平行线的性质教学案例
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质教学案例
一、教学目标
1.理解并掌握平行线的性质。
2.会用平行线的性质进行推理和计算。
3.通过平行线性质定理的推导,在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神,培养学生观察分析和进行简单的逻辑推理的能力。
二、重点: 平行线的性质公理及平行线性质定理的推导。
三、难点:平行线性质与判定的区别及推导过程。
四、教具学具准备
投影仪、三角板、自制投影片。
五、教学过程
创设情境,复习导入
师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1)。
1.如图1,
(1)∵(已知),∴().
(2)∵(已知),∴().
(3)∵(已知),∴().
图2
2.如图2,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?
学生活动:学生口答第1题。
师:第2题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质。板书课题:
[板书]2。6 平行线的性质
探究新知,讲授新课
师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?
学生活动:学生在练习本上画图并思考。
学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程。
学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等。
提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?
学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等。根据学生的回答,教师肯定结论。
师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理。
[板书]两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补。
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下。
学生活动:学生们思考,并相互讨论后,有的同学举手回答。
教师根据学生回答,给予肯定或指正的同时板书。
[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题。
教师根据学生叙述,板书:
[板书]两条平行经被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
师:下面请同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质。请一名同学到黑板上板演,其他同学在练习本上完成。
师生共同订正推导过程和第三条性质,形成正确板书。
[板书]∵(已知),∴(两直线平行,同位角相等).
∵(邻补角定义),
∴(等量代换).
即:两条平行线被第三条直线所截,同旁内角互补。
简单说成,两直线平行,同旁内角互补。
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相
等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)
尝试反馈,巩固练习
师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?
学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):
如图7,已知平行线、被直线所截:
图7
(1)从,可以知道是多少度?为什么?(2)从,可以知道
是多少度?为什么?(3)从,可以知道是多少度,为什么?
变式训练,培养能力
完成练习(出示投影片3)。
如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?
图8
学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程。
[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互
补).∴.∴.变式练习(出示投影片4)
1.如图9,已知直线经过点,,,.
(1)等于多少度?为什么?
(2)等于多少度?为什么?
(3)、各等于多少度?
2.如图10,、、、在一条直线上,.
(1)时,、各等于多少度?为什么?
(2)时,、各等于多少度?为什么?
学生活动:学生独立完成,把理由写成推理格式。
(四)总结、扩展
(出示投影片1第1题和投影片5)完成并比较。
如图11,
(1)∵(已知),
∴().
(2)∵(已知),
∴().
(3)∵(已知),
∴().
学生活动:学生回答上述题目的同时,进行观察比较。
师:它们有什么不同,同学们可以相互讨论一下。
(出示投影6)
学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质。
巩固练习(出示投影片7)
1.如图12,已知是上的一点,是上的一点,,,
.(1)和平行吗?为什么?
图12
(2)是多少度?为什么?
学生活动:学生思考、口答.
六、布置作业