九年级上圆的对称性(1)导学案

合集下载

《圆的对称性》优秀教案

《圆的对称性》优秀教案

三、例题展示: =

第 2 题图
例1、 如图,AB、AC、BC 都是⊙O 的弦,∠AOC=∠BOC,∠ABC 与∠BAC 相等吗?
为什么?
O
A
B
C
例 2: 如图,AB,DE 是⊙O 的直径,C 是⊙O 上的一点,且弧 AD=弧 CE,BE 与 CE 的大小

有什么关系?为什么?
B
E
达标 测试
四、课堂检测:
二、基础训练:
D
1.试一试:如图,已知⊙O、⊙O ' 半径相等,
O
O’
C
AB、CD 分别是⊙O、⊙O ' 的两条弦填空:
A
B
(1)若 AB=CD,则

第 1 题图
(2)若 AB= CD,则

评价 点拨
巩固 延伸
(3)若∠AOB=∠CO ' D,则

D 2
B
1
A
O
2.如图,在⊙O 中, AC == BD,∠1=30°,则∠2=_______
OO’
导学
A’
⑴在两张透明纸片上,分别作半径相等的⊙O 和⊙O '
A
B
⑵在⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB、∠ A'O' B ' ,连接 AB、 A' B '
图5
⑶将两张纸片叠在一起,使⊙O 与⊙O ' 重合(如图 5)
⑷固定圆心,将其中一个圆旋转某个角度,使得 OA 与 OA ' 重合在操作的过程中,你有什
导学流程
教学过程
教学内容
预习 交流
一、问题引入:
1 如果一个图形沿着一条直线折叠,直线的两旁的部分能够互相重合,那么这个图形叫做

九年级数学上册 21.3.1 圆的对称性导学案 北京课改版(2021年整理)

九年级数学上册 21.3.1 圆的对称性导学案 北京课改版(2021年整理)

九年级数学上册21.3.1 圆的对称性导学案(新版)北京课改版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册21.3.1 圆的对称性导学案(新版)北京课改版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册21.3.1 圆的对称性导学案(新版)北京课改版的全部内容。

21。

3.1 圆的对称性预习案一、预习目标及范围:1.通过学习,熟练运用垂径定理。

(难点)2。

能够掌握圆的对称性。

(重点)3.运用所学的知识解决实际的问题。

二、预习要点1.圆是什么图形?2.什么是垂径定理?三、预习检测1。

如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A。

2 B. 4C。

6 D. 82。

在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为( )A. 30°B. 45°C. 60° D。

90°3。

如图,BC是⊙O的弦,OA⊥BC,垂足为A,若⊙O的半径为13,BC=24,则线段OA的长为()A。

5 B。

6C。

7 D。

84.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A。

6 B。

5 C. 4 D。

3探究案一、合作探究活动1:小组合作(1)圆是,圆的对称轴是任意一条经过圆心的直线。

圆有条对称轴.(2)用的方法证明圆是轴对称图形。

(3)垂径定理是垂直于弦的直径弦,并且弦所对的两条弧。

(4)CD是以点O为圆心的圆形纸片的直径,过直径上任意一点E作弦AB⊥CD。

将圆形纸片沿着直径CD对折,比较图中的线段和弧,有什么发现?根据图形的轴对称性,可知AE=BE,弧AD = 弧BD,弧AC = 弧BC,由此可以得出。

3.2垂径定理(81)

3.2垂径定理(81)

城阳第五中学 九年级 数学 学科导学案课题:3.2 圆的对称性 第 1 课时 总第 81 课时一、学习目标1、经历探索圆的轴对称性及相关性质的过程;2、理解圆的轴对称性及垂径定理;3、进一步体会和理解研究几何图形的各种方法;二、教学内容(一)复习导入取一张圆形纸片,观察圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?(二)探究新知1、轴对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线;2、相关概念:(1)弦:连接圆上任意两点的线段(2)直径:经过圆心的弦(圆中最长的弦;半径的两倍)(3)弧:圆上任意两点间的部分叫做圆弧,简称弧。

例如:线段CD 是⊙O 的一条弦,弦AB 是⊙O 的一条直径,请观察⊙O 中有几条弧?(4)弧的分类及表示方法: 3、做一做:取出刚才的圆形纸片,命名为⊙O ,画⊙O 的直径AB ,再作一条弦CD 使弦CD 垂直于AB ,垂足为E ,并观察(1)你能发现图中有哪些等量关系?说一说你的理由. (2)你能用一句话来总结一下我们刚才做一做得出的结论吗?4(1)如图①:∵AB 是直径,又∵AB ⊥CD , ∴_____ ,______ ,_______ (2)如图②:∵_______ ,_______ ∴AC=BC 5、例题: 如图,M 为⊙O 内一点(1)利用尺规作一条弦AB ,使AB 过点M ,并且AM=BM (2)若已知⊙O 半径为5cm ,AB=8 cm ,求:点O 到AB 的距离 及AB 中点与弧AB 中点的距离;(3)若已知AB=8 cm ,且AB 中点到弧AB 中点的距离为2cm , 求:⊙O 半径及O 到AB 的距离; 通过上述计算,你发现了什么规律?半圆:以直径两端点为端点的弧,如半圆ACB优弧:大于半圆的弧,优弧CAD 表示为 CAD劣弧:小于半圆的弧,劣弧CAD 表示为 CD B图② 姓名___________(三)变式训练1、已知⊙O 中,AB 是非直径的弦,OC ⊥AB 于C ,AB=8,OC=3,则⊙O 的半径长为 。

苏科9上教案 5.2圆的对称性(1)

苏科9上教案  5.2圆的对称性(1)

5.2圆的对称性(1)--( 教案)备课时间: 主备人:一、学习目标:1、经历探索圆的中心对称性及有关性质的过程2、理解圆的中心对称性及有关性质3、会运用圆心角、弧、弦之间的关系解决有关问题重点:理解圆的中心对称性及有关性质难点:运用圆心角、弧、弦之间的关系解决有关问题二、知识准备:1、什么是中心对称图形?2、我们采用什么方法研究中心对称图形?三、学习内容:1、按照下列步骤进行小组活动:⑴在两张透明纸片上,分别作半径相等的⊙O 和⊙O '⑵在⊙O 和⊙O '中,分别作相等的圆心角∠AOB 、∠'''B O A ,连接AB 、''B A⑶将两张纸片叠在一起,使⊙O 与⊙O '重合(如图)⑷固定圆心,将其中一个圆旋转某个角度,使得OA 与OA '重合在操作的过程中,你有什么发现,请与小组同学交流_______________________________________________2、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考?请与小组同学交流.你能够用文字语言把你的发现表达出来吗?3、圆心角、弧、弦之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等4、试一试:如图,已知⊙O 、⊙O '半径相等,AB 、CD 分别是⊙O 、⊙O '的两条弦填空:(1)若AB=CD ,则 ,(2)若AB= CD ,则 ,(3',则 ,5么如何来刻画弧的大小呢?’ ’ C ︵ ︵弧的大小:圆心角的度数与它所对的弧的度数相等例1、如图,AB、AC、BC都是⊙O的弦,∠AOC=∠BOC∠ABC与∠BAC相等吗?为什么?例题2、已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?四、知识梳理:1、在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;2、圆心角的度数与它所对的弧的度数相等。

重庆市云阳县水口初级中学九年级数学上册24.1.1圆对称性垂径定理教案

重庆市云阳县水口初级中学九年级数学上册24.1.1圆对称性垂径定理教案
三、教学难点与重点
1.教学重点
-核心内容:圆的对称性、垂径定理及其应用。
-详细内容:
a.圆的轴对称性和中心对称性,特别是圆心的位置关系。
b.垂径定理的表述及其证明过程。
c.垂径定理在实际问题中的应用,如求弦长、半径等。
-举例解释:通过圆的直观图和实际模型,强调圆心到弦的垂线平分弦长,并说明这是解决圆相关问题的关键。
重庆市云阳县水口初级中学九年级数学上册24.1.1圆对称性垂径定理教案
一、教学内容
《重庆市云阳县水口初级中学九年级数学上册》第24章《圆》的第一节“圆对称性垂径定理”,内容包括:
1.圆的对称性:通过实例引导学生理解圆的轴对称性和中心对称性,强调圆心的作用。
2.垂径定理:介绍垂径定理的内容,通过几何图形演示,让学生理解直径垂直于弦的性质及其应用。
实践活动环节,学生分组讨论和实验操作进行得相对顺利,但我观察到一些小组在讨论时并没有充分参与到问题解决的过程中,而是依赖个别同学的思考和操作。我意识到,在未来的教学中,我需要更多地鼓励每个学生积极参与,确保每个同学都能在实践中学习和思考。
小组讨论环节,学生们对于垂径定理在实际生活中的应用提出了不少有趣的观点,但我也发现他们在将理论知识应用到实际问题时的局限性。这可能是因为他们对定理的理解还不够深入,或者缺乏将理论知识转化为实际应用的能力。我考虑在后续的教学中增加更多实际案例的分析,让学生看到数学知识是如何在现实世界中发挥作用的。
3.垂径定理的应用:举例说明垂径定理在实际问题中的应用,如求圆中弦长、半径等。
4.相关练习题:布置一些典型习题,巩固学生对垂径定理的理解和应用。
二、核心素养目标
《圆对称性垂径定理》教学旨在培养学生的以下核心素养:
1.空间观念:通过探究圆的对称性,培养学生对几何图形的空间想象能力和直观感知能力。

圆的对称性

圆的对称性

做一做:(通过观察总结定理) 在等圆⊙O 和⊙O′上分别作相等的圆心角 ∠A O B 和∠A′O′B′,将两圆重叠, 并固定圆心,将其掌中握的一一个个解圆题方旋法转,一比个做角一度百道,题使更得重O要A。与 O′A′重合。 你能从中发现哪些等量关系?说一说你的理由。
2、在同圆或等到圆中,如果两条弦相等,那么它们所对的圆心角相等吗?它们 所对的弧相等吗?你是怎么想的?
总第 27 课时
预习案——课前自主学习
相关知识回顾: 1.什么是圆?
2.什么是圆的弦、圆的直径?
(图 1) 2)
(图
3.什么的等圆、等弧
结论:圆是
图形,其对称轴是
想一想:请同学们观察图(2)中两个半径相等的圆。请回答:
的直线.
预习要求: 通过预习初步了解本节知识点,并根据个人能力初步完善探究案。学科组长组检 查组内各对子预习完两条
、两条
中有
一组量相等,那么它们所对应的其余各组量都分别相等。
人贵有志,学贵有恒。
定理:在同圆或等圆中,相等的圆心角所对的 做一做:请证明你的结论(小组展示)
相等,所对的
相等。
想一想:(小组讨论得出定理)
议一议: 在得出本节结论的过程中你用到了哪些方法?小组内进行交流.
性的认识,发现归纳能力的培养. 【学法指导】 合作交流,自主探究
一、情景引入:
探究案——课中合作探究
二、PPT 出示教学目标。 三、第一次“先学后教”—— 圆的对称性 想一想:(1)圆是轴对称图形吗?如果是,它的对称轴是什么? (2)你是用什么办法解决上述问题的?小组内进行交流.
【课时安排】
1 课时
圆的对称性导学案
班级:九年级 学生姓名:
使用时间: 12 月 26 日

新苏科版九年级数学上册2.2圆的对称性(1)导学案

新苏科版九年级数学上册2.2圆的对称性(1)导学案

A B O A'B'O'新苏科版九年级数学上册2.2圆的对称性(1)导学案课前参与(一)预习内容: 课本P 44—46(二)知识整理:1.__________________________ _______是中心对称图形,对称中心是__________。

2. 圆是_______,它的对称中心是______;圆也是 图形,对称轴是 _。

3.90°的圆心角所对的弧的度数为______;度数为60°的弧所对的圆心角的度数为 _。

三、探索发现: 操作1:(1)在两张透明纸片上,分别作半径相等的⊙O 和⊙O ';(2)在⊙O 和⊙O '中,分别作相等的圆心角∠AOB 、∠'''B O A ,连接AB、''B A ;(3)将两张纸片叠在一起,使⊙O 与⊙O '重合(如图); (4)固定圆心,将其中一个圆旋转某个角度,使得OA 与OA '重合。

在操作 的过程中,你有什么发现,请写一写___________________________ _ _。

操作2:把上述操作中的半径相等的圆改成半径不相等的两个圆,其它条件不变,再操作一遍,你发现以上的结论还能成立吗?试一试通过以上操作,请写出圆心角、弧、弦之间的关系:在圆心角、弧、弦这三个量中,角的大小可以用度数刻画,弦的大小可以用长度刻画,那么如何来刻画弧的大小呢?弧的大小: _。

四、通过预习你已经掌握了哪些内容,还存在哪些疑惑,请写出来。

课中参与例1、如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC.∠ABC 与∠BAC相等吗?为什么?例2、如图,在△ABC 中, ∠C =90°, ∠B =28°,以C 为圆心、CA 为半径的圆交AB 于点D ,交BC 与点E,求弧AD 、弧 DE 的度数。

例3、如图,AB 是圆O 的直径,弦CD 交AB 于M ,且OM=CM,试确定弧BD 与弧AC 的数量关系,并说明理由。

苏科版数学九年级上册《2.2 圆的对称性》教学设计

苏科版数学九年级上册《2.2 圆的对称性》教学设计

苏科版数学九年级上册《2.2 圆的对称性》教学设计一. 教材分析《苏科版数学九年级上册》第二章“圆”的第三节《2.2 圆的对称性》的内容,主要介绍了圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线,以及圆的对称性质在实际问题中的应用。

本节内容是学生对圆的基本性质的进一步理解,也是对圆的轴对称性质的深入探究。

二. 学情分析九年级的学生已经学习了初中阶段的基本数学知识,对圆的基本性质有一定的了解。

但是,对于圆的对称性质的理解可能还不够深入,需要通过本节课的学习,使学生对圆的对称性质有更深刻的理解。

三. 教学目标1.知识与技能:使学生理解圆的对称性质,能运用圆的对称性质解决实际问题。

2.过程与方法:通过观察、操作、推理等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神和合作意识。

四. 教学重难点1.圆的对称性质的理解。

2.圆的对称性质在实际问题中的应用。

五. 教学方法采用问题驱动法、合作学习法、探究学习法等,引导学生通过观察、操作、推理等活动,自主探究圆的对称性质。

六. 教学准备1.教学课件。

2.练习题。

3.圆规、直尺等作图工具。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的对称图形,如圆、圆环、圆形的桌面等,引导学生观察这些图形的对称性质,引出圆的对称性质的学习。

2.呈现(10分钟)用课件展示圆的对称性质,包括圆是轴对称图形,圆有无数条对称轴,圆的对称轴是直径所在的直线。

同时,让学生用圆规、直尺等作图工具,实际作图,验证圆的对称性质。

3.操练(10分钟)让学生分组合作,利用圆的对称性质,解决一些实际问题,如如何用圆规和直尺画一个特定角度的圆弧,如何判断一个图形是否是圆的对称图形等。

4.巩固(10分钟)让学生独立完成一些练习题,巩固对圆的对称性质的理解。

5.拓展(5分钟)引导学生思考圆的对称性质在实际问题中的应用,如圆形的桌面如何摆放才能使每个人到桌子的距离相等,如何设计圆形的图案等。

【青岛版九年级数学上册教案】3.1圆的对称性

【青岛版九年级数学上册教案】3.1圆的对称性

3.1 圆的对称性教课目标【知识与能力】(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.【过程与方法】(1)经过对圆的对称性的理解,培育学生的观察、解析、发现问题和概括问题的能力,促进学生创立性思想水平的发展和提升;(2)经过对圆心角、弧和弦之间的关系的研究,掌握解题的方法和技巧.【感情态度价值观】经过观察、总结和应用等数学活动,感觉数学活动充满了研究性与创立性,体验发现的乐趣.教课重难点【教课要点】对圆心角、弧和弦之间的关系的理解.【教课难点】能灵巧运用圆的对称性解决有关实质问题,会用圆心角、弧和弦之间的关系解题.课前准备多媒体课件教课过程一、创建情境,导入新课问:前方我们已商讨过轴对称图形,哪位同学能表达一下轴对称图形的定义?( 假如一个图形沿着某一条直线折叠后,直线两旁的部分可以相互重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴 ) .问:我们是用什么方法来研究轴对称图形?生:折叠.今日我们连续来研究圆的对称性.问题 1:前方我们已经认识了圆,你还记得确立圆的两个元素吗?生:圆心和半径.问题 2:你还记得学习圆中的哪些看法吗?忆一忆:1.圆:平面上到 ____________等于 ______的全部点构成的图形叫做圆,此中 ______为圆心,定长为 ________.2.弧:圆上 _____叫做圆弧,简称弧,圆的任意一条____ 的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧, _____________ 称为劣弧.3. ___________叫做等圆, _________叫做等弧.4.圆心角:极点在_____的角叫做圆心角.二、研究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?假如是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?着手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?学生谈论得出结论:我们经过折叠的方法获取圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:垂径定理按下边的步骤做一做:1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.获取一条折痕CD.3.在⊙O上任取一点A,过点A作CD折痕的垂线,获取新的折痕,此中,点M是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B,如上图.师:老师和大家一起着手.( 教师表达步骤,师生共同操作)师:经过第一步,我们可以获取什么?学生齐声:可以知道:圆是轴对称图形,过圆心的直线是它的对称轴.师:很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?生:我发现了, AM=BM,AC BC,AD BD .师:为何呢?生:由于折痕与相互重合,A点与B点重合.AM BM师:还可以怎么说呢?能不可以利用构造等腰三角形得出上边的等量关系?师生共析:以以下图示,连接、获取等腰△,即= .因⊥ ,故△与△OBMOA OB OAB OA OB CD AB OAM都是 Rt △,又OM为公共边,所以两个直角三角形全等,则 AM=BM.又⊙ O关于直径 CD对称,所以 A 点和 B 点关于 CD对称,当圆沿着直径CD对折时,点 A 与点 B 重合,AC与BC重合,AD 与BD重合.所以=, AC=BC,AD=BD.AMBM师:在上述操作过程中,你会得出什么结论?生:垂直于弦的直径均分这条弦,而且均分弦所对的弧.结论:垂径定理:垂直于弦的直径均分弦以及弦所对的两条弧.例1:如教材 69页图 3-4 ,以△OAB的极点O为圆心的⊙O交AB于点C,D,且AC=BD. 求证:OA=OB.例2:1400 多年前,我国隋唐期间建筑的赵州石拱桥的桥拱近似于圆弧形,它的跨度为37.02m,拱高 ( 弧的中点到弦的距离,也叫弓形的高) 为 7.23m. 求拱桥所在圆的半径( 精确到 0.1m).知识点三:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还可以与本来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与本来的图形重合,我们把圆的这个特征称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.知识点四:同圆或等圆中圆心角、弧、弦之间的关系做一做:在等圆⊙ 和⊙O中,分别作相等的圆心角∠和 A O B( 如图 3-8) ,将两圆重叠,并O AOB固定圆心,而后把此中的一个圆旋转一个角度,得OA与OA重合.你能发现哪些等量关系吗?说一说你的原由.小红以为AB=A B, AB=A B ,她是这样想的:∵半径重合,AOB= AOB,OA∴半径 OB与OB重合,∵点 A与点A重合,点 B与点B重合,∴AB与A B重合,弦 AB与弦A B重合,∴AB=AB,AB=AB.生:小红的想法正确吗?同学们交流自己想法,而后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.问:在同圆或等圆中,假如两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,说说各自想法,教师点拨.结论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其他各组量都分别相等.例3:如书籍 71页图 3-11 ,AB与DE是⊙O的两条直径,C是⊙O上一点,AC∥DE. 求证:(1) 弧AD=弧CE;(2) BE=EC.知识点五:圆心角的度数与它所对弧的度数之间的关系思虑:( 1)把极点在圆心的周角均分成360份,每份圆心角的度数是多少?(2)把极点在圆心的周角均分成 360份时,整个园被分成了多少份?每一份的弧能否相等?为何?师:整个圆1的叫做 1°的弧 . 1°的圆心角所对的弧是多少度;反之,1°的弧所对的圆360心角是多少度 . 圆心角与它所对的弧有什么关系?生: 1°的圆心角所对的弧是1°; 1°的弧所对的圆心角是1° .结论:圆心角的度数与它所对弧的度数相等. 例4:如书籍 73页图 3-14 , OA , OC 是⊙ O 中两条垂直的直径,与OC 的延长线订交于点B ,∠ B =25°. 求弧 AD ,弧 CD 的度数 .D 是⊙ O 上的一点. 连接 AD 并延长例5:如书籍73页图 3-15 ,在⊙ O 中,弦 AB 所对的劣弧为圆的1 ,圆的半径为 2cm ,求 AB 的长 .3三、随堂练习1.平常生活中的好多图案或现象都与圆的对称性有关,试举几例. 2.利用一个圆及其若干条弦分别设计出吻合以下条件的图案:(1) 是轴对称图形但不是中心对称图形; (2) 是中心对称图形但不是轴对称图形;(3) 既是轴对称图形又是中心对称图形.3.已知, A , B 是⊙ O 上的两点,∠ AOB =120°, C 是 AB 的中点,试确立四边形 OACB 的形状,并说明原由.四、自我小结,获取感悟1.对自己说,你在本节课中学习了哪些知识点?有何收获? 2.对同学说,你有哪些学习感悟和温馨提示?3.对老师说,你还有哪些疑惑?。

5.2圆的对称性(1)

5.2圆的对称性(1)
利用多媒体劝态演示,使得内容直观形象,从学生接受的情况看还是不错的,达到 了本节课的学习目标。但是,学生知识的掌握并不代表能力的提高。很多学生眼高 手低,在具体的几何逻辑推理中常常不能严谨的进行推理,或叙述不准确或定理不 会运用,这都需要在平时的教学中要注意规范和引导的。
5
学生踊跃发言,气氛 生认识到原来
(2)我们采用的是什么方法来研究中 热闹
生活中处处有
心对称图形的呢?
数学,从而激
(3)出示投影片 1(轮子转动)
学生想象儿时的摩天 发学生学习数
二、探索活动:

学的兴趣。
活动一:尝试与交流
师:请同学们拿出课前准备好的两张透明
白纸,并出示投影片 2
(1)分别作半径都为 5 ㎝的⊙O、⊙O';
苏教版九年级数学上册第五章第二节第一课时教学设计
5.2 圆的对称性(1)
江苏省赣榆县初级中学 陈庆霞 邮编:222100
一、教材简解:
本节内容是学生在小学学过的一些圆的知识及学习本册教材第五章第一节
圆的有关概念的基础上,进一步探索和圆有关的性质。本究过程中通过师生动手
n 度的圆心角
n 度的弧
关键:将顶点在圆心的周角分成 360 份,
每一份的圆心角是 1º的角,于是,整个圆
也被等分成 360 份。我们把 1º的圆心角所
对的弧叫做 1º的弧。
【板书二】
(二)、弧的大小:
圆心角的度数与它所对的弧的度数相等。
注意:1.圆心角的度数与它所对的弧的度
数相等,不是角与弧相等;
分组讨论后,学生板 演,教师加以讲评, 及时纠正一些解题规 范。
学生解答,并板演, 教师点评。
拓宽学生的知 识面,让学生 对圆心角与弧 有进一步的了 解。同时又培 养了学生用类 比的思想去解 决一些问题。

《2.1 圆的对称性》导学案-九年级下册数学湘教版

《2.1 圆的对称性》导学案-九年级下册数学湘教版

圆的对称性(导学案)教学目标:1.理解圆的有关概念及圆的对称性;(重点)2.掌握点与圆的位置关系的性质与判定.(重点)教学过程:一、情境导入二、合作探究探究点一:圆的定义:1.平面内到一定点的距离等于定长的所有点组成的图形叫做圆。

其中,定点称为圆心,定长称为半径(radius)。

以点O为圆心的圆记作⊙O,读作“圆O”。

2.圆也可以看成平面内一动点绕一个定点旋转一周所形成的图形。

注:确定一个圆需要两个要素,一是位置,二是大小.圆心确定其位置,半径确定其大小。

只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定,因而圆也不确定。

只有圆心和半径都固定,圆才被唯一确定。

探究点二:弦与弧的定义:1.连结圆上任意两点的线段叫做弦2.圆上任意两点间的部分叫做圆弧,简称弧。

3.等圆,等弧。

注:经过圆心的弦叫做直径,直径是弦,是圆内最长的弦,但弦不一定是直径。

弧包括优弧和劣弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

优弧用三个大写字母表示,劣弧用两个大写字母表示。

半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆也用三个大写字母表示。

半圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧。

探究点三:点与圆的位置关系同一平面内点与圆有几种位置关系?怎么确定点与圆的关系?在圆上d=r在圆内d<r在圆外d>r探究点四:圆的对称性什么是轴对称,什么是中心对称?圆是中心对称图形,即圆绕圆心旋转180度,能与自身重合。

圆心是它的对称中心。

圆是轴对称图形,它的对称轴是过直径的直线,•我能找到无数多条直径,所以有无数条对称轴。

注:圆有无数条对称轴,圆的对称轴是过圆心的每一条直线,即直径所在的直线而不是圆的直径.三,巩固提高四,作业布置。

5.2 圆的对称性(1)

5.2  圆的对称性(1)

5.2 圆的对称性(1)备课时间:2007年 月 日 主备人:孙祥课时计划:第3课时学习目标1、经历利用旋转变换探索圆的中心对称性的过程,理解圆的中心对称性及其相关性质;2、利用圆的旋转不变性研究圆心角、弧、弦之间的关系定理及其简单应用;3、通过观察、比较、操作、推理、归纳等活动,发展学生的空间观念、推理能力等等。

学习重、难点1、 重点:圆心角、弧、弦之间的关系定理及其简单应用;2、 难点:圆心角、弧、弦之间的关系定理及其简单应用;重难点及突破方法:突破方法:让学生通过观察、比较、操作、推理、归纳等活动抓住重点、突破难点学习过程:一、情境创设1、什么是中心对称图形?2、我们采用什么方法研究中心对称图形?二、探索新知1、让学生拿出事先准备好的能够旋转的圆形物体,绕着它们的圆心旋转任意角度,问:旋转后的图形能与原来的图形重合吗?结论:圆是中心对称图形,圆心是它的对称中心。

2、尝试与交流见第111页:尝试与交流方法:要让学生切实行动起来,真正去操作、观察,然后对自己的发现、猜想进行推理论证。

——利用旋转变换结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

符号语言:(在同圆或等圆中)(1)∠AOB=∠'''A O B ''AB A B =,''AB A B =(2) ''AB A B = ⇒''AB A B =,∠AOB=∠'''A O B(3)''AB A B = ⇒ ''AB A B = ,∠AOB=∠'''A O B3、圆心角的度数与它所对的弧的度数相等。

关键:将顶点在圆心的周角分成360份,每一份的圆心角是10的角,于是,整个圆也被等分成360份。

我们把10的圆心角所对的弧叫做10的弧。

青岛版九年级上册 3.1 圆的对称性(1) 教案设计

青岛版九年级上册 3.1 圆的对称性(1) 教案设计

定陶区第一实验中学“问题导学双案引领”课时教案任务三:定理运用如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm,求DC的长度。

任务四自学收获:疑难问题:小组合作对学答疑集体交流群学辨疑1.同桌互相交流自主预习中的问题答案并讨论疑难。

2小组之间交流自主预习中的问题答案并讨论疑难。

学生可能提出的问题有:(1)园的轴对称性?(2)垂径定理的符号语言表示?(3)垂径定理的应用1、小组合作完成预习提纲中的问题,2.讨论疑难3.列出解决不了的问题4.班内交流疑难问题精讲点拨达成教师预计要讲解的问题:1垂径定理的符号语言;2怎么运用垂径定理进行有关的计算例题学习:1 400 多年前,我国隋朝时期建造的赵州石拱桥(图3-6)的桥拱近似于圆弧形,它的跨度(弧所对的弦长)为37.02 m,拱高(弧的中点到弦的距离,也叫弓形的高)为7.23 m . 求桥拱所在圆的半1.教师引导学生完成释疑径(精确到0.1 m)..2.归纳总结方法技巧等应用提升分层测疑A组:课本70练习1B组:1、在⊙O中,一条弦的长为48厘米,圆心O到这条弦的距离为10厘米,则圆的直径为。

2、如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,那么这条管道中此时水最深为多少米?3、如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.1.学生自己独立完成,组间讨论答案,2.组长纠正并讲解,3.重点题目教师与学生合作讨论纠正。

EOA BDCEA BCDEOA BDCOB AEE OABCEOC DAB练习在下列图形中,你能否利用垂径定理找到相等的线段或相等的圆弧课堂小结1、学生总结知识点及收获2、教师总结方法及规律。

达标测试:1.如图,在⊙中,直径垂直弦于点,连接,已知⊙的半径为2,32,则∠=________度.2、如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,,垂足为,则这段弯路的半径是_________选做题1、如图,M为⊙O内一点,你能用三角尺画⊙O的一条弦AB,使点M恰为AB的中点吗?说明你的理由。

初中数学九年级上册苏科版2.2圆的对称性教学设计

初中数学九年级上册苏科版2.2圆的对称性教学设计
1.教师通过多媒体展示一组生活中的圆实例,如车轮、光盘、硬币等,引导学生观察这些圆形物体的特点,提出问题:“这些物体有什么共同之处?”
2.学生回答:“它们都是圆形的。”教师继续提问:“圆形物体还有什么特点?”引导学生思考。
3.学生可能回答:“圆形具有对称性。”教师给予肯定,并指出:“今天我们将学习圆的对称性质,了解圆的更多奥秘。”
3.小组合作任务:每组选择一个生活中的圆形物体,如手表、风扇等,分析其对称性质,并制作一份报告,内容包括物体的图片、对称轴的识别、对称性质的应用等。这样的作业可以增强学生的团队合作意识,同时也能让他们在实践中感受数学的美。
4.布置一道开放性题目,鼓励学生进行探究性学习。例如,让学生探索圆内接四边形、五边形、六边形的性质,并尝试证明这些图形的对称性质。这样的作业有助于学生发展几何推理能力和探究精神。
-将学生分成小组,鼓励他们在小组内分享自己的发现和疑问,通过讨论和合作,共同解决遇到的问题,培养学生的团队协作能力。
4.信息技术辅助教学,加深理解。
-利用动态几何软件,如GeoGebra,展示圆的对称变换,让学生在动态的变化中直观感受圆的对称性质,加深理解。
5.问题导向,分层教学。
-根据学生的学习能力,设计不同难度的问题,确保每个学生都能参与到课堂讨论中来,并在自己的水平上得到提升。
初中数学九年级上册苏科版2.2圆的对称性教学设计
一、教学目标
(一)知识与技能
1.理解并掌握圆的对称性质,能够识别圆的对称轴和对称中心。
-学生能够通过观察和实际操作,发现圆的对称性质,理解圆的任意直径都是它的对称轴,圆心是对称中心。
-学会使用圆规等工具绘制出给定圆的对称图形,并能利用对称性质解决相关问题。
(二)讲授新知

九年级数学上册-《圆》整章导学案

九年级数学上册-《圆》整章导学案

BC Q P 圆(1)【自主学习】 (一) 新知导学1.圆的运动定义:把线段OP 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心的圆记作 .2圆的集合定义:圆是到 的点的集合. 3.点与圆的位置关系:如果⊙O 的半径为r ,点P 到圆心的距离为d ,那么 点P 在圆内⇔ ;点P 在圆上⇔ ; 点P 在圆外⇔ .【合作探究】1.如图,已知:点P 、Q ,且PQ=4cm. (1)画出下列图形: ①到点P 的距离等于2cm 的点的集合; ②到点Q 的距离等于3cm 的点的集合;(2)在所画图中,到点P 的距离等于2cm ;且到点Q 的距离等于3cm 的点有几个?请在图中将它们画出来.(3)在所画图中,到点P 的距离小于或等于2cm ;且到点Q 的距离大于或等于3cm 的点的集合是怎样的图形?把它画出来. 【自我检测】 一、填空题1.到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆.2.正方形的四个顶点在以 为圆心,以 为半径的圆上.3.矩形ABCD 边AB=6cm,AD=8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A______,点C 在⊙A_______,点D 在⊙A________,AC 与BD 的交点O 在⊙A_________;(2)若作⊙A ,使B 、C 、D 三点至少有一个点在⊙A 内,至少有一点在⊙A 外,则⊙A 的半径r 的取值范围是_______.4.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是 二、解答题5.已知:如图,BD 、CE 是△ABC 的高,试说明点B、C 、D 、E 在同一个圆上.6.如图,已知在⊿ABC 中,∠ACB=900,AC=12,AB=13,CD ⊥AB,以C 为圆心,5为半径作⊙C ,试判断A,D,B 三点与⊙C 的位置关系圆(2)【自主学习】(一)复习巩固:1.圆的集合定义: . 2.点与圆的三种位置关系: 、 、 . 3.已知⊙O 的半径为5cm ,点P 是⊙O 外一点,则OP 的长可能是( ) A. 3 cm B. 4cm C. 5cm (二)新知导学 1.与圆有关的概念①弦:连结圆上任意两点的 叫做弦. ②直径:经过 的弦叫做直径.③弧分为:半圆( 所对的弧叫做半圆)、劣弧(小于 的弧)和优弧(大于 的弧).④圆心角:定点在 的角叫做圆心角.⑤同心圆: 相同, 不相等的两个圆叫做同心圆. ⑥等圆:能够互相 的两个圆叫做等圆.⑦等弧:在 或 中,能够互相 的弧叫做等弧. 2同圆或等圆的性质:在同圆或等圆中,它们的 相等. 【合作探究】1.圆心都为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( ) A. 甲圆内 B.乙圆外 C. 甲圆外、乙圆内 D. 甲圆内、乙圆外2.下列判断:①直径是弦;②两个半圆是等弧;③优弧比劣弧长,其中正确的是( ) A. ① B.②③ C. ①②③ D.①③ 【自我检测】 一、填空题1.已知⊙O 中最长的弦为16cm ,则⊙O 的半径为________cm . 2.过圆内一点可以作出圆的最长弦_____条. 二、选择题3.下列语句中,不正确的个数是( )①直径是弦;②弧是半圆;③长度相等的弧是等弧;•④经过圆内任一定点可以作无数条直径.A .1个B .2个C .3个D .4个4.下列语句中,不正确的是( )A .圆既是中心对称图形,又是旋转对称图形B .圆既是轴对称图形,又是中心对称图形C .当圆绕它的圆心旋转89°57′时,不会与原来的圆重合D .圆的对称轴有无数条,对称中心只有一个5.等于23圆周的弧叫做( )A .劣弧B .半圆C .优弧D .圆6.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• ) A .2条 B .3条 C .4条 D .5条第6题A7.以已知点O 为圆心,已知线段a 为半径作圆,可以作( ) A .1个 B .2个 C .3个 D .无数个 三、解答题8.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.9.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.A圆的对称性(1)【自主学习】(一)复习巩固:1.直径、弦、弧、圆心角、同心圆、等圆、等弧的概念.2.同圆或等圆的性质: .(二)新知导学1.圆的旋转不变性圆具有旋转不变的特征,即一个圆绕着它的圆心旋转一个角度后,仍与原来的圆 .2.圆心角、弧、弦之间的关系在同圆或等圆中,相等的圆心角所对的弧,所对的弦 .在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量,那么它们所对应的其他各组量都分别 .3.圆心角度数的性质①10的角:将定点在圆心的角分成360份,每一份的圆心角是 .②10的弧:所对的弧叫10的弧.③圆心角的和它对的弧的相等.【合作探究】1.如图:⊙O1和⊙O2是等圆,P是O1O2的中点,过P作直线AD交⊙O1于A、B,交⊙O2于C、D,求证:AB=CD.2.如图所示,点O是∠EPF平分线上的一点,以点O为圆心的圆与角的两边分别交于点A、B和C、D.(1)求证:AB=CD;(2)若角的顶点P在圆上或在圆内,(1)的结论还成立吗?若不成立,请说明理由;•若成立,请加以证明.【自我检测】一、填空题1.如图,AB、CE是⊙O的直径,∠COD=60°,且弧AD=弧BC,•那么与∠AOE•相等的角有_____,与∠AOC相等的角有_________.2.一条弦把圆分成1:3两部分,则弦所对的圆心角为________.3.弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.4.如图,AB为圆O的直径,弧BD=弧BC,∠A=25°,则∠BOD=______.5.如图,AB、CD是⊙O的两条弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM,•AB=6,则CD=_______.6.如图,直角坐标系中一条圆弧经过网格点A、B、C,其中B点坐标为(4,4),•则该圆弧所在圆的圆心坐标为_________.7.如图所示,已知C为弧AB的中点,OA⊥CD于M,CN⊥OB于N,若OA=r,ON=•a,•则CD=_______.二、选择题10.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为()A.42 B.82 C.24 D.1611.如图6,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立.....的是( •)A.∠COE=∠DOE B.CE=DE C.OE=BE D.弧BD=弧BC12.如图7所示,在△ABC中,∠A=70°,⊙O截△ABC•的三边所得的弦长相等,•则∠BOC=()A.140° B.135° C.130° D.125°13.如图所示,已知AB是⊙O的直径,M、N分别是AO、BO的中点,CM⊥AB,DN⊥AB,•求证:弧AC=弧BD.圆的对称性(2)【自主学习】(一)复习巩固:1.圆的旋转不变性: . 2.圆心角的性质: .3.已知如图,在⊙O 中,AD 是直径,BC 是弦,D 为弧BC 的中点,由这些条件你能推出哪些结论(要求:不添加辅助线,不添加字母,不写推理过程,写出六条以上结论)(二) 新知导学 1. 圆的对称性圆是 图形,过 的任意一条直线都是它的对称轴. 2. 垂径定理垂直于弦的直径平分 ,并且平分 . 【合作探究】1. 已知,在⊙O 中,半径OD ⊥直径AB ,F 是OD 的中点,弦BC 过F 点,若⊙O 的半径为2, 求BC 的长.2.已知⊙O 的半径为5cm ,弦AB ∥CD ,AB=6cm,CD=8cm,求AB 和CD 之间的距离.【自我检测】 一、填空题 1.已知⊙O•中,•弦AB•的长是8cm ,•圆心O•到AB•的距离为3cm ,•则⊙O•的直径是_____cm . 2.如图1,已知⊙O 的半径为5,弦AB=8,P 是弦AB 上任意一点,则OP•的取值范围是_______.BAPOBACEDO(1) (2) (3) 3.如图2,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE=3厘米,则OD=•___cm . 4.半径为5的⊙O 内有一点P ,且OP=4,则过点P 的最短弦长是_______,最长的弦长_______. 5.如图3,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D ,若AC=8cm ,DE=2cm ,则OD 的长为________cm . 6.⊙O 的直径是50cm ,弦AB ∥CD ,且AB=40cm ,CD=48cm ,则AB•与CD•之间的距离为_______. 二、选择题8.下列命题中错误的命题有( ) (1)弦的垂直平分线经过圆心;(2)平分弦的直径垂直于弦;(3)•梯形的对角线互相平分;(4)圆的对称轴是直径.A .1个B .2个C .3个D .4个9.如图4,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB•的弦心距等于1,那么两个同心圆的半径之比为( )A .3:2B 5:2C .52D .5:4BCDOB CEDOONMF(4) (5) (6)10.如图5,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中错误的是( ) A .∠COE=∠DOE B .CE=DE C .AE=BE D .弧BD=弧BC11.如图6,EF 是⊙O 的直径,OE=5,弦MN=8,则E 、F 两点到直线MN 的距离之和( ) A .3 B .6 C .8 D .12 12.如图8,方格纸上一圆经过(2,6)、(-2,2)、(2,-2)、(6,2)四点•则该圆圆心的坐标为( )A .(2,-1)B .(2,2)C .(2,1)D .(3,1)DC B A O 30DC A O圆周角和圆心角的关系(1)【自主学习】(一)复习巩固:1.垂径定理: .2.已知点P 是半径为5的⊙O 内的一点,且OP=3,则过P 点且长小于8的弦有( ) 条 条 C. 2条 D.无数条 (二) 新知导学 1. 圆周角的定义顶点在 ,并且两边都和圆 的角叫做圆周角. 2.圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角 ,都等于该弧所对的圆心角的 .【合作探究】1.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.2.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长. 【自我检测】一、选择题:1.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) ° °或150° ° °或120°2.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数( ) ° ° ° °3.如图1,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) ° ° ° °4.如图2,A 、B 、C 、D 四点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )对 对 对 对5.如图3,D 是弧AC 的中点,则图中与∠ABD 相等的角的个数是( ) 个 个 个 个6.如图4,∠AOB=100°,则∠A+∠B 等于( ) ° ° ° °7.如图⊙O 中弧AB 的度数为60°,AC 是⊙O 的直径,那么∠BOC 等于 ( ) A .150° B .130° C .120° D .60°圆周角和圆心角的关系(2)【自主学习】(一)复习巩固:1.圆周角的定义: .2.圆周角定理: .3.在半径为R的圆内,长为R的弦所对的圆周角为 .(二)新知导学1.直径(或半圆)所对的圆周角是 .的圆周角所对的弦是 .【合作探究】1.如图,AB是半圆的直径,AC为弦,OD⊥AB,交AC于点D,垂足为O,⊙O的半径为4,OD=3,求CD的长.2.如图,AB是⊙O的直径,AB=AC,D、E在⊙O上.求证:BD=DE.【自我检测】一、填空题1.如图,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD= .2.如图,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON= .3.如图,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M.若∠BAC=60°,∠ABC=50°,则∠CBM= ,∠AMB= .4.⊙O中,若弦AB长22cm,弦心距为2,则此弦所对的圆周角等于.5.如图,⊙O中,两条弦AB⊥BC,AB=6,BC=8,求⊙O的半径=.二、选择题6.下列说法正确的是()A.顶点在圆上的角是圆周角 B.两边都和圆相交的角是圆周角C.圆心角是圆周角的2倍 D.圆周角度数等于它所对圆心角度数的一半7.下列说法错误的是()A.等弧所对圆周角相等 B.同弧所对圆周角相等C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等8.在⊙O中,同弦所对的圆周角()A.相等B.互补C.相等或互补 D.都不对9.如图,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数是()A.5对 B.6对 C.7对D.8对BA确定圆的条件【自主学习】(一)复习巩固:1.已知AB是⊙O的直径,C是⊙O上一点,若AB=4cm,AC=3cm,则BC= .2.下列命题:①直径所对的角是900 ;②直角所对的弦是直径;③相等的圆周角所对的弧相等;④对同一弦的两个圆周角相等.正确的有()A. 0个B. 1个个个(二)新知导学1.过不在同一直线上的三个点确定圆.2.经过三角形的三个顶点的圆叫做三角形的,外接圆的圆心叫做三角形的,这个三角形叫圆的三角形.【合作探究】1.要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆心和半径(写出找圆心和半径的步骤).【自我检测】一、填空题:1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上, 则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.2.边长为6cm的等边三角形的外接圆半径是________.3.△ABC的三边为设其外心为O,三条高的交点为H,则OH的长为_____.4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等.5.已知⊙O的直径为2,则⊙O的内接正三角形的边长为_______.6.如图,MN所在的直线垂直平分线段AB,利用这样的工具,最少使用________ 次就可以找到圆形工件的圆心.二、选择题:7.下列条件,可以画出圆的是( )A.已知圆心B.已知半径;C.已知不在同一直线上的三点D.已知直径8.三角形的外心是( )A.三条中线的交点;B.三条边的中垂线的交点;C.三条高的交点;D.三条角平分线的交点9.下列命题不正确的是( )A.三点确定一个圆B.三角形的外接圆有且只有一个C.经过一点有无数个圆D.经过两点有无数个圆10.一个三角形的外心在它的内部,则这个三角形一定是( )A.等腰三角形B.直角三角形;C.锐角三角形D.等边三角形11.等腰直角三角形的外接圆半径等于( )A.腰长B.腰长的2倍; C.底边的2倍 D.腰上的高12.平面上不共线的四点,可以确定圆的个数为( )个或3个个或4个个或3个或4个个或2个或3个或4个直线和圆的位置关系(1)【自主学习】(一)复习巩固:1.若△ABC的外接圆的圆心在△ABC的外部,则△ABC是()A.锐角三角形B. 直角角三角形C. 钝角三角形D. 等腰直角三角形2.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A.三角形三条角平分线的交点B. 三角形三边垂直平分线的交点C. 三角形中位线与高线的交点D. 三角形中位线与中线的交点(二)新知导学1.直线与圆的位置关系①定义:直线与圆有个公共点时,叫做直线与圆相交,这条直线叫做圆的线.直线与圆有个公共点时,叫做直线与圆相切,这条直线叫做圆的线.这个公共点叫做点.直线与圆有个公共点时,叫做直线与圆相离. 2.直线与圆的位置关系的性质与判定设⊙O的半径为r,圆心O到直线的距离为d,那么直线与圆相交⇔;直线与圆相切⇔;直线与圆相离⇔ .【合作探究】1.在△ABC中,∠A=450,AC=4,以C为圆心,r为半径的圆与直线AB有交点,试确定r的范围.【自我检测】一、选择题1.命题:“圆的切线垂直于经过切点的半径”的逆命题是()A.经过半径的外端点的直线是圆的切线.B.垂直于经过切点的半径的直线是圆的切线.C.垂直于半径的直线是圆的切线.D.经过半径的外端并且垂直于这条半径的直线是圆的切线.2.如图,AB、AC与⊙O相切于B、C,∠A=500,点P是圆上异于B、C的一个动点,则∠BPC 的度数是()或1150或5003.已知正三角形的边长为6,则该三角形外接圆的半径为()A.4.如图,BC是⊙O直径,P是CB延长线上一点,PA切⊙O于A,如果PA OB=1,那PBA么∠APC 等于( )A. 1505.如图,线段AB 经过圆心O ,交⊙O 于点A 、C ,∠B =300,直线BD 与⊙O 切于点D ,则∠ADB 的度数是( )6.在平面直角坐标系中,以点(2,1)为圆心,1为半径的圆,必与( )A. x 轴相交B. y 轴相交C. x 轴相切D. y 轴相切 7.如图,⊙O 的直径AB 与弦AC 的夹角为︒30,切线CD 与AB 的延长线交于点D ,若⊙O 的半径为3,则CD 的长为( )B.36 D.33直线和圆的位置关系(2)【自主学习】(一)复习巩固:1.直线与圆的三种位置关系: 、 、 . 2. 如图,已知AB 是⊙O 的直径,BC 切⊙O 于点B ,AC 交⊙O 于点D ,AC =10,BC =6,求AB 和CD 的长.(二)新知导学1.切线的判定定理:经过半径的 并且 这条半径的直线是圆的切线.2.切线的性质定理:圆的切线 于经过切点的 .3.与三角形各边都 的圆叫做三角形的 圆, 圆的 叫做三角形的 ,这个三角形叫做圆的 三角形. 【合作探究】1.如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径.2.已知锐角△ABC ,作△ABC 的内切圆.【自我检测】 一、选择题1.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C ,下列结论错误的是( ) A. ∠1=∠2 =PB ⊥OP D.2PA PC PO =⨯2.如图,⊙O 内切于△ABC ,切点为D 、E 、F ,若∠B =500,∠C =600,连结OE 、OF 、DE 、DF ,则∠EDF 等于( )3.边长分别为3、4、5的三角形的内切圆与外接圆半径之比为( ) :5 :5 :5 :54.如图,PA 、PB 是⊙O 的两条切线,切点是A 、B. 如果OP =4,23PA =AOB 等于( )A. 90°B. 100°C. 110°D. 120°5.如图,已知⊙O 过边长为正2的方形ABCD 的顶点A 、B ,且与CD 边相切,则圆的半径为( )DOA .34 B .45 C .25D .16.如图,⊙O 为△ABC 的内切圆,∠C =900,AO 的延长线交BC 于点D ,AC =4,CD =1,则⊙O 的半径等于( )A.45B.54C.34D.56二填空题7. 直角三角形有两条边是2,则其内切圆的半径是__________.8. 正三角形的内切圆半径等于外接圆半径的__________倍.9.如图,PA 、PB 是⊙O 的切线,点A 、B 为切点,AC 是⊙O 的直径,∠BAC =200,则∠P 的大小是___度.10.等边三角形ABC 的内切圆面积为9π,则△ABC 的周长为_________.11.已知三角形的三边分别为3、4、5,则这个三角形的内切圆半径是 .12.三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 .三、解答题:13.已知如图,过圆O 外一点B 作圆O 的切线BM, M 为切点.BO 交圆O 于点A,过点A 作BO 的垂线,交BM 于点=3,圆O 半径为1.求MP 的长.14.等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径.15.如图,AB 是半圆O 的直径,点M 是半径OA 的中点,点P 在线段AM 上运动(不与点M 重合),点Q 在半圆O 上运动,且总保持PQ =PO ,过点Q 作⊙O 的切线交BA 的延长线于点C. (1) 当∠PQA =600时,请你对△QCP 的形状做出猜想,并给予证明; (2) 当QP ⊥AB 时,△QCP 的形状是__________三角形;(3) 由(1)、(2)得出的结论,请进一步猜想当点P 在线段AM 上运动到任何位置时, △QCP 一定是_________三角形.圆和圆的位置关系21B O C P A O B D C EF A第4题图 第2题图 第1题图 第5题图 O 第6题图P AB C O 第9题图A MO B P Q【自主学习】(一)复习巩固:1圆的切线的性质定理: .2.圆的切线的判定定理: .3.三角形的内心是它的圆的圆心,它是三角形的交点.4.内心到三角形的距离相等,到三角形三边距离相等的点是 .5.已知三角形的面积为12,周长为24,则内切圆的半径为 .(二)新知导学圆与圆的五种位置关系的性质与判定如果两圆的半径为R、r,圆心距为d,那么两圆外离⇔;两圆外切⇔;两圆相交⇔;两圆内切⇔;两圆内含⇔ .(位置关系)(数量关系)【合作探究】1.已知两圆相切,一个圆的半径为5,圆心距d=2,求另一个圆的半径.2.半径为1、2、3的三个圆两两外切,求这三个圆的圆心的连线构成的三角形的面积.【自我检测】一、填空题:1.已知两圆半径分别为8、6,若两圆内切,则圆心距为______;若两圆外切,则圆心距为___.2.已知两圆的圆心距d=8,两圆的半径长是方程x2-8x+1=0的两根,则这两圆的位置关系是______.3.圆心都在y轴上的两圆⊙O1、⊙O2,⊙O1的半径为5,⊙O2的半径为1,O1的坐标为(0,-1),O2的坐标为(0,3),则两圆⊙O1与⊙O2的位置关系是________.4.⊙O1和⊙O2交于A、B两点,且⊙O1经过点O2,若∠AO1B=90°,那么∠AO2B 的度数是__.5.矩形ABCD中,AB=5,BC=12,如果分别以A、C为圆心的两圆相切,点D在⊙C内, 点B在⊙C 外,那么圆A的半径r的取值范围是__________.6.两圆半径长分别是R和r(R>r),圆心距为d,若关于x的方程x2-2rx+(R-d)2=0 有相等的两实数根,则两圆的位置关系是_________.二、选择题7.⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以P为圆心,且与⊙O 相切的圆的半径一定是( ) 或5 或48.直径为6和10的两上圆相外切,则其圆心距为( )9.如图1,在以O为圆心的两个圆中,大圆的半径为5,小圆的半径为3, 则与小圆相切的大圆的弦长为( )(1) (2) (3)10.⊙O1、⊙O2、⊙O3两两外切,且半径分别为2cm,3cm,10cm,则△O1O2O3 的形状是( )A.锐角三角形B.等腰直角三角形;C.钝角三角形D.直角三角形11.如图2,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线, 切点为A,则O1A 的长为( )12.半径为1cm和2cm的两个圆外切,那么与这两个圆都相切且半径为3cm 的圆的个数是( )个个个个13.如图3,⊙O的半径为r,⊙O1、⊙O2的半径均为r1,⊙O1与⊙O内切,沿⊙O 内侧滚动m圈后回到原来的位置,⊙O2与⊙O外切并沿⊙O外侧滚动n圈后回到原来的位置,则m、n的大小关系是( )>n =n <n D.与r,r1的值有关正多边形和圆【自主学习】 (一)复习巩固1. 等边三角形的边、角各有什么性质? .2. 正方形的边、角各有什么性质? . (二)新知导学1.各边 ,各角 的多边形是正多边形.2.正多边形的外接圆(或内切圆)的圆心叫做 ,外接圆的半径叫做 ,内切圆的半径做 .正多边形各边所对的外接圆的圆心角都 .正多边形每一边所对的外接圆的圆心角叫做 .正n 边形的每个中心角都等于 . 3. 正多边形都是 对称图形,正n 边形有 条对称轴;正 数边形是中心对称图形,对称中心就是正多边形的 ,正 数边形既是中心对称图形,又是轴对称图形. 【合作探究】1.问题:用直尺和圆规作出正方形,正六多边形.思考:如何作正三角形、正十二边形?【自我检测】1.正方形ABCD 的外接圆圆心O 叫做正方形ABCD 的______.2.正方形ABCD 的内切圆⊙O 的半径OE 叫做正方形ABCD 的______.3.若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.4.正n 边形的一个外角度数与它的______角的度数相等. 5.设一直角三角形的面积为8㎝2,两直角边长分别为x ㎝和y ㎝. (1)写出y(㎝)和x(㎝)之间的函数关系式 (2)画出这个函数关系所对应的图象 (3)根据图象,回答下列问题: ① 当x =2㎝时,y 等于多少?② x 为何值时,这个直角三角形是等腰直角三角形?6.已知三角形的两边长分别是方程0232=+-x x 的两根,第三边的长是方程03522=+-x x 的根,求这个三角形的周长.7.如图,PA 和PB 分别与⊙O 相切于A ,B 两点,作直径AC ,并延长交PB 于点D .连结OP ,CB .(1)求证:OP ∥CB ;(2)若PA=12,DB:DC=2:1,求⊙O的半径.弧长及扇形面积【自主学习】(一)复习巩固:1.圆与圆的五种位置关系:、、、、 .2.已知两圆的半径分别3cm和2cm,若两圆没有公共点,则圆心距d的取值范围为()A. d>5或d<1B. d>5C. d<1 <d<5(二)新知导学1.弧长计算公式在半径为R的圆中,n0的圆心角所对的弧长l的计算公式为:l=2.扇形面积计算公式①定义:叫做扇形.②在半径为R的圆中,圆心角为n0的扇形面积的计算公式为:S扇形=由弧长l= 和S扇形= 可得扇形面积计算的另一个公式为:S扇形=【合作探究】1.已知:扇形的弧长为29πcm,面积为9πcm2 ,求扇形弧所对的圆心角.2.已知:AC是半圆的直径,BC与半圆切于C,AB交半圆于D,BC=3 cm BD cm,求半圆的面积.【自我检测】一、选择题1.如果以扇形的半径为直径作一个圆,这个圆的面积恰好与已知扇形的面积相等,则已知扇形的中心角为()°°° °2.如果圆柱底面直径为6cm,母线长为4cm,那么圆柱的侧面积为()πcm2 πcm2 πcm2 πcm23.圆锥的母线长为5cm,底面半径为3cm,则圆锥侧面展开图的面积是()A. 254πcm2 πcm2 πcm2 πcm24.如果正四边形的边心距为2,那么这个正四边形的外接圆的半径等于()C. 2D.5.圆的外切正六边形边长与它的内接正六边形边长的比为()A.:3B. 2:3 :3 D.:26.圆的半径为3cm,圆内接正三角形一边所对的弧长为()πcm或4πcm πcm πcm πcm7.在半径为12cm的圆中,150°的圆心角所对的弧长等于()πcm πcm πcm πcm8.如图,设AB=1cm,,则长为()A. B. C. D.9.圆锥的母线长为5cm,高为3cm,则其侧面展开图中,扇形的圆心角是()° ° ° °二、计算题10.如图,已知菱形ABCD中,AC,BD交于O点,AC=23,BD=2cm,分别以 A,C为圆心,OA长为半径作弧,交菱形四边于E,F,G,H四点.求阴影部分的面积.11.已知△ABC中,∠C=90°,AC=3cm,BC=4cm,⊙O内切于△ABC.求△ABC在⊙O外部的面积.12.已知等腰梯形ABCD有一个内切圆O.若AB=CD=6cm,BC=2AD,求圆O的面积.圆锥的侧面积和全面积【自主学习】(一)复习巩固:1.弧长的计算公式: .2.扇形面积的计算公式: .3.已知扇形的面积为4cm 2,弧长为4cm ,求扇形的半径.(二)新知导学1.圆锥的侧面展开图圆锥的侧面展开图是一个 .圆锥的母线就是扇形的 .圆锥底面圆的周长就是扇形的 .2.如果圆锥的母线长为l ,底面的半径为r ,那么S 侧= ,S 全= .【合作探究】1.已知圆锥的母线长6 cm ;底面半径为 3 cm ,求圆锥的侧面展开图中扇形的圆心角.2.已知:一个圆锥的侧面展开图是圆心角为36°的扇形,扇形面积为10 cm 2.求这圆锥的表面积.【自我检测】一、选择题1.已知圆锥的高为5,底面半径为2,则该圆锥侧面展开图的面积是( ) A .25π B .2π C .5π D .6π2.圆锥的高为3cm , 母线长为5cm , 则它的表面积是( )cm2.A .20pB .36pC .16pD .28p3.已知圆锥的底面半径为 3 , 母线长为12 , 那么圆锥侧面展开图所成扇形的圆角为( )A .180°B .120°C .90°D .135°4.如果圆锥的高与底面直径相等 , 则底面面积与侧面积之比为( )A .1∶5B .2∶5C .∶D .2∶35.边长为a 的等边三角形 , 绕它一边上的高所在直线旋转180° , 所得几何体的表面积CB A 为( )A .243aB .243a πC .243a πD .π2a6.若底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高是( )cm .A .8B .91C .6D .47.在一个边长为4cm 正方形里作一个扇形(如图所示) , 再将这个扇形剪下卷成一个圆锥的侧面 , 则这个圆锥的高为( )cm . A .253B .15C .7D .138.用圆心角为120° , 半径为6cm 的扇形围成圆锥的侧面 , 则这个圆锥的高为( )A .4B .42C .22D .329.△ABC 中 , AB=6cm , ∠A=30° , ∠B=15° , 则△ABC 绕直线AC 旋转一周所得几何体的表面积为( )cm2.A .(18+92)πB .18+92C .(36+182)πD .36+18210.圆锥的母线长为10cm , 底面半径为3cm , 那么圆锥的侧面积为( )cm2.A .30B .30pC .60pD .15p11.粮仓的顶部是圆锥形,这个圆锥的底面直径是4 m ,母线长3 m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A .6 m2B .6πm2C .12 m2D .12πm212.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为( )A .aB .a 33C .a 3D .a 23。

2.1圆的对称性(教案)

2.1圆的对称性(教案)

湘教版数学九年级2.1圆的对称性教学设计课题 2.1圆的对称性单元第二章圆学科数学年级九年级学习目标1、通过观察生活中的图片,使学生理解圆的定义.2、结合图形理解圆的有关概念.3、理解圆的对称性.4、掌握点与圆的位置关系的判定方法.重点理解圆的有关概念及圆的对称性.难点掌握点与圆的位置关系的判定方法.教学过程教学环节教师活动学生活动设计意图导入新课“一切立体图形中最美的是球,一切平面图形中最美的是圆”.这是希腊的数学家毕达哥拉斯一句话.圆也是一种和谐、美丽的图形,无论从哪个角度看,它都具有同一形状.圆有哪些性质?为什么车轮做成圆形?欣赏毕达哥拉斯的话.体会圆的和谐美,激发学生学习的兴趣.讲授新课一、圆的定义1、观察下列生活中圆的形象.你还能举例说明生活中哪些物体是圆形吗?2、圆的定义圆是平面内到一定点的距离等于定长的所有点组成的图形,这个定点叫作圆心,定长叫作半径.线段OA的长度叫做半径,记作半径r.以点O为圆心的圆叫作圆O,记作⊙O.观察生活中的圆的形象.理解圆的定义.观察生活中的圆的形体验圆的和谐与美丽.使学生理解并掌握圆的定义.注意:1.在同一个圆中,所有半径都相等.2.在同一个圆中,半径有无数条.圆也可以看成是平面内一个动点绕一个定点旋转一周所形成的图形,定点叫作圆心,定点与动点的连线叫做半径.二、点与圆的位置关系1、我们把到圆心的距离小于半径的点叫作圆内的点;到圆心的距离大于半径的点叫作圆外的点.等于半径的点叫做圆上的点.2、点与圆的位置关系有几种?点与圆的位置关系有三种:点在圆内、点在圆上、点在圆外.观察图中点A,B,C,D,E,F与圆的位置关系?点A,D在圆内,点B,F在圆上,点C,E在圆外.3、怎样确定点与圆的位置关系?一般地,设⊙O的半径为r,点P到圆心的距离OP=d.观察图形,交流、讨论、归纳出点与圆的位置关系.理解并掌握与圆的有关概念.理解并掌握点与圆的位置关系,会判定点与圆的位置关系.准确掌握与圆有关的概念,为今后的学习打下三、与圆的有关概念1、弦:连接圆上任意两点的线段(图中的线段AB、CD)叫做弦.经过圆心的弦(图中的AB)叫做直径.观察图中AB和CD的特点,说出弦和直径之间的关系.注意:凡直径都是弦,是圆中最长的弦,但弦不一定是直径.2、圆弧:连接圆上任意两点间的部分叫作圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧叫作半圆.小于半圆的弧叫作劣弧.以A、B为端点的弧记作AB.读作“圆弧AB”或“弧AB”.大于半圆的弧叫作优弧.A、B间大于半圆的弧记作AMB.其中点M是优弧上一点.四、圆的对称性1、等圆和等弧:如图,在一块硬纸板和一张薄的白纸上分别画一个圆,使它们的半径相等,把白纸放在硬纸板上面,使两个圆的圆心重合,观察这两个圆是否重合.动手操作,认识圆的对称性.基础.使学生通过操作探究认识并掌握圆的对称性.能够重合的两个圆叫作等圆,能够互相重合的弧叫作等弧.2、旋转对称和中心对称:如图,用一根大头针穿过上述两个圆的圆心.让硬纸板保持不动,让白纸绕圆心旋转任意角度.观察旋转后白纸上的圆是否仍然与硬纸板上的圆重合?这体现圆具有什么样的性质?由于圆是由一个动点绕一个定点旋转一周所形成的图形.因此圆绕圆心旋转任意角度,都能与自身重合.圆是旋转对称图形,即圆绕圆心旋转任意角度,都能与自身重合.圆是中心对称图形,圆心是它的对称中心.3、圆的轴对称性如图,在纸上任画一个⊙O,并剪下来.将⊙O沿任意一条直径(例如直径CD)对折,你发现了什么?直径CD两侧的两个半圆能完全重合.上述操作中体现了圆具有怎样的对称性?圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.同学之间交流、讨论.通过交流活动使学生进一步加强对圆的认识.圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.4、为什么通常要把车轮设计成圆形?请说说理由.把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变.因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.1、下列说法:①半圆是弧;②弧是半圆;③圆中的弧分为优弧和劣弧.其中正确的个数有()A.0 B.1 C.2 D.32、如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()A.38°B.52°C.76°D.104°3、圆内最大的弦长为10 cm,则圆的半径()A.小于5 cm B.大于5 cmC.等于5 cm D.不能确定4、下列语句中,不正确的是()A.当圆绕它的中心旋转89°57′时,不会与原来的圆重合学生先自主思考,完成后小组交流确定结果,最后上台展示成果.通过练习加深对圆的理解.B.圆是轴对称图形,过圆心的直线是它的对称轴C.圆既是中心对称图形,又是旋转对称图形D.圆的对称轴有无数条,但是对称中心只有一个5、填空:(1)______是圆中最长的弦,它是半径的____倍.(2)图中有_____条直径,_____条非直径的弦,圆中以A为一个端点的优弧有_____条,劣弧有_____条.6、正方形ABCD的边长为2 cm,以A为圆心2 cm 为半径作⊙A,则点B在⊙A_____;点C在⊙A_____;点D在⊙A_____.7、一点和⊙O上的最近点距离为4 cm,最远的距离为10 cm,则这个圆的半径是________________.课堂小结圆的定义:平面内到一定点的距离等于定长的所有点组成的图形.平面内一动点绕一定点旋转一周所形成的图形.圆有关概念:弦(直径:是圆中最长的弦).点与圆的位置关系:回顾本节课所学知识.通过小结,再次让学生认识圆及有关概念,会判定点和圆的位置关系,强化了学生的学习成果.圆的对称性:圆是中心对称图形,圆心是它的对称中心.圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.板书圆的定义:圆有关概念:弦(直径:是圆中最长的弦).点与圆的位置关系:圆的对称性:圆是中心对称图形,圆心是它的对称中心.圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2圆的对称性(1)
一、学习目标
1、经历探索圆的中心对称性及有关性质的过程
2、理解圆的中心对称性及有关性质
3、会运用圆心角、弧、弦之间的关系解决有关问题
重点:理解圆的中心对称性及有关性质
难点:运用圆心角、弧、弦之间的关系解决有关问题
二、知识准备:
1、什么是中心对称图形?
2、我们采用什么方法研究中心对称图形?
三、学习内容:
1、按照下列步骤进行小组活动:
⑴在两张透明纸片上,分别作半径相等的⊙O 和⊙O '
⑵在⊙O 和⊙O '中,分别作相等的圆心角∠AOB 、∠'''B O A ,连接AB 、''B A
⑶将两张纸片叠在一起,使⊙O 与⊙O '重合(如图)
⑷固定圆心,将其中一个圆旋转某个角度,使得OA 与OA '重合
在操作的过程中,你有什么发现,请与小组同学交流
_______________________________________________
2、上面的命题反映了在同圆或等圆中,圆心角、弧、弦的关系,对于这三个量之间的关系,你还有什么思考?请与小组同学交流.
你能够用文字语言把你的发现表达出来吗?
3、圆心角、弧、弦之间的关系:
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等
4、试一试:如图,已知⊙O 、⊙O '半径相等,AB 、CD 分别是⊙O 、⊙O '的两条弦填空:
(1)若AB=CD ,则 ,
(2)若AB= CD ,则 ,
(3
',则 ,
5么如何来刻画弧的大小呢?
弧的大小:圆心角的度数与它所对的弧的度数相等
例1、如图,AB 、AC 、BC 都是⊙O 的弦,∠AOC=∠BOC ∠ABC 与∠BAC 相等吗?为什么?
’ ’ C ︵ ︵
例题2、已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?
四、知识梳理:1、在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;
2、圆心角的度数与它所对的弧的度数相等。

五、达标检测:
1、画一个圆和圆的一些弦,使得所画图形满足下列条件:
(1)是中心对称图形,但不是轴对称图形;
(2)既是轴对称图形,又是中心对称图形。

2、1.如图,在⊙O中
, = ,∠1=30°,则∠2=__________
3. 一条弦把圆分成1:3两部分,则劣弧所对的圆心角为________。

4. ⊙O中,直径AB∥CD弦,︒
=

60
度数
AC,则∠BOD=______。

5. 在⊙O中,弦AB的长恰好等于半径,弦AB所对的圆心角为
6.如图,AB是直径,BC

=CD

=DE

,∠BOC=40°,∠AOE的度数是。

B
A
7.已知,如图,AB是⊙O的直径,M,N分别为AO,BO的中点,CM⊥AB,DN⊥AB,垂足分别为M,N。

求证:AC=BD 教后反思:
B
AC = BD。

相关文档
最新文档