13. D二、填空题1.)/(m M F + )/(m M MF + 2. 0 2g 3.R g /4.v m 2 指向正西南或南偏西45° 5.i2 m/s6.0.003 s 0.6 N·s 2g 7.)131(R R GMm -或RGMm32-8.kg m 2229. 2112r r r r GMm- 2121r r r r G M m -10.)(mr k E =)2(r k - 11.gl 32112. km 32v .三、计算题1. 解:取距转轴为r 处,长为d r 的小段绳子,其质量为( M /L ) d r 由于绳子作圆周运动,所以小段绳子有径向加速度,T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r ) 得 d T =-( M ω2 / L ) r d r 由于绳子的末端是自由端 T (L ) =0有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 2.解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B0,由机械能守恒,有2/32120B 20v m kx = 得 mkx 300B =vA 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有0B 22211v v v m m m =+ ①20B 2222221121212121v v v m m kx m =++ ②O ω当v 1 = v 2时,由式①解出v 1 = v 2mk x 3434/300B ==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 = v 2 =3v B0/4,再由式②解出 0max 21x x =3.解:设m 与M 碰撞后的共同速度为v ,它们脱离球面的速度为u .(1) 对碰撞过程,由动量守恒定律得 )/(0m M m +=v v①m 与M 沿固定光滑球面滑下过程中机械能守恒,在任一位置θ 时,有22)(21)cos 1()()(21u m M gR m M m M +=-+++θv ②R u m M N g m M /)(cos )(2+=-+θ ③当物体脱离球面时,N = 0,代入③式并与①、②式联立,可解得:32)(332cos 22022++=+=m M gR m gR gR v v θ ∴ ]32)(3[cos 22021++=-m M gR m v θ (2) 若要在A 处使物体脱离球面,必须满足g m M R m M A )(/)(2+≥+v即Rg A >2v ,考虑到①式有 Rg m M m ≥+)/(202v 所以油灰的速度至少应为 m Rg m M /)(0+=v第三单元 静电场一、选择题1.D2.D3.D4.D5.C6.D7.D8.C9.C 10.C 11.A 12.B 13.D 14. A二、填空题1.θπεθtan sin 40mg l2.023εσ-02εσ- 023εσ 3.包围在曲面内的净电荷 曲面外的电荷 4.)11(400ab r r qq -πε 5.2ελ 6.0 7.< 8.-2000V9.> (分别垂直指向U 3) 10.F/4 11.<三、计算题1.解:在球内取半径为r 、厚度为d r 的薄球壳,该壳内所包含的电荷为d q =ρd V =Kr 4πr 2d r在半径为r 的球面内包含的总电荷为403d 4d Kr r Kr V q rVππρ===⎰⎰ (r ≤R )以该面为高斯面,按照高斯定理有0421/4εππKr r E =⋅得到 0214εKr E =, (r ≤R )方向沿径向,K >0时向外,K <0时向里。
工学工程力学习题及答案西安建筑科技大学
![工学工程力学习题及答案西安建筑科技大学](https://img.taocdn.com/s3/m/a338ab0c3169a4517723a38a.png)
第一章 静力学公理与物体受力分析1.1(填空题)作用在刚体上的两个力,使刚体保持平衡的充分必要条件是( 这两个力的大小相等,方向相反,且作用在同一直线上)。
1.2(填空题)作用在刚体上的两个力等效的条件是(等值;反向;共线)。
1.3(填空题)对非自由体的某些位移起限制作用的周围物体称为(约束)。
约束反力的方向必与该约束所能阻碍的位移方向(相反)。
1.4(是非题)静力学公理中,作用与反作用定律和力的平行四边形法则适用于任何物体;二力平衡公理和加减平衡力系原理适用于刚体。
( √ )1.5(是非题)两端用铰链连接的构件都是二力构件。
( × )1.6(是非题)分析二力构件的受力与构件的形状无关。
( √ )1.7(选择题)如果F R 是F 1、F 2的合力,即F R = F 1+ F 2,则三力大小间的关系为( D )。
A. 必有21F F F R +=B. 不可能有21F F F R +=C. 必有>,>D. 可能有<,<1.8(选择题)刚体受三个力作用平衡,则此三个力的作用线( C )A. 必汇交于一点B. 必互相平行C. 必在同一面D. 可以不在同一面1.9 画出下列各物体的受力图。
未画重力的物体的自重不计,所有接触处均为光滑接触。
1.10 画出图示组合梁中各段梁及整体的受力图。
1.11 某化工塔器的竖起过程如图所示,下端搁置在基础上,C 处系以钢绳 E(d )并用绞盘拉住,上端B 处也系以钢绳,并通过定滑轮联接到卷扬机E 上,设塔器的重量为W ,试画出塔器在图示位置的受力图。
5※<第二章 平面基本力系>2.1(填空题)平面汇交力系平衡的几何条件是( 力多边形自行封闭);平衡的解析条件是( 各力在两个坐标轴上的投影之和分别为零 )。
2.2(填空题)同平面内的两个力偶等效的条件是(力偶矩相等 )。
2.3(填空题)合力对于平面内任一点之力矩等于(各分力对该点矩的代数和 )。
2.4(是非题)已知一刚体在五个力的作用下处于平衡,若其中四个力的作用线汇交于O 点,则第五个力的作用线必经过O 点。
西安建筑科技大学大学物理(上)复习共49页
![西安建筑科技大学大学物理(上)复习共49页](https://img.taocdn.com/s3/m/723ab8bece2f0066f533229b.png)
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
西安建筑科技大学大学物理(上)复习
1讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
END
大学物理作业答案(下)
![大学物理作业答案(下)](https://img.taocdn.com/s3/m/4025206b783e0912a2162a1e.png)
65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。
1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。
试求圆筒内部的磁感应强度。
解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.i ω σc deab f67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。
今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。
解:)(22r R IJ -=π10121r k J B ⨯=μ 20221r k J B ⨯-=μj Ja O O k J r r k J B B B 021********21)(21μμμ=⨯=-⨯=+=j r R IaB )(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。
解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr rL R I Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。
《大学物理学》习题解答
![《大学物理学》习题解答](https://img.taocdn.com/s3/m/24449089daef5ef7ba0d3cd7.png)
大学物理学习题解答陕西师范大学物理学与信息技术学院基础物理教学组2006-5-8说明:该习题解答与范中和主编的《大学物理学》各章习题完全对应。
每题基本上只给出了一种解答,可作为教师备课时的参考。
题解完成后尚未核对,难免有错误和疏漏之处。
望使用者谅解。
编者2006-5-8第2章 运动学2-1 一质点作直线运动,其运动方程为222t t x -+= , x 以m 计,t 以s 计。
试求:(1)质点从t = 0到t = 3 s 时间内的位移;(2)质点在t = 0到t = 3 s 时间内所通过的路程解 (1)t = 0时,x 0 = 2 ;t =3时,x 3 = -1;所以, m 3)0()3(-==-==t x t x x ∆ (2)本题需注意在题设时间内运动方向发生了变化。
对x 求极值,并令022d d =-=t tx可得t = 1s ,即质点在t = 0到t = 1s 内沿x 正向运动,然后反向运动。
分段计算m 1011=-===t t x x x ∆, m 4)1()3(2-==-==t x t x x ∆路程为 m 521=+=x x s ∆∆2-2 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=。
试求:(1)质点在最初4s 内位移;(2)质点在最初4s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t = 4时,x 4 = -30 所以,质点在最初4s 内位移的大小 m 3204-=-=∆x x x(2)由0612d d 2=-=t t tx可求得在运动中质点改变运动方向的时刻为 t 1 = 2 s , t 2 = 0 (舍去) 则 m 0.8021=-=∆x x x ,m 40242-=-=∆x x x所以,质点在最初4 s 时间间隔内的路程为 m 4821=∆+∆=x x s2-3 在星际空间飞行的一枚火箭,当它以恒定速率燃烧它的燃料时,其运动方程可表示为 )1ln(1bt t b u ut x -⎪⎭⎫⎝⎛-+=,其中m/s 100.33⨯=u 是喷出气流相对于火箭体的喷射速度, s /105.73-⨯=b 是与燃烧速率成正比的一个常量。
西安建筑科技大学材料力学考题(答案)
![西安建筑科技大学材料力学考题(答案)](https://img.taocdn.com/s3/m/d34dff1ded630b1c59eeb5d2.png)
西安建筑科技大学考试试卷(答案)一选择题1. (5分)变截面杆受集中力P作用,如图。
设F1,F2和F3分别表示杆件中截面1-1,2-2和3-3上沿轴线方向的内力值,则下列结论中哪个是正确的?(A)F1=F2=F3;(B)F1=F2≠F3;(C)F1≠F2=F3;(D)F1≠F2≠F3。
正确答案是(A)。
2. (5分)低碳钢试件拉伸时,其横截面上的应力公式σ=N/A(A)只适用于σ≤σp;(B)只适用于σ≤σe;(C)只适用于σ≤σs;(D)在试件拉断前都适用。
正确答案是D。
3. (5分)梁的内力符号与坐标系的关系是:(A)剪力、弯矩符号与坐标系有关;(B)剪力、弯矩符号与坐标系无关;(C)剪力符号与坐标系有关,弯矩符号与坐标系无关;(D)弯矩符号与坐标系有关,剪力符号与坐标系无关。
正确答案是B。
4. (5分)由惯性矩的平行移轴公式,I z2的答案有四种:(A)I z2=I z1+bh3/4;(B)I z2=I z+bh3/4;(C)I z2=I z+bh3;(D)I z2=I z1+bh3。
正确答案是(C)。
zz1z2 h/2h/2h/2二. (15分)图示轴向拉压杆A=1000mm 2,P=10kN ,纵向分布载荷q=10kN/m ,a=1m 。
求1-1截面的应力σ和杆中σmax 。
D 答案 σ1=5MPa , (5分); σmax =10MPa 。
(10分)1三. (15分)钢制圆轴的直径为d ,材料的许用剪应力[τ]=30MPa 。
求:(1)选择轴的直径;(2)将m 3和m 4互换重选直径。
m 1=m 2=m 3=m 4=(k N m)(m)(1)16T max /(πd 3)≤[τ] (5分) ; d=55.4mm (5分); (2)互换后 T max =0.5kN ⋅m d=43.9mm (5分)0.20.51.00.20.50.5(1)(2)T 图四. (15分)作梁的Q 、M 图。
西安建筑科技大学理论力学试题答案(全)
![西安建筑科技大学理论力学试题答案(全)](https://img.taocdn.com/s3/m/0e8b9ec8a1c7aa00b52acbf9.png)
理论力学(全)试卷答案及评分标准一、计算题 1. F F F F H I AC EG -===00(5分)2. N G F m 100sin min ==ϕ (5分)3. FaM Fa M Fa M F Y F X z y x 2222222222=-=-==-= (各1分) 4. 虚位移图 (3分)1/2/=C A r r δδ (2分) 5. 设 ()θω+=t A x n sin (1分) 22m a x 43n mA T ω=(1分) 取弹簧原长处为弹性势能零点 2m a x 21kA V =(1分) m a xm a x V T =mkn 32=ω (2分) 二、计算题对于AC 画受力图 (1分)()02202=-=∑L T qL F M CD A得 kN F CD 2= (3分)对于BG 1 G 2D 画受力图 (2分)()00=--=∑L T M M F M CD B B得 m kN M B ⋅=16 (3分) 00==∑B X X (1分)00=-=∑CD B F Y Y 得 kN Y B 2= (2分)对于G 1 D 画受力图 (2分)()0201=--=∑M L F L Y F M CD E G 得 kN Y E 10= (3分) ()002=--=∑M L F L X F M CD E G 得 kN X E 8= (3分)三、计算题 动点:套筒A动系:固连在O 2B 上 (1分) 作速度平行四边形 (3分)r e a V V V += (1分)s cm V a /40=s rad A O /41=ω (2分)s cm V r /320= (1分)2/340s cm a C = (2分)四、计算题2/9/3s m a s m V A A == (2分) s m V sr a d C AC /6/3==ω (3分)s m V s r a d B /26/6==圆ω (3分)作速度矢量图 (2分)nCACA A C a a a a ++=τ (1分) 22/318/318s rad s m a C ==圆α (2分)作加速度矢量图 (2分) 五、计算题()22172410C v P Q gT T +== (4分) h Q P R M W ⎪⎭⎫⎝⎛--=2 (2分) 由动能定理得g PQ Q P R M a C 7222+⎪⎭⎫⎝⎛--=(4分)六、计算题受力图 (3分)()041=+-=∑a mgJ F M A A α ag712=α (3分)∑==00B X X (1分)00=+-=∑IB F mg Y Ymg Y B 74=(3分) 七、计算题 ()B A B A R R m R m R m m T φφφφ 21222222212143241+++=(2分) 取开始位置为重力势能零点()B A R R g m V φφ212--= (2分) V T L -= (1分)由拉格朗日方程得()023022122212222122122121=-+=-++gR m R R m R m gR m R R m R m m A B B A φφφφ (4分)联解得()()22111212232232R m m g m R m m gm BB A A +==+==φαφα (1分)。
大学物理力学一、二章作业答案
![大学物理力学一、二章作业答案](https://img.taocdn.com/s3/m/aed4047fbd64783e09122bc9.png)
第一章 质点运动学一、选择题1、一质点在xoy 平面内运动,其运动方程为,式中a 、b 、c 均为常数。
当运动质点得运动方向与x 轴成450角时,它得速率为[ B ]。
A 。
a ; B.; C.2c; D 。
2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系得曲线就是图1—1中得[ D ]。
3、一质点得运动方程就是,R 、为正常数。
从t =到t =时间内该质点得路程就是[ B ]。
A 。
2R;B .; C. 0; D 。
4、质量为0、25kg 得质点,受(N)得力作用,t =0时该质点以=2m/s 得速度通过坐标原点,该质点任意时刻得位置矢量就是[ B ]。
A.2+2m ; B .m;C 。
; D.条件不足,无法确定。
二、填空题1、一质点沿x 轴运动,其运动方程为(x 以米为单位,t 以秒为单位)。
质点得初速度为2m/s ,第4秒末得速度为 -6m /s ,第4秒末得加速度为 —2m/s2 .2、一质点以(m/s)得匀速率作半径为5m 得圆周运动。
该质点在5s 内得平均速度得大小为 2m/s ,平均加速度得大小为 .3、一质点沿半径为0、1m 得圆周运动,其运动方程为(式中得θ以弧度计,t 以秒计),质点在第一秒末得速度为 0、2m/s ,切向加速度为 0、2m/s 2 。
4、一质点沿半径1m 得圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。
T=2s 时质点得切向加速度为 36m/s 2 ;当加速度得方向与半径成45º角时角位移就是ra d 。
5、飞轮半径0、4m ,从静止开始启动,角加速度β=0、2rad /s 2。
t =2s 时边缘各点得速度为 0、16m /s ,加速度为 0、102m/s 2 。
6、如图1—2所示,半径为R A 与RB得两轮与皮带连结,如果皮带不打滑,则两轮得角速度 ,两轮边缘A 点与B 点得切向加速度 1:1 。
三、简述题1、给出路程与位移得定义,并举例说明二者得联系与区别。
大学物理大作业答案(2024)
![大学物理大作业答案(2024)](https://img.taocdn.com/s3/m/84138391d05abe23482fb4daa58da0116c171f8d.png)
引言概述:正文内容:一、力学1.牛顿三定律的应用解释牛顿第一定律的原理,并给出实际应用的例子。
找出物体的质心,并计算其位置坐标。
利用牛顿第二定律计算物体所受的合力和加速度。
2.作用力和反作用力解释作用力和反作用力的概念,并给出相关案例。
计算物体所受的作用力和反作用力的大小和方向。
应用牛顿第三定律解决实际问题。
3.动能和动能守恒计算物体的动能,并解释其物理意义。
说明动能守恒定律的原理,给出相应的实例。
利用动能守恒定律解决能量转化问题。
4.力学振动和波动解释简谐振动的特征和公式,并计算相关参数。
介绍波的基本概念和性质,并给出波动方程的解释。
分析机械波的传播和干涉现象。
5.万有引力和天体运动介绍万有引力定律的公式和原理。
计算引力和重力的大小和方向。
描述行星运动的轨道和速度,并解释开普勒定律。
二、热学1.理想气体定律和状态方程解释理想气体和实际气体的区别。
推导理想气体定律,解释每个变量的含义。
计算理想气体的性质和状态。
2.热力学第一定律和功解释热力学第一定律的原理,并给出相应公式。
计算系统的内能变化和热量的传递。
分析功的定义和计算方法。
3.热力学第二定律和熵介绍热力学第二定律的概念和表述方法。
计算熵的变化和热力学过程的可逆性。
解释热力学第二定律对能量转化的限制。
4.热传导和热辐射分析热传导的机制和方法,并计算热传导的速率。
描述热辐射的特性和功率密度。
利用热传导和热辐射解决实际问题。
5.热力学循环和效率给出常见热力学循环的定义和示意图。
计算热力学循环的效率和功率输出。
分析热力学循环的改进方法和应用。
三、电磁学1.静电场和电势描述静电场的特性和形成原理,并给出电势的定义。
计算电场和电势的大小和方向。
利用电势差解决电荷移动和电场中的工作问题。
2.电场和电场强度推导库仑定律和电场强度公式。
计算由点电荷、带电导体和带电平面产生的电场。
分析电场中带电粒子受力和加速度。
3.电容和电容器解释电容和电容器的概念和原理,并计算其电容量。
西安科技大学大学物理期末考试试卷(含答案)
![西安科技大学大学物理期末考试试卷(含答案)](https://img.taocdn.com/s3/m/7e0bfe58fbd6195f312b3169a45177232e60e413.png)
西安科技大学大学物理期末考试试卷(含答案)一、大学物理期末选择题复习1. 一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2 倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:( )(A)2 倍(B)4 倍(C)0.5 倍(D)1 倍答案B2. 无限长直圆柱体,半径为 R, 沿轴向均匀流有电流.设圆柱体内(r<R) 的磁感强度为B₁, 圆柱体外(r>R) 的磁感强度为Be, 则有( )(A)B; 、B₆均与r 成正比(B)B₁、B 均与r成反比(C)B ₁与r 成反比,B 与r 成正比(D)B₁与r成正比,Be与r成反比答案D3. 下列说法正确的是( )(A)闭合回路上各点磁感强度都为零时回路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时回路上各点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时回路上任意一点的磁感强度都不可能为零答案B4. 如图所示,半径为R的均匀带电球面,总电荷为Q, 设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:( )(C),可答案B5. 对质点组有以下几种说法:(1)质点组总动量的改变与内力无关;(2)质点组总动能的改变与内力无关;(3)质点组机械能的改变与保守内力无关。
下列对上述说法判断正确的是( )(A) 只有(1)是正确的(B)( 1) 、(2) 是正确的(C) ( 1) 、(3) 是正确的(D)(2)、(3) 是正确的答案 C6. 有两个倾角不同、高度相通、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则()(A) 物块到达斜面低端时的动量相等(B) 物块到达斜面低端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒(D) 物块和斜面组成的系统水平方向上动量守恒答案 D7. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
大学物理下作业答案.docx
![大学物理下作业答案.docx](https://img.taocdn.com/s3/m/28f8103258f5f61fb6366602.png)
静电场(一)一. 选择题:1.解:在不考虑边缘效应的情况下,极板间的电场等同于电荷均匀分布,密度为o = ±q/S的两面积无限大平行薄板之间的电场一-匀强电场,一板在另一板处之电场强度为£ = o/(2s0),方向垂直于板面.所以,极板间的相互作用力F =q・E = q2 /(2件)。
故选(B)。
2.解:设置八个边长为a的立方体构成一个大立方体,使A(即Q)位于大立方体的中心.所以通过大立方体每一侧面的电场强度通量均为q/(6&o),而侧面abed是大立方体侧面的1/4,所以通过侧面abed的电场强度通量等于q/(24%).选(C)。
3.解:寸亘•丞=jpdV/£°适用于任何静电场.选(A)。
4.解:选(B)。
5.解:据高斯定理知:通过整个球面的电场强度通=q/&. ■内电荷通过昂、&的电通量相等且大于零; 外电荷对品的通量为负,对&的通量为正. 所以0>1 <0>2 •故(D)对。
二. 填空题:1.解:无限大带电平面产生的电场E= —2&oA L 八(5 2(5 3(5A 区:E A= ------------------ = ------2s0 2s02g0CL L b 2b bB 区:E R = ------------ = ------2s0 2s 02s0C区"c=三+至=至2s n 2s n 2s n2.解:据题意知,P点处场强方向若垂直于OP,则入在P点场强的OP分量与Q在P点的场强E QP一定大小相等、方向相反.即Jcp = ------------- c os——= ----------- =也冲= -------- , O — aA .2%。
3 4%。
4%。
之3. 解:无限长带电圆柱体可以看成由许多半径为r 的均匀带电无限长圆筒叠加而成,因此 其场强分布是柱对称的,场强方向沿圆柱半径方向,距轴线等距各点的场强大学相等。
大学物理活页作业答案全套
![大学物理活页作业答案全套](https://img.taocdn.com/s3/m/e06a6964bb4cf7ec4afed0ff.png)
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.;(提示:首先分析质点的运动规律,在t <时质点沿x 轴正方向运动;在t =时质点的速率为零;,在t >时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=ωths2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B2.C3.C4.C5.v = m/s ;a n = m/s 2;α = – rad/ s 2;N = 转。
大学物理9~13课后作业答案Word版
![大学物理9~13课后作业答案Word版](https://img.taocdn.com/s3/m/4b2641e702d276a200292e7e.png)
第八章8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0R E E x ==ϕϕελϕπd cos π4)cos(d d 0R E E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπR E y∴R E E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强P Ed 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ ∵22cos 221l r l +=θ 12cos cos θθ-= ∴24π4d 22220l r ll r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴424π4d 222222l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ ∵l q 4=λ ∴2)4(π422220l r l r qrE P ++=ε 方向沿 8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p =3(r )3内r - ∴()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E sd ε∑ ⎰ = ⋅ q SE s取同轴圆柱形高斯面,侧面积rl S π2= 则rlE S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴r E 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, nE )(21210σσε-= 1σ面外, nE)(21210σσε+-=2σ面外, nE )(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场d 33030r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则03ερrEPO =,03ερr E O P '-=' ,∴0003'3)(3ερερερd OO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R q R q -R q 0π6ε-=∴R qq U U q A oC O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sinπ-] R 0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U∴0032142ln π2ελελ+=++=U U U U O8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即∴AB AB AC AC E E d d =∴ 2d d 21===AC AB AB AC E E σσ且 1σ+2σS q A= 得,32S q A =σ S q A321=σ 而7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2)301103.2d d ⨯===AC AC AC A E U εσV8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R q R q U εε8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势. 解: 利用有介质时的高斯定理∑⎰=⋅qS D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外 (2)介质外)(2R r >电势r Q E U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Q r r -+=εεεrd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内(3)金属球的电势rd r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdrR R R r r Qdrr Q εεε )11(π4210R R Q r r -+=εεε8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D 得11σ=D ,22σ=D而101E D ε=,202E D r εε=d 21UE E ==∴ r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S 则 rlDS D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴rl QD π2=(1)电场能量密度22222π82l r Q D w εε==薄壳中rl rQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R V R R l Q rl r Q W W εε(3)电容:∵C Q W 22=∴)/ln(π22122R R lW Q C ε== 8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε =3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r QW εε⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量)111(π83210221R R R Q W W W +-=+=ε 41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容)11/(π422102R R Q W C -==ε 121049.4-⨯=F习题九9-6 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理课后选择与作业答案
![大学物理课后选择与作业答案](https://img.taocdn.com/s3/m/ecef674ab9f3f90f77c61b8b.png)
第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π (C )αB r cos π22(D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B ).7 -15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为x l xlμΦd π2d d 0=⋅=S B 矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==211200ln π2d π2d d d d Il μx l x l μΦ 7 -16 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222πππRr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==s R ,得T 106.52π30-⨯==RIμB 7 -25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 7 -29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力. 解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=()b d lI I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.第八章 电磁感应 电磁场8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( ) (A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;tiM εd d 21212=.因而正确答案为(D ).8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).8 -5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tId d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tlM E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xIμx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd=-+==⎰⎰⎰再由法拉第电磁感应定律,有tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ=线圈与两长直导线间的互感为43ln π20d μI ΦM ==当电流以tld d 变化时,线圈中的互感电动势为 tI d μt I ME d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入tΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =t ξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xIμB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xIμΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦ回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =t ξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和t I d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.第九章 振动9-1 一个质点作简谐运动,振幅为A ,起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为()题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ).9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为 0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为 gS ρm πωT /2/π2==9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A 合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A / (2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得 (),...2,1,0,π25.1π2π1223±±=+=++=k k k题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x (2)()()m /2πt π4cos 100.22+⨯=-x (3)()()m /3πt π4cos 100.22+⨯=-x (4)()()m /3π4t π4cos 100.22+⨯=-x 第十章 波 动10-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题10-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).10-2 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播分析与解 波动方程的一般表式为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=ϕωu x t A y cos ,其中A 为振幅,φ为初相,u 为波速.x /u 前的“-”表示波沿x 轴正向传播,“+”表示波沿x 轴负向传播.因此将原式写为()()()m 100/π6cos 05.0x t y +=和一般式比较可知(B)、(D) 均不对.而由ω=2π/T =6πs-1 可知T =(1/3)s.则λ=uT =33.3 m ,因此(A)也不对.只有(C)正确.10-3 一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4T t =时刻的波形如图(a )所示,则该波的表达式为( ) ()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πωπωπωπωu x t A y u x t A y u x t A y u x t A y cos B 2cos C 2cos B cos A题10-3 图分析与解 因为波沿x 轴负向传播,由上题分析知(A)、(B )表式不正确.找出(C )、(D )哪个是正确答案,可以有很多方法.这里给出两个常用方法.方法一:直接将t =T /4,x =0 代入方程,那么对(C )有y 0 =A 、对(D )有y 0 =0,可见(D )的结果与图一致.方法二:用旋转矢量法求出波动方程的初相位.由图(a )可以知道t =T /4 时原点处质点的位移为0,且向y 轴正向运动,则此时刻的旋转矢量图如图(b )所示.要求初相位,只要将该时刻的旋转矢量反转(顺时针转)Δφ=ω·Δt =ω·T /4 =π/2,如图(b )所示,即得φ0 =π.同样得(D )是正确答案.题10-4 图10-4 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()πλπϕϕπλπϕϕπϕϕπk r r k r r k k r r 22A 22A 2A A 211212121212=-+-=-+-=-=-// 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λr r /π2Δ1212---=,故选项(D )正确.10-5 在驻波中,两个相邻波节间各质点的振动( )(A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同(C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同分析与解 驻波方程为t λx A y v π2cos π2cos 2=,因此根据其特点,两波节间各点运动同相位,但振幅不同.因此正确答案为(B ).10-8 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()ϕω+=t cos A y 进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-10-10 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得 m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ10 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ10 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λx x10-13 如图所示为一平面简谐波在t =0 时刻的波形图,求(1)该波的波动方程;(2) P 处质点的运动方程.题10-13 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 208.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=πx t(2) 距原点O 为x =0.20m 处的P 点运动方程为 ()m 2520.04cos y ⎥⎦⎤⎢⎣⎡+=ππ10-18 有一波在介质中传播,其波速u =1.0 ×103m·s -1 ,振幅A =1.0 ×10-4 m ,频率ν =1.0 ×103Hz .若介质的密度为ρ =8.0×102 kg·m -3 ,求:(1) 该波的能流密度;(2) 1 min 内垂直通过4.0 ×10-4m 2 的总能量.解 (1) 由能流密度I 的表达式得2522222m W 10581221-⋅⨯===.v uA uA I ρπωρ (2) 在时间间隔Δt =60 s 内垂直通过面积S 的能量为J 107933⨯=∆⋅=∆⋅=.t IS t P W10-20 如图所示,两相干波源分别在P 、Q 两点处,它们发出频率为ν、波长为λ,初相相同的两列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求:(1) 自P 、Q 发出的两列波在R 处的相位差;(2) 两波在R 处干涉时的合振幅.题10-20 图分析 因两波源的初相相同,两列波在点R 处的相位差Δφ仍与上题一样,由它们的波程差决定.因R 处质点同时受两列相干波的作用,其振动为这两个同频率、同振动方向的简谐运动的合成,合振幅ϕ∆++=cos 2212221A A A A A .解 (1) 两列波在R 处的相位差为πλr 3/Δπ2Δ==(2) 由于π3Δ=,则合振幅为21212221cos32A A A A A A A -=++=π第十一章 光 学11-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.因此正确答案为(B ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安建筑科技大学大学物理作业答案一、质点运动一.选择题:1.解:选B。
运动到最高点时速度为零,故有:,得t=2s。
2.解:选C。
船速:收绳速率:得:故船为变加速直线运动。
3.解:选A。
,二.填空题:1.解:∵,∴2.解:⑴∵两边积分有:∴⑵⑶3.解:总加速度与半径夹45°角时,切向加速度大小等于向心加速度大小,故有:,得出:t=1s4.解:x(t)作初速度为零的加速直线运动,积分得:,得:2双方积分有:,得:y(t)作初速度为2m s-1的匀速直线运动∴三.计算题:1.解:∵时∴即后,由,有:,得:由,,得:后:2.解:如图以表示质点对地的速度则当时,的大小为的方向与轴的夹角γ四.证明题:∵∴,得:双方积分,得:五.问答题OA区间;AB区间;BC区间;CD区间。
4二、质点动力学一.选择题:1.解:选(C)。
当紧靠在圆筒内壁而不下落时,受到的摩擦力与重力平衡,又因为与筒壁提供给的向心力的反作用力的大小成正比,如图所示,故:∴2.解:选(A)。
如图所示:∴ω=12.78rad·s-1≈13rad·s-13.解:选(B)。
质点m越过A角前、后的速度如图所示。
由题知:由动量定理知:所以:4.解:选(B)。
初始位置矢量,末位置矢量则:5.解:选(A)。
设质点在点的速率为,则由动能定理知:其中当质点运动到点时下式满足:∴二.填空题1.选沿着、的运动方向为X轴正向,则由受力图知:因为绳不伸长:∴2.(1).当弹簧长度为原长时,系统的重力势能为。
又因为在O点重物平衡,即:,所以系统在O'点的重力势能又可表为:。
(2).系统的弹性势能为:。
(3).系统的总势能为。
3.坐标系和受力分析如图所示,设摩擦力为,物体沿斜面向上方运动的距离为,则:∴4.选弹簧压缩最大距离即O点为重力势能的零点,弹簧的自然长O'为弹性势能的零点。
视物体和弹簧为物体系初态体系总能量为:末态体系总能量为:体系由初态到末态的全过程中只有保守力作功.故机械能守恒。
所以∴三.计算题:1.设木块与弹簧接触时的动能为。
当弹簧压缩了时,木块的动能为零。
根据动能原理:∴3.设炮车自斜面顶端滑至L处时,其速率为。
由机械能守恒定律知:以炮车、炮弹为物体系,在L处发射炮弹的过程中,系统沿斜面方向的外力可以忽略,则系统沿斜面方向动量守恒。
故∴6第三章刚体的定轴转动一.选择题:1.解:选(C)。
∵的方向不断改变,而大小不变.∴不断改变质点所受外力通过圆心,所以产生的力矩为零则角动量守恒。
2.解:选(C)。
根据开普勒定律得出。
3.解:选(B)。
解:已知:单位为方向沿轴由4.解:选(B)。
选子弹和棒为系统系统对转轴的力矩为零,所以系统角动量守恒。
设所求棒的角速度为ω以俯视图的逆时针方向为正方向。
初角动量:末角动量:所以由角动量守恒定律:∴二.填空题:1.解:∵角动量为,系统的转动惯量为:系统的角速度为:∴2.解:如图距转轴处选线元其线元所受重力为:所以杆转动时线元所受摩擦力矩大小为:所以杆转动时所受摩擦力矩大小为:3.解:选人、转椅和双手各持的哑铃为系统,系统变化过程中所受外力矩为零,所以系统的角动量守恒。
由角动量守恒定律有:初角动量:其中,,末角动量:其中,I’2=2×5×(0.2)2kg·m2,ω为所求。
则∴ω=8rad·s-14.解:选子弹和杆为系统,在子弹射入前后瞬间,系统对转轴所受外力矩为零,所以系统动量矩守恒。
初角动量为:末角动量为:∴5.解:①由已知及转动定律有:当时,②由动量矩定理有:∴86.解:由L=Jω,∴7.解:∵,即,则而,∴∴∴圈三.计算题:1.解:由匀变速圆周运动公式有:①②①②联立解得:代入已知条件:ω=15rad⋅s-1,t=10sθ=2π×16rad∴β=0.99rad·s-22.解:选坐标如图任意时刻圆盘两侧绳长分别为、,选长度为、两段绳和盘为研究对象。
设:绳的加速度为,盘的角加速度为,盘半径为,绳的线密度为,在1、2两点处绳的张力为:、,则有方程如下:解得:3.解:①选A、B两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒:∵,∴∴转速n=200rev⋅min-1②A轮受的冲量矩:B轮受的冲量矩:四.证明题:由已知:,对运动方程两边同时对t求导:,所以A点的线速度:其中ω为刚体作定轴转动的角速度,证毕。
10四、简谐振动一、选择题1.解:由简谐振动的运动学方程,振动速度,加速度可知,速度的周相比位移x的周相超前,加速度a的周相比位移x的周相超前或落后π。
由图可见,曲线1的相位比曲线2的相位滞后,而曲线3的相位比曲线1的相位超前π,所以(E)为正确答案。
2.解:由,,由题可知,质点时在平衡位置,即,,则,,又因,则(1)又由题意可知,质点在时在处,即,,则,,又因,则(2)(2)式减去(1)式得:,,(B)为正确答案。
3.解:,,由图知:时,,<0,得:,由,得:,另由图知:时,,,得:,则:,得:,[或]由>0得:(2)[或],,,则:。
A为正确答案。
4.解:由振动动能:,∴B为正确答案。
5.∵总能量,其中为弹簧的弹性系数,为振动圆频率,为振子质量,为振幅。
又∵由时,得:,,动能,,则:(D)为正确答案。
二、填空题:1.解:,,由图知:时,,>0,则:,由>0,得:初相位(1)12得:,,由<0得:(2)由(1)式和(2)式得:又,得周期为:2.解:振动能量3.解:选坐标系如图,坐标原点为平衡位置,令物体质量为,它受到的重力为,平台对它的支持力为。
由牛顿第二定律:因物体作简谐振动,则则使物体脱离平台,则:N=0,即振动加速度时,物体将脱离平台,。
4.解:由题:,,,又三、计算题:1.解:(1)由题知:,得:,,则:,,(2)速度,加速度,(3)振动能量:(4)平均动能:平均势能:2.解:方法一:(1)令:,由题,且当时,,得:(1)(2)由(1)(2)式得:再由(2)得:,得:(2)由题意:得:方法二:由能量守恒,动能+势能=总能量,得:,得:,(s)(2),得:,cm143.解:选系统平衡位置为坐标原点,坐标系如图。
由题意,恒定外力做功转化为弹簧振子的能量,为:,在作用下向左运动了,此时,继续向左运动,并不是的最大位移。
当运动到最左端,最大弹性势能即为外力所作的功,即:,得:,设:弹簧振子的振动方程为:由题意:时,,,,则物体的运动学方程为:五、机械波一、选择题:1.解:平面简谐波在时刻的波形即为波线x轴上的媒质质点在时刻的振动位置图(y轴为振动方向)。
作旋转矢量如下图,由图知1点的初相位,0点的初位相,2点的初相位,3点的初位相,4点的初相位,故应选(A)。
2.解:由题意知,P点为波节,即入射波在P点的位与反射波在P点的相位相反,如下图所示,故应选(B)。
相3.解:在行波传播过程中,体积元的动能和势能是同相的,而且是相等的,动能达最大值时势能也达最大值,动能为零时势能也为零。
,当有时,E P与E K同时达最大,由上式有:即:,位移为零的质元有最大能量,由图看出媒质质元在a,c,e,g位置时,能量有最大值,故应选(B)。
二、填空题:1.解:如图所示,x处质点比处质点落后的相位差为:16则x处质点的运动学方程为即为此波的波函数。
2.解:(1)由波函数知,x处质点的振动初相位为:,则在处质点振动的初相位是:。
(2)由波动学知,弹性波每行进一波长,此处质点比前者质点振动落后。
又由振动学知,前后两质点振动状态相同,故与x1处质点振动状态相同的其它质点的位置将是。
(3)弹性波每行进半个波长,此处质点比前者质点振动落后。
由振动学知,前后两质点振动状态相反,故与x1处质点速度大小相同,但方向相反的其它各质点的位置是。
3.解:(1)如图所示,x处质点比处质点落后的相位差为:则x处质点的运动学方程为(2)以任一x处质点为参考点,其运动学方程为:,此振动状态经反射返回x点比参考点x相位落后:,则反射波函数为:4.解:∵波强正比于振幅的平方,设合振幅为,则:,其中,分别是波源位相,分别是波源位置,由题意则有:,由题意,,则:,即:,则有:由于0<<,所以两波源应满足的相位条件是:。
三、计算题:1.解:的P处质点的运动学方程可化简为:,令:,,则:,则:,任一x处质点比P处()质点落后的相位差为:,则任一x处质点的波函数为:。
2.解:入射波的波函数(SI)入射波在P点引起的质点振动为:,反射波在P点引起的质点振动为:,则反射波函数为:由题知,,。
3.解:由题意知,和为振幅相同,在x轴上沿相反方向传播的两列相干波,它们迭加形成驻波,其表达形式为:18振幅为:,得:,,,即为x轴上合振幅为米的各点位置。
六气体分子运动论一.选择题:1.解:根据理想气体状态方程有∵p不变∴n1T1=n2T2其中T1=273+15=288(K)T2=273+27=300(K)故1-(n1/n2)=1-(T1/T2)=1-(288/300)=4%(B)2.解:根据理想气体状态方程知标准状态下有P0=RT0(氧气)P0=RT0(氦气)得:/==1/2又∵氧气视为刚性双原子分子的理想气体,则其内能为(i=5)而氦气为单原子气体,则其内能为(i=3)∴(C)3.解:由化学变化知2H2O→2H2+O2由于T不变故水蒸汽的内能(三原子分子)氢气和氧气的总能量为(都是双原子分子)∴(C)二.填空题:201.体积(V)、温度(T)、压强(P)(因为这是描述气体状态的三个基本宏观量) 分子的运动速度()(因为大量分子在做永不停息的无规则运动)2.解:(1)根据P=nkT得个/m3(2)根据知密度(3)∵氮气是双原子刚性分子∴1立方米氮气的总平动动能为3.解:根据公式得:4.解:设未用前氧气的内能为E1,用后剩下为E2,∵V不变,T不变。
∴又∵∴5.解:根据动能的变化知(单原子气体i=3)∴6.解:根据最可几速率公式知T不变故由图知P(O2)=1000m·s-1又∴7.解:根据T不变而故∴曲线(a)是氩曲线(c)是氦.8.解:三.计算题:解:由P=nkT可得:T2=2P/(nk)=2T1由可得:再根据上述结果可定性画出I、Ⅱ状态下分子的速率分布曲线如图所示.四.问答题:答:根据及知T一定,氢和氧都为双原子分子气体,i=5故平均平动动能和相同;与不相同,氧气的与都比氢的小。
五.改错题:(1)错.表示在速率区间内的分子数占总分子数的百分率。
(2)错.∵∴表示处在速率区间的分子速率总和。
(3)错.∵∴表示在整个速率范围内分子速率的算术平均值.22七热力学一.选择题:1.(C)∵1→2,=const,等压,T、同时增大.∴所以系统内能增加,且对外做功,故吸热。