(完整版)初三数学入学测试题

合集下载

(完整版)初三数学入学测试题

(完整版)初三数学入学测试题

初三数学入学测试题时间:60分钟 满分:100分学校: 姓名: 分数:选择题(本大题共20个小题,每小题5分,共100分.只有一项是符合题目要求的,请把代号填写在答题栏中相应题号的下面.)1.下列方程中,一元二次方程共有( ).①2320x x += ②22340x xy -+= ③214x x -= ④21x =⑤2303x x -+= A . 2个 B .3个 C .4个 D . 5个2.方程2(3)5(3)x x x -=-的根为( ).A . 52x =B .3x =C .125,32x x ==D . 125,32x x =-=- 3.一元二次方程x 2-x+2=0的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根4.已知一个三角形的两边长是方程x 2-8x+15=0的两根,则第三边y 的取值范围是( ).A .y<8B .3<y<5 c .2<y<8 D .无法确定5.方程x 2+4x=2的正根为( ).A .2-6B .2+6C .-2-6D .-2+66.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,则原来的两位数中较大的数为( ).A .62B .44C .53D .357.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( ).A .5%B .20%C .15%D .10%8.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°9.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°10.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于( ).A .69°B .42°C .48°D .38°11.如图,△ABC 内接于⊙O ,∠A =50°,∠ABC =60°,BD 是⊙O 的直径,BD 交AC 于点E ,连结DC ,则∠AEB 等于( ).A .70°B .90°C .110°D .120°12.若圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面积为( ).A .2πcm 2B .3πcm 2C .6πcm 2D .12πcm 213.若圆锥的底面积为16πcm 2,母线长为12cm ,则它的侧面展开图的圆心角为( ).A .240°B .120°C .180°D .90° 14.已知:如图,P A ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB =65°,则∠APB 等于( ).A .65°B .50°C .45°D .40°15.对于抛物线21(5)33y x =--+,下列说法正确的是( ) (A )开口向下,顶点坐标(53), (B )开口向上,顶点坐标(53),(C )开口向下,顶点坐标(53)-,(D )开口向上,顶点坐标(53)-,16.二次函数362+-=x kx y 的图象与x 轴有两个交点,则k 的取值范围是( )(A )3<k (B )03≠<k k 且 (C )3≤k (D )03≠≤k k 且17.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) (A)23(1)2y x =-- (B)23(1)2y x =+-(C )23(1)2y x =++ (D )23(1)2y x =-+18. 二次函数2(0)y ax a =≠的图象,如图3所示,则不等式0ax a +>的解集是( )A 、1x >B 、1x <C 、1x >-D 、1x <-19.如图(1),二次函数y =ax 2+bx +c 图象如图所示,则下列结论成立的是( )A 、a >0,bc >0B 、 a <0,bc <0C 、 a >O ,bc <OD 、 a <0,bc >020.二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,下列结论正确的是( )A.ac <0B.当x=1时,y >0C.方程ax 2+bx+c=0(a ≠0)有两个大于1的实数根D.当x <1时,y 随x 的增大而减小; 当x >1时,y 随x 的增大而增大.O 1 xy图3第23题。

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)九年级上册数学测试题考试时间:120分钟分数:120)一、选择题(本大题共10小题,共30分)1.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨。

问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程560(1+x)2=1850.选A。

2.若一元二次方程(2m+6)x2+m2−9=0的常数项是0,则m 等于-3或3.选A或B。

3.如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O 于点D,连接OA。

若AB=4,CD=1,则⊙O的半径为√15.选C。

4.若抛物线y=x2−2x+m与x轴有交点,则m的取值范围是m≤1.选D。

5.如图,A、B、C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是∠OBA=∠OCA。

选A。

6.⊙O中,OD⊥AB于C,AE过点O,连接EC,若AB=8,CD=2,则EC长度为2√5.选A。

7.下列判断中正确的是:弦的垂直平分线必平分弦所对的两条弧。

选C。

8.如图,已知⊙P与坐标轴交于点A、O、B,点C在⊙P 上,且∠ACB=60°,若点B的坐标为(0,3),则弧OA的长为2√3π。

选D。

9.将含有角的直角三角板OAB如图放置在平面直角坐标中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转,则点A的对应点A′的坐标为(√3,1)。

选A。

10.如图,在直角三角形ABC中,AC=2√3,以点C为圆心,CB的长为半径后点B与点A恰好重合,则绕点D旋转画弧,与AB边交于点E,将图中阴影部分的面积为2π/3.选A。

一、选择题(本大题共10小题,共30分)1.B2.A3.A4.C5.B6.C7.A8.A9.B10.C二、填空题(本大题共8小题,共24分)11.$-m^2+6m+16$12.$y_3<y_1<y_2$13.$CD=2\sqrt{3}$14.$16m/3$15.$2\sqrt{3}$16.$5/2$17.$30^\circ$18.$4\sqrt{2}$三、解答题(本大题共7小题,共66分)19.1) $m\geq 3$2) $m=5$。

初三数学入学测试卷

初三数学入学测试卷

实用标准文档初三数学入学测试卷分)分,共一.、细心选一选(每题336 )、下列计算正确的是………………………………………………( 1??2122?23?1313???A )B)5?2?35?5?636??))CD月份生日1、八年级某班50位同学中,1月份出生的频率是0.20,那么这个班2 )的同学有………………………………………………(位 D)13位CA)10位 B)11位)12 3、小明在计算时遇到以下情况,结果正确的????9?4??4??9???) AB)4??4??2??0?a aa? C)是………………………()3636??D )以上都不是4、如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为()9)6 C)3 D A)9 B)2???0?x1x的根是 5、方程……………………………………………()A)0 B)1 C)0或1 D)无解6、下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是() A)5 B)2 C)4 D)87、“I am a good student.”这句话中,字母”a“出现的频率是()121 C) D))A)2 B1115188、若平行四边形的一边长为5,则它的两条对角线长可以是()A)12和2B)3和4C)4和6D)4和89、下列说法正确的是………………………………………………()A、对角线相等的四边形是矩形B、有一组邻边相等的矩形是正方形C、菱形的四条边、四个角都相等D、三角形一边上的中线等于这边的一半。

10、一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m,宽为5m ,18m。

则花边的宽是()2如果地毯中央长方形图案的面积为文案大全.实用标准文档0.5m)1.5mD) A2m B)1m C).用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四11 .)边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是( D()②⑤⑥B)①④⑤(C)①②⑤(A)①②③( 12.一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①,).?②两部分,将①展开后得到的平面图形是(D)梯形(C)菱形((A)三角形(B)矩形分)二、耐心填一填(每题3分,共361a?a__________ 的取值范围是二次根式中的字母1、??23?=__________计算2、______ 121元,那么原价是某食品店连续两次涨价3、10%后价格是米,米的竹竿相距6如图,两根高分别为4米和74、一根绳子拉直系在两根竹竿的顶端,则这根绳子长7m4m B A 米为__________°120°,AB//CD,∠BAE=1205、如图,6mE AEC=_____ ∠DCE=130°,则∠°130DC?等腰直角三角形”填入下列相应的空格上: 6.把“直角三角形、等腰三角形、拼合而成;1)正方形可以由两个能够完全重合的_________ (拼合而成;)菱形可以由两个能够完全重合的_________( 2 ________拼合而成.)矩形可以由两个能够完全重合的(3 .,对角线长为________,7.已知正方形的面积为4则正方形的边长为________ .面积为_____,,菱形的两条对角线分别是8.6cm8cm则菱形的边长为,______文案大全.实用标准文档 _______.9.若一个多边形的内角和为1 080°,则这个多边形的边数是_________.10.平行四边形两邻角的平分线相交所成的角为的平分11.如图,在平行四边形ABCD中,∠A.若AB=10cm,AD=14cm,线交BC于点E BE=______,EC=________.则 12.仔细观察下列计算过程:22 12321?,121121?11;111 11??, ?11112321同样?12345678987654321由此猜想。

初三数学上学期测试题(超经典)

初三数学上学期测试题(超经典)

初三数学上学期测试题(超经典)初三数学上学期测试题(超经典)题目一:填空题(40分)1. 26 × 17 = _______2. 5.4 ÷ 0.09 = _______3. 3/7 ÷ 1/4 = _______4. 63 ÷ 0.3 = _______5. 半径为4 cm的圆的面积是 _______ 平方厘米。

6. 30% 可化为 _______ 约分的分数。

7. 若 a+b=5,a-b=1,则 a 的值为 _______。

8. 已知正方形边长为 6 cm,它的周长是 _______ 厘米。

9. 一辆汽车每小时行驶 \( \frac{1}{4} \) 千米,6 小时能行驶_______ 千米。

10. 百分之一写成小数是 _______。

题目二:选择题(40分)1. 假如 \( a:b=2:3 \),则 \( \frac{a+b}{a-b} \) 的值等于:A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C. 1D. \( \frac{5}{3} \)2. 下列哪个小数等于 0.82%?A. 0.0082B. 0.082C. 0.82D. 8.23. 若 \( a:b=3:8 \),且 \( b:c=5:4 \),则 \( a:c \) 的值为:A. \( \frac{3}{5} \)B. 1C. \( \frac{5}{3} \)D. \( \frac{3}{4} \)4. 若 \( (x-2)(x+1)=0 \),则 \( x \) 的值为:A. -1B. 2C. 1D. -25. 若今天是星期二,那么五天之后是星期几?A. 星期日B. 星期一C. 星期三D. 星期六题目三:计算题(20分)1. 假设 \( a+b=5 \),\( a-b=1 \),求 \( a \) 和 \( b \) 的值。

2. 计算 \( \frac{7}{12}+\frac{5}{18} \)。

初三入学考数学测试卷

初三入学考数学测试卷

一、选择题(每题4分,共40分)1. 下列数中,是质数的是()A. 39B. 40C. 41D. 422. 若a、b是方程x^2 - 5x + 6 = 0的两根,则a+b的值是()A. 1B. 2C. 3D. 43. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 1C. y = 3/xD. y = 4x - 34. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)5. 下列等式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 - b^2 = (a + b)(a - b)C. a^3 + b^3 = (a + b)(a^2 - ab + b^2)D. a^3 - b^3 = (a - b)(a^2 + ab + b^2)6. 若∠A和∠B是等腰三角形底角,则∠A和∠B的大小关系是()A. ∠A > ∠BB. ∠A < ∠BC. ∠A = ∠BD. 无法确定7. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 圆8. 下列代数式中,化简后结果为正数的是()A. (-2)^2 - 3^2B. (-2)^2 + 3^2C. (-2)^3 - 3^3D. (-2)^3 + 3^39. 若x^2 - 5x + 6 = 0,则x^3 - 5x^2 + 6x的值为()A. 0B. 1C. 2D. 310. 在平面直角坐标系中,点P(-3,2)到原点O的距离是()A. 1B. 2C. 3D. 4二、填空题(每题4分,共40分)11. 已知a、b是方程2x^2 - 5x + 3 = 0的两根,则a+b的值为______。

12. 函数y = 3x - 2的图象经过点______。

13. 在直角三角形ABC中,∠C=90°,若AB=10,AC=6,则BC的长度为______。

初三数学下期入学测试卷

初三数学下期入学测试卷

考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √9B. √-4C. πD. 0.1010010001……2. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 73. 下列关于一元二次方程x^2-5x+6=0的解法,正确的是()A. 分解因式法B. 完全平方公式法C. 求根公式法D. 提公因式法4. 在平面直角坐标系中,点A(-2,3)关于x轴的对称点B的坐标为()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,3)5. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形6. 若等差数列{an}中,a1=2,d=3,则第10项an的值为()A. 29B. 30C. 31D. 327. 下列函数中,是反比例函数的是()A. y=x^2B. y=2xC. y=2/xD. y=x+28. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则斜边AB的长度为()A. 5cmB. 6cmC. 7cmD. 8cm9. 若直角三角形ABC中,∠A=30°,∠B=60°,则∠C的度数为()A. 30°B. 45°C. 60°D. 90°10. 下列关于圆的性质,正确的是()A. 圆的直径是圆中最长的弦B. 圆的半径相等C. 圆心到圆上任意一点的距离相等D. 以上都是二、填空题(每题4分,共20分)11. 已知函数y=3x-2,当x=1时,y的值为______。

12. 下列数中,绝对值最小的是______。

13. 若等差数列{an}中,a1=5,d=-2,则第4项an的值为______。

14. 在平面直角坐标系中,点P(3,-4)关于原点的对称点Q的坐标为______。

15. 若函数y=kx+b(k≠0)的图像经过点(2,3),则k的值为______。

初三数学第一章测试题(含答案)

初三数学第一章测试题(含答案)

初三数学第一章测试题(含答案)一、选择题(每小题2分,共30分)1. 设 a+b=5,a-b=3,那么a和b的值分别是多少?A. a=4, b=1B. a=3, b=-2C. a=2, b=3D. a=1, b=4 (答案:A)2. 已知正方形面积为36平方厘米,那么正方形的边长是多少?A. 4厘米B. 6厘米C. 9厘米D. 12厘米 (答案:C)3. 一架飞机从A地出发,每小时飞行400千米,飞了2个小时后到达B地,B地与A地相距多少千米?A. 400千米B. 600千米C. 800千米D. 1000千米 (答案:B)4. 有一个长为8厘米的木棍,现需切割成5段,每段长为多少厘米?A. 1厘米B. 2厘米C. 4厘米D. 8厘米 (答案:C)5. 如果80%的学生喜欢数学,且班级共有40名学生,那么班级有多少名学生喜欢数学?A. 8名学生B. 16名学生C. 32名学生D. 64名学生 (答案:B)二、填空题(每空2分,共20分)1. 已知一个数字是3的倍数,则这个数字最小是___。

答案:32. 圆的半径与直径的关系是___。

答案:半径与直径的关系是直径的两倍。

3. 在一部小说中,第一天读了全书的1/4,第二天读了余下的3/4中的一半,剩下的20页需要第三天才能读完,这本小说共有___页。

答案:80页4. 一年有___个月。

答案:12个月5. 设正方形的边长为x,那么它的周长是___。

答案:4x三、解答题(每题10分,共30分)1. 请用代数解方程:已知一个数的五倍减去2等于13,求这个数。

答案:令这个数为x,则方程为5x - 2 = 13,解得 x = 3。

2. 一个数的1/5等于15,这个数是多少?答案:令这个数为x,则方程为x/5 = 15,解得 x = 75。

3. 请用文字说明如何计算一个长方体的体积。

答案:长方体的体积可以通过将长、宽、高相乘来计算,公式为 V = 长 * 宽 * 高。

初三数学入班考试试卷答案

初三数学入班考试试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 1.5答案:C2. 如果a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a + 3 > b + 3D. a - 3 < b - 3答案:A3. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm答案:C4. 下列函数中,自变量x的取值范围是全体实数的是()A. y = x^2 - 4B. y = √(x - 2)C. y = 1/xD. y = x^3答案:D5. 已知一元二次方程x^2 - 4x + 3 = 0,下列选项中,x的值正确的是()A. x = 1B. x = 3C. x = 1 或 x = 3D. x = 2答案:C6. 在直角坐标系中,点A(-2,3)关于原点对称的点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)答案:B7. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 正方形B. 等腰三角形C. 等边三角形D. 平行四边形答案:A8. 下列各数中,有最小正整数解的一元一次方程是()A. 2x - 5 = 0B. 3x + 4 = 0C. 5x - 7 = 0D. 4x + 3 = 0答案:A9. 已知一个数的平方根是±2,那么这个数是()A. 4B. 16C. 64D. 256答案:A10. 下列等式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D二、填空题(每题5分,共20分)11. 如果x^2 - 5x + 6 = 0,那么x的值是______。

初中九年级下学期入学数学试卷(附答案,解析)

初中九年级下学期入学数学试卷(附答案,解析)

2015-2016学年九年级(下)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤35.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.11112.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.14.计算:2×(﹣π)0﹣12016+的值为.15.若△ABC∽△DEF,且周长比为2:3,则相似比为.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为cm2.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN 为底角的等腰三角形时,EN=.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2015-2016学年九年级(下)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.2【分析】根据负数是小于0的数,可得答案.【解答】解:A、不是负数,故A错误;B、﹣1是负数,故B正确;C、0不是负数,故C错误;D、是正数,故D错误;故选:B2.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a15【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a3•(﹣a5)=﹣2a8.故选:B.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤3【分析】根据二次根式的性质的意义,被开方数大于等于0,列不等式求解.【解答】解:依题意,得3﹣x≥0,解得x≤3,故选D.5.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某品牌手机的屏幕是否耐摔,宜选择抽样调查,故A错误;B、为了了解玉兔号月球车的零部件质量,精确度要求高,故已选择全面调查,故B错误;C、为了了解南开步行街平均每天的人流量,选择抽样调查,故C正确;D、为了了解中秋节期间重庆市场上的月饼质量,宜选择抽样调查,故D错误;故选:C.6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°【分析】根据两直线平行,内错角相等可得∠1=∠B,根据垂直的定义可得∠AEB=90°,然后根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠1=∠B=60°,∵BE⊥AF,∴∠AEB=90°,∴∠DEF=180°﹣∠1﹣∠AEB=180°﹣60°﹣90°=30°.故选C.7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米【分析】利用所给角的正切函数求得线段BC的长即可.【解答】解:由题意得:AC=1500米,tan∠B=,∴在Rt△ACB中,BC===2500米,故选D.9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°【分析】先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故选C.10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.【分析】根据老师在校车上时S为零,打出租车返回路程变化快,乘车追赶时路程变化慢,可得答案.【解答】解:老师乘校车时路程为零,打车返回学校时两车行驶方向相反路程变化快,乘车追赶路程变化慢,故B符合题意.故选:B.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.111【分析】首先观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,其次观察数列排列中,每一行的第一个数的绝对值,与所在行数的关系:第n行的第一个数的绝对值为:(n﹣1)2+1,由此即可进行判断.【解答】解:观察数列排列中,第n行的第一个数的绝对值为:(n﹣1)2+1,所以第11行的第一个数的绝对值为:(11﹣1)2+1=101,第11行中从左边数第10个数的绝对值是:101+(10﹣1)=110,观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,所以:第11行中从左边数第10个数是:110.故选B.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故答案为:6.75×104.14.计算:2×(﹣π)0﹣12016+的值为2.【分析】原式利用零指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+3=4﹣2=2,故答案为:215.若△ABC∽△DEF,且周长比为2:3,则相似比为2:3.【分析】由△ABC∽△DEF,且周长比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.【解答】解:∵△ABC∽△DEF,且周长比为2:3,∴相似比为:2:3.故答案为:2:3.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为1cm2.【分析】连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出阴影部分的面积=S△AOD,故可得出结论.【解答】解:连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S阴影=S△AOD=×2×1=1.故答案为:1.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.【分析】首先利用分式方程的知识求得当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解,再利用一次函数的性质,求得当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用概率公式即可求得答案.【解答】解:∵方程两边同乘以(x+1),∴k﹣1=(k﹣2)(x+1),∴当k=2或k=1时,关于x的分式方程=k﹣2无解,∴当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解;∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,∴k>﹣,∴当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,∴得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的有﹣1,3;∴使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为:=.故答案为:.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN为底角的等腰三角形时,EN=13或+3.【分析】情形1:如图1中,当∠BEF=∠NME时,易证BN=NA′,设BN=NA′=x,在RT△BND′利用勾股定理即可解决问题.情形2:如图2中,当∠MEN=∠MNE时,证明BN=BA′即可解决问题.【解答】解:如图1中,当∠BEF=∠NME时,∵∠BEF+∠ABC=90°,∠A+∠ABC=90°,∴∠BEF=∠A=∠BA′D′=∠NME,∴BA′∥EM,∴∠NBA′=∠BEF=∠BA′N,∴NB=NA′,设BN=NA′=x,在RT△BND′中,∵BD′2+ND′2=BN2,∴32+(6﹣x)2=x2,x=,∴EN=EB+BN=EC+BC+BN=+3+=13,如图2中,当∠MEN=∠MNE时,∵∠MEN=∠BAC=∠BA′N=∠A′NE,∴BA′=BN=AB===3,∴EN=EC+BC+BN=+3=3=+3.故答案为13或+3.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用代入消元法求出解即可.【解答】解:(1)去分母得:x2+2x﹣x2+4=1,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解;(2),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果,求出不等式组解集确定出a的值,代入计算即可求出值.【解答】解:原式=+•﹣3=+﹣3==﹣,由不等式组得到<a<3,∵a为整数,∴a=1或2,又∵a≠1,∴a=2,当a=2时,原式=﹣2.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).【分析】(1)用C的度数除以360度求出所占的百分比,由C的件数除以所占的百分比即可得到调查的总件数;进而求出B的件数;(2)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)张老师所调查的4个班征集到作品有:=12(件),其中B班征集到作品数为:12﹣2﹣5﹣2=3(件),补全图形如下:(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==;故答案为:(1)12,3.23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.【分析】(1)过E点作EH⊥BC于H点,在RT△BEH中利用三角函数求得BH的长,然后在直角△EAH 中,利用三角函数求得AH的长,根据AB=AH﹣BH即可求解;(2)根据机器的总生产量等于机器数与每台生产的产品数即可列方程求解.【解答】解:(1)过E点作EH⊥BC于H点,由题:∠AEH=52°,∠BEH=45°,EH=12m,在RT△BEH中,∵∠BEH=45°∴BH=EH=12m在Rt△EAH中,AH=EH•tan52°=15.36m∴AB=AH﹣BH≈3.4m(2)由题意得:40000(1+10%)=400(1﹣1.25a%)•100(1+2.4a%),解得:a1=25,a2=.∵20<a<30,∴a=25.答:a的值为25.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.【分析】(1)设一个四位数的末三位数为B,末三位数以前的数为A,根据题意可得A=13n+B,即这个四位数是1000(13n+B)+B=13(1000n+77B),可得;(2)设任意一个6位摆动数的十位数字为a、个位数字为b,表示出末三位数为100b+10a+b,末三位数以前的数为100a+10b+a,将二者相减分解出因数13可得.【解答】解:(1)设一个四位数的末三位数为B,末三位数以前的数为A,则这个四位数为:1000A+B,由题意:A﹣B=13n(n为整数),∴A=13n+B,从而1000A+B=1000(13n+B)+B=13000n+1001B=13(1000n+77B),∴这个四位数能被13整除∴任意一个四位数都满足上述规律;(2)设任意一个6位摆动数的十位数字为a,个位数字为b,所以这个6位摆动数的末三位数为:100b+10a+b,末三位数以前的数为:100a+10b+a,∵100a+10b+a﹣(100b+10a+b)=91a﹣91b=13(7a﹣7b)∴这个6位摆动数的末三位数以前的数与末三位数之差能被13整除,∴任意一个6位摆动数能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点D的坐标;(2)由平移性质,可知重叠部分为一平行四边形.如答图2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点N在x轴上方、下方两种情况,分类讨论,避免漏解.设M(t,0),利用全等三角形求出点N的坐标,代入抛物线W′的解析式求出t的值,从而求得点M的坐标.【解答】方法一:解:(1)设抛物线W的解析式为W=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为W=x2﹣x.∵W=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.。

初三数学入学考试卷附答案

初三数学入学考试卷附答案

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2.5B. 0C. 2.5D. -32. 下列各数中,负数是()A. 0.2B. -0.3C. 2D. 33. 若a=3,b=-2,则a-b的值为()A. 5B. -5C. 1D. -14. 若x=2,y=-1,则2x+y的值为()A. 3B. -1C. 1D. -35. 下列方程中,x=2是它的解的是()A. x+1=3B. x-1=3C. x+1=4D. x-1=46. 若m+n=5,m-n=3,则m的值为()A. 4B. 3C. 2D. 17. 下列各数中,无理数是()A. √4B. √9C. √16D. √258. 若a=√3,b=√2,则a^2+b^2的值为()A. 3B. 2C. 5D. 79. 下列图形中,轴对称图形是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形10. 若直线y=kx+b与y轴交于点(0,b),则该直线经过的象限是()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限二、填空题(每题5分,共25分)11. 若x=-1,则x^2-2x+1的值为______。

12. 若a=2,b=-3,则|a-b|的值为______。

13. 若x=5,y=3,则2x-3y的值为______。

14. 若m+n=7,m-n=1,则n的值为______。

15. 若a=√5,b=√10,则a^2+b^2的值为______。

三、解答题(每题10分,共30分)16. 解方程:3x-2=7。

17. 解方程:2(x-3)=5。

18. 解方程:√(x+1)=3。

四、应用题(每题10分,共20分)19. 学校举行运动会,甲班有30人参加,乙班有40人参加。

已知甲班参加跑步的有18人,乙班参加跑步的有25人,问两个班参加跑步的总人数是多少?20. 小明骑自行车从家出发去图书馆,速度为15千米/小时。

已知家到图书馆的距离为30千米,小明出发后2小时到达图书馆。

初三上册数学测试卷完整版

初三上册数学测试卷完整版

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √-162. 已知a,b是实数,且a + b = 0,则a与b互为()A. 相等B. 相反数C. 同号D. 异号3. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x^2C. y = 4xD. y = -5x + 24. 在等腰三角形ABC中,AB = AC,若∠BAC = 50°,则∠B = ()A. 40°B. 50°C. 60°D. 70°5. 已知一元二次方程x^2 - 5x + 6 = 0,则它的两个根是()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = -2,x2 = -3D. x1 = -3,x2 = -26. 下列各式中,绝对值最小的是()A. |-3|B. |2|C. |0|D. |1|7. 已知正方形的对角线长为10cm,则该正方形的边长为()A. 5cmB. 10cmC. 15cmD. 20cm8. 在平面直角坐标系中,点P的坐标为(2,-3),点Q的坐标为(-1,2),则线段PQ的长度为()A. 5B. 6C. 7D. 89. 若a、b、c是等差数列的前三项,且a + b + c = 18,则b的值为()A. 6B. 9C. 12D. 1510. 下列关于三角形的三边关系,正确的是()A. 任意两边之和大于第三边B. 任意两边之差小于第三边C. 任意两边之积大于第三边D. 任意两边之商大于第三边二、填空题(每题5分,共50分)11. 若一个数的平方等于4,则这个数是______。

12. 已知函数y = 3x - 2,当x = 2时,y的值为______。

13. 在等腰三角形ABC中,若AB = AC = 8cm,则底边BC的长度为______cm。

14. 若一元二次方程x^2 - 6x + 9 = 0,则它的两个根是______。

初三入学数学试题及答案

初三入学数学试题及答案

初三入学数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 以下哪个表达式的结果等于2?A. 3 + 1B. 4 - 2C. 6 ÷ 3D. 8 × 0.25答案:C3. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 如果x = 2是方程2x - 3 = 1的解,那么x的值是多少?A. 1B. 2C. 3D. 4答案:B5. 以下哪个图形是轴对称图形?A. 平行四边形B. 圆C. 梯形D. 不规则多边形答案:B6. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米答案:C7. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A8. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么这个三角形的周长是多少?A. 11厘米B. 16厘米C. 21厘米D. 26厘米答案:B9. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A10. 一个数的立方等于8,这个数是?A. 2B. -2C. 2或-2D. 以上都不是答案:A二、填空题(每题3分,共30分)1. 一个数的相反数是-5,那么这个数是__5__。

2. 一个数的绝对值是7,那么这个数可以是__7__或__-7__。

3. 如果一个角是直角的一半,那么这个角是__45°__。

4. 一个长方体的长、宽、高分别是2厘米、3厘米、4厘米,那么它的体积是__24立方厘米__。

5. 一个数的平方根是3,那么这个数是__9__。

6. 一个数除以它的倒数等于__1__。

7. 一个数的立方等于27,那么这个数是__3__。

8. 一个等边三角形的每个内角是__60°__。

九年级入学数学考试试卷-含答案

九年级入学数学考试试卷-含答案

九年级入学数学考试试卷-含答案
一、选择题(每题2分,共20分)
1. 以下数列中,等差数列是()。

A. 1, 3, 6, 10, 15
B. 2, 4, 6, 8, 10
C. 1, 2, 4, 8, 16
D. 1, 4, 9, 16, 25
2. 解下列方程:3x + 5 = 20。

A. x = 5
B. x = 10
C. x = 15
D. x = 20
3. 一张纸的厚度是0.1毫米,折一次变为原来的2倍,再折一次变为原来的2倍,以此类推。

折多少次后,纸的厚度能够达到1米?
A. 7次
B. 8次
C. 9次
D. 10次
...
二、填空题(每题2分,共20分)
1. 方程2x + 5 = 17的解为____。

2. 3298÷14的商为____余____。

3. 已知长方体的长、宽和高分别为5cm、3cm和2cm,它的体积是____立方厘米。

...
三、解答题(每题10分,共40分)
1. 一个弯曲管中用蓝色、白色和红色三种颜色的水,蓝色水有500毫升,白色水有400毫升。

若从管中随机抽出一部分水,则被抽到红色水的概率是多少?
...
四、应用题(每题10分,共20分)
1. 某公司的年总收入为50万元,请你根据以下数据帮助公司计算其年总支出和净利润:
固定成本:15万元
变动成本:每万元收入的变动成本为1.5万元
扣税率:公司年总利润的25%作为所得税
...。

初三入学检测试卷数学答案

初三入学检测试卷数学答案

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. √4B. -√9C. 0.25D. π答案:D2. 下列方程中,解为整数的是()A. x + 2 = 0B. 2x - 5 = 0C. 3x + 1 = 0D. 4x - 3 = 0答案:B3. 已知等腰三角形底边长为6cm,腰长为8cm,则其周长为()A. 16cmB. 18cmC. 20cmD. 24cm答案:C4. 下列函数中,y与x成反比例关系的是()A. y = 2x + 1B. y = 3x^2C. y = 4/xD. y = 5x - 3答案:C5. 在下列各图中,符合三角形两边之和大于第三边的是()A.B.C.D.答案:A6. 下列各式中,不是代数式的是()A. 2a + 3B. a^2 - b^2C. 5x - 2y + 1D. 3√4答案:D7. 已知一次函数y = kx + b,其中k≠0,若图象经过点(2,-1),则k的值为()A. -3/2B. -1/2C. 3/2D. 1/2答案:A8. 在直角坐标系中,点P(-2,3)关于x轴的对称点为()A.(-2,-3)B.(2,-3)D.(2,3)答案:A9. 下列命题中,正确的是()A. 任何两个不相等的实数都有大于零的差B. 平行四边形的对角线互相平分C. 所有奇数都是质数D. 等腰三角形的底角相等答案:B10. 下列各式中,表示正比例函数的是()A. y = 2x + 3B. y = 3/xC. y = 5x^2D. y = kx(k为常数)答案:D二、填空题(每题3分,共30分)11. 若a = -3,则a^2 + 2a + 1的值为______。

答案:012. 在等差数列中,若第一项为2,公差为3,则第10项为______。

答案:2913. 已知直角三角形的两条直角边长分别为3cm和4cm,则斜边长为______cm。

答案:514. 已知一元二次方程x^2 - 5x + 6 = 0,则它的两个根分别为______。

新初三数学入学测试卷

新初三数学入学测试卷

一、选择题(每题5分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 若a、b是方程x^2 - 4x + 3 = 0的两根,则a+b的值为()A. 1B. 3C. 4D. 53. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)4. 若a > b,则下列不等式中正确的是()A. a^2 > b^2B. a^2 < b^2C. a > b^2D. a^2 < b5. 在三角形ABC中,角A、角B、角C的对边分别为a、b、c,若a=3,b=4,c=5,则三角形ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形二、填空题(每题5分,共25分)6. 若x=2,则代数式x^2 - 5x + 6的值为______。

7. 若a=3,b=4,则a^2 + b^2的值为______。

8. 已知函数f(x) = 2x - 1,则f(-3)的值为______。

9. 在直角坐标系中,点A(1, 2),点B(-2, 3),则线段AB的长度为______。

10. 若m > n,则下列不等式中正确的是______。

三、解答题(共45分)11. (10分)已知一元二次方程x^2 - 4x + 3 = 0,求:(1)方程的两个根;(2)若x1和x2是方程的两个根,求x1^2 + x2^2的值。

12. (10分)在直角坐标系中,点P的坐标为(2,-3),点Q在y轴上,且PQ=5,求点Q的坐标。

13. (10分)已知函数f(x) = 2x + 3,求:(1)函数f(x)的图像;(2)函数f(x)的零点。

14. (15分)在三角形ABC中,角A、角B、角C的对边分别为a、b、c,已知a=6,b=8,c=10,求:(1)角A、角B、角C的度数;(2)三角形ABC的面积。

初三入学数学试题及答案

初三入学数学试题及答案

初三入学数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 2D. -1.5答案:C2. 以下哪个表达式等于2?A. 3 + 1B. 4 - 2C. 5 × 0D. 6 ÷ 3答案:D3. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 10答案:A4. 以下哪个分数是最简分数?A. 6/8B. 5/10C. 7/14D. 3/4答案:D5. 一个圆的半径是5厘米,它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C6. 一个等腰三角形的底边长为6厘米,高为4厘米,它的面积是多少?A. 12平方厘米B. 15平方厘米C. 18平方厘米D. 20平方厘米答案:A7. 以下哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 2 = 4C. 4x + 5 = 13D. 5x - 6 = 9答案:A8. 以下哪个不等式的解集是x > 3?A. 2x - 6 < 0B. 3x + 2 > 11C. 4x - 5 ≤ 7D. 5x - 10 > 15答案:B9. 以下哪个是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x^3 - 2xD. y = 4/x答案:B10. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C二、填空题(每题3分,共30分)11. 绝对值是5的数是______。

答案:±512. 一个数的平方是9,这个数是______。

答案:±313. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的倒数是2/3,这个数是______。

答案:3/215. 一个数的相反数是-7,这个数是______。

答案:716. 一个等腰三角形的两个底角都是45°,那么它的顶角是______。

初三入学检测试卷数学

初三入学检测试卷数学

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001……D. 3.142. 如果a > b,那么下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a / b > 0D. a / b < 03. 已知x² - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2 或 3D. 无法确定4. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°5. 若函数y = kx + b的图象经过点(2,3),则k和b的值分别是()A. k = 1,b = 1B. k = 1,b = 3C. k = 3,b = 1D. k = 3,b = 36. 已知一元二次方程x² - 4x + 3 = 0的解为x₁和x₂,则x₁ + x₂的值为()A. 4B. 3C. 1D. 07. 下列哪个图形是轴对称图形()A. 长方形B. 等边三角形C. 等腰梯形D. 以上都是8. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 24cmC. 26cmD. 28cm9. 在直角坐标系中,点P(-3,2)关于y轴的对称点为()A.(3,2)B.(-3,-2)C.(3,-2)D.(-3,-2)10. 下列哪个数是负数()A. 0.1B. -0.1C. 1.01D. -1.01二、填空题(每题5分,共50分)11. 若一个数的绝对值是5,则这个数可能是______或______。

12. 若x² = 9,则x的值为______。

13. 两个连续整数的和是15,则这两个数分别是______和______。

14. 在△ABC中,若AB = AC,则∠B = ∠C = ______。

初三数学入学测试题

初三数学入学测试题

初三数学入学测试题时间:60分钟 满分:100分学校: 姓名: 分数:选择题(本大题共20个小题,每小题5分,共100分.请把代号填写在答题栏中相应题号的下面,答案完全正确的得分,多解、漏解、错解都不得分)1、若式子3-x 有意义,在实数范围内有意义,则x 的取值范围是( )A 、3≥xB 、3≤xC 、 3>xD 、3<x2、下列各式是最简二次根式的是( )A 、9B 、7C 、 20D 、3.0 3、若果a a -=-2)2(2,那么( )A 、2<xB 、2≤xC 、 2>xD 、2≥x4、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )A :26B :18C :20D :215、等边三角形的边长为2,则该三角形的面积为( )A::::36、一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( )A :36 海里B :48 海里C :60海里D :84海里7、若ABC ∆中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( )A :14B :4C :14或4D :以上都不对8、能判定四边形ABCD 为平行四边形的题设是( )(A )AB∥CD,AD=BC (B )AB=CD ,AD=BC (C )∠A=∠B,∠C=∠D (D )AB=AD ,CB=CD9、菱形和矩形一定都具有的性质是( )A 、 对角线相等B 、对角线互相垂直C 、对角线互相平分且相等D 、对角线互相平分10、已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<011、下面函数图象不经过第二象限的为( )(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -2新王牌精品小班 400-000-2802 212、如图,一次函数的图象经过A 、B 两点,则解集是( ) A.B .C .D .13、10名学生的体重(单位:㎏)分别是41,48,50,53,49,50,53,53,51,67,这组数据的极差是( )A.27B.26C.25D.2414、某校五个绿化小组一天植树的棵数如下:10,10,12,x ,8.已知这组数据的众数与平均数相等,那么这组数据的中位数是( )A.8B.9C.10D.1215、某班50名学生身高测量结果如下表:该班学生身高的众数和中位数分别是( )A.1.60,1.56B.1.59,1.58C.1.60,1.58D.1.60,1.6016、如果一组数据1a ,2a ,3a ,…,n a ,方差是2,那么一组新数据31a ,32a ,…,3n a 的方差是( )A.2B.6 C9 D.1817、某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定18、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1F E DC B AA .40°B .50°C .60°D .80°19、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为( )A .54B .52C .53D .65 20、有一块直角三角形纸片,如图1所示,两直角边AC =6cm,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cmM P F E B A答案1A 2B 3B 4C 5B 6 C 7C 8B 9D 10D11B 12C 13B 1 4C 15C 16D 17B 18B 19D 20B新王牌精品小班400-000-2802 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学入学测试题
时间:60分钟 满分:100分
学校: 姓名: 分数:
选择题(本大题共20个小题,每小题5分,共100分.只有一项是符合题目要求的,请把
代号填写在答题栏中相应题号的下面.)
1.下列方程中,一元二次方程共有( ).
①2320x x += ②22340x xy -+= ③214x x -= ④21x =⑤2303
x x -+= A . 2个 B .3个 C .4个 D . 5个
2.方程2(3)5(3)x x x -=-的根为( ).
A . 52x =
B .3x =
C .125,32x x ==
D . 125,32
x x =-=- 3.一元二次方程x 2-x+2=0的根的情况是( ).
A .有两个相等的实数根
B .有两个不相等的实数根
C .无实数根
D .只有一个实数根
4.已知一个三角形的两边长是方程x 2
-8x+15=0的两根,则第三边y 的取值范围是( ).
A .y<8
B .3<y<5 c .2<y<8 D .无法确定
5.方程x 2+4x=2的正根为( ).
A .2-6
B .2+6
C .-2-6
D .-2+6
6.有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位
数乘以原来的两位数就得1855,则原来的两位数中较大的数为( ).
A .62
B .44
C .53
D .35
7.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为( ).
A .5%
B .20%
C .15%
D .10%
8.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).
A .64°
B .48°
C .32°
D .76°
9.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).
A .37°
B .74°
C .54°
D .64°
10.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于( ).
A .69°
B .42°
C .48°
D .38°
11.如图,△ABC 内接于⊙O ,∠A =50°,∠ABC =60°,BD 是⊙O 的直径,BD 交AC 于点E ,连结DC ,
则∠AEB 等于( ).
A .70°
B .90°
C .110°
D .120°
12.若圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面积为( ).
A .2πcm 2
B .3πcm 2
C .6πcm 2
D .12πcm 2
13.若圆锥的底面积为16πcm 2,母线长为12cm ,则它的侧面展开图的圆心角为( ).
A .240°
B .120°
C .180°
D .90° 14.已知:如图,P A ,PB 分别与⊙O 相切于A ,B 点,C 为⊙O 上一点,∠ACB =65°,则∠APB 等于( ).
A .65°
B .50°
C .45°
D .40°
15.对于抛物线2
1
(5)33y x =--+,下列说法正确的是( ) (A )开口向下,顶点坐标(53), (B )开口向上,顶点坐标(53),
(C )开口向下,顶点坐标(53)-,
(D )开口向上,顶点坐标(53)-,
16.二次函数362
+-=x kx y 的图象与x 轴有两个交点,则k 的取值范围是( )
(A )3<k (B )03≠<k k 且 (C )3≤k (D )03≠≤k k 且
17.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) (A)23(1)2y x =-- (B)23(1)2y x =+-
(C )23(1)2y x =++ (D )23(1)2y x =-+
18. 二次函数2(0)y ax a =≠的图象,如图3所示,则不等式0ax a +>的解集是( )
A 、1x >
B 、1x <
C 、1x >-
D 、1x <-
19.如图(1),二次函数y =ax 2+bx +c 图象如图所示,则下列结论成立的是( )
A 、a >0,bc >0
B 、 a <0,bc <0
C 、 a >O ,bc <O
D 、 a <0,bc >0
20.二次函数y=ax 2+bx+c(a ≠0)的图像如图所示,下列结论正确的是( )
A.ac <0
B.当x=1时,y >0
C.方程ax 2+bx+c=0(a ≠0)有两个大于1的实数根
D.当x <1时,y 随x 的增大而减小; 当x >1时,y 随x 的增大而增大.
O 1 x
y
图3
第23题。

相关文档
最新文档