单个正态总体方差的假设检验

合集下载

8.2-0单正态假设检验

8.2-0单正态假设检验
解 这里方差σ2未知,因此检验统计量为
u X 0 . S/ n
拒绝域为| u | u / 2 .查表得 u / 2 = u0.025 = 1.96 .
由于
| u | | x 0 | 0.4 50 1.22 1.96 , s/ n 4
所以接受H0,即认为总体的均值μ=0.
147,150,149,154,152,153,148,151, 155
假设零件长度服从正态分布,问这批零件是否
合格(取 = 0.05)?
解 这里是在总体方差 2 未知的情况下,检验假设 H0: 0 150 ,H1: 150 .
在H0成立时,检验统计量
T X 0 ~ t(n 1) .
| t | | x 0 | 1.096 2.306 .
s/ n
所以接受H0,即认为这批零件合格.
三、正态总体方差的假设检验— 2 检验
设总体 X ~ N (, 2 ) 平 .
, (X1,X2,…,Xn)为X 的样本,给定显著性水
1.当 已知时,方差 2的假设检验
H0: 2
(5)由数据计算得x 112.8, s 1.1358
故T 112.8 112.6 0.4659 2.4469 1.1358 7
故接受H 0 ,即可认为用热敏电阻测温仪间接测量温度无系统 误差。
例2 某车间加工一种零件,要求长度为150mm, 今从一批加工后的这种零件中抽取 9 个,测得长度如 下:

2
2 (n)
或 2

2 1
2 (n)
2


2 0
2


2 0
2


2

概率与数理统计第六章

概率与数理统计第六章

t


W {T t (n 1)}
2021/3/11
t
x 16
6.2.1 单个正态总体均值的假设检验
例6.2 正常人的脉搏平均每分钟72次,某医生测得10例四乙基铅 中毒患者的脉搏数(次/分)如下:54,67,68,78,70,66, 67,70,65,69.已知人的脉搏次数服从正态分布.试问四乙基铅
在取6份水样,测定该有害物质含量,得如下数据: 0.530‰,0.542‰,0.510‰,0.495‰,0.515‰,0.530‰
能否据此抽样结果说明有害物质含量超过了规定? 0.05
练习2 一公司声称某种类型的电池的平均使用寿命至少为21.5小 时,有一实验室检验了该公司制造的6套电池,得到如下的寿命数 据(单位:小时):19 18 22 20 16 25 设电池寿命服202从1/3/正11 态分布,试问这种类型的电池寿命是否低于该18 公
即提出假设: H0 : p 0.02 若 H0 正确,则取到次品为小概率事件.
2021/3/11
在一次试验中, 小概率事件是 几乎不可能发 生的.
小概率原理
2
6.1 假设检验的基本概念
2. 两类错误
犯了“弃真”错误 第一类错误
犯了“纳伪”错误 第二类错误
P(拒绝H0 | H0为真)
P(接受H0 | H0为假)
注意:我们总把含 有“等号”的情形 放在原假设.
在原假设 H0 为真的前提下,确定统计量
U
X 0
~
N (0,1)
n
2021/3/11
因为X
~
N
,
2
n
,
所以
X
~
N (0,1)

第六章假设检验

第六章假设检验

第六章假设检验第六章假设检验一、选择题1.当显著水平为0.05时,则置信度为()A.99%B.5%C.2.5%D.95%答案:D2.单个正态总体均值的假设检验,方差σ2已知时,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:A3.单个正态总体均值的假设检验,方差σ2未知,样本容量较小时,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:B4.在假设检验中,如果待检验的原假设为Ho,那么犯第二类错误的是指()A.H o成立,接受H oB.H o不成立,接受H oC.H o成立,拒绝H oD.H o不成立,拒绝H o答案:B5.配对比较两个正态总体均值的假设检验,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:B6.成组比较两个正态总体方差的假设检验,应选择()A.u检验B.t检验C.2χ检验D.F检验答案:D7.单个正态总体方差的假设检验,应选择()A.u检验B.t检验C.2χ检验答案:C8.在假设检验的问题中,显著性水平α的意义是()A.原假设H o 成立,经检验不能拒绝的概率B.原假设H o 成立,经检验被拒绝的概率C.原假设H o 不成立,经检验不能拒绝的概率D.原假设H o 不成立,经检验被拒绝的概率答案:B9.当方差σ2已知时,单个正态总体均值μ的假设检验选择的统计量是() A.n u /σμ-= B.n S X /t μ-= C.222)1σχS n -=( D.22222121//σσS S F =答案:A10.在假设检验中,未知方差σ2,单个正态总体均值μ的假设检验采用()A.u 检验B.2χ检验C.t 检验D.F 检验答案:C11.假设检验时应注意的主要问题是()A.资料来源必须随机化B.检验方法应符合其适用条件C.不要把“显著”当作相差很大D.以上都对答案:D 12.对于单个正态总体方差σ2的假设检验,备择假设为H 1:σ2>σ20,进行了2χ单侧检验。

正态总体方差的假设检验

正态总体方差的假设检验
方差计算公式为:$sigma^2 = frac{1}{N}sum_{i=1}^{N}(x_i mu)^2$,其中$N$是样本数量, $x_i$是每个样本值,$mu$是样本均 值。
方差的计算方法
简单方差
适用于数据量较小,且数据间相互独立的情况。
加权方差
适用于数据量较大,且数据间存在相关关系的 情况,需要考虑到每个数据点的重要程度。
配对样本方差检验
总结词
配对样本方差检验用于比较两个相关样本的方差是否相同。
详细描述
在配对样本方差检验中,我们首先需要设定一个零假设,即两个相关样本的方差无显著差异。然后, 通过计算检验统计量(如Wilcoxon秩和统计量或Stevens' Z统计量),我们可以评估零假设是否被拒 绝。如果零假设被拒绝,则可以得出两个相关样本方差不相同的结论。
方差齐性检验的目的是为了后续 的方差分析提供前提条件,确保 各组数据具有可比性。
方差分析
方差分析(ANOVA)是
1
用来比较多个正态总体均
值的差异是否显著的统计
方法。
4
方差分析的结果通常以p值 表示,若p值小于显著性水 平(如0.05),则认为各组 均值存在显著差异。
2
方差分析的前提条件是各
组数据具有方差齐性和正
正态总体方差假设检验的未来发展
改进假设检验方法
结合其他统计方法
结合其他统计方法,如贝叶斯推断、机器学习等, 可以更全面地分析数据和推断总体特征。
针对正态总体方差假设检验的局限性,未来 研究可以探索更灵活、适应性更强的检验方 法。
拓展应用领域
正态总体方差假设检验的应用领域可以进一 步拓展,特别是在大数据和复杂数据分析方 面。
数学表达式

单个正态总体的假设检验

单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0

n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。

①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0

N ( , ) ,
n
Z
n
X 0

n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即

一个总体方差的假设检验

一个总体方差的假设检验

临界值法:
Reject H0 if
χ2

χ2 (1α )
p-值法:
Reject H0 if p-value < a
2
2.2 s 2的假设检验
右侧检验
检验条件 检验统计量
H0 : σ 2 σ02 Ha : σ 2 σ02
χ 2 (n 1)s2
σ
2 0
3
2.2 s 2的假设检验
右侧检验
右侧检验
Reject H0 if 2 ≥a 2
χ
2 α
14.684
9
Hypothesis Testing About a Population Variance
自由度 n - 1 = 10 - 1 = 9 a = 0.10
卡方分布表
χ2 0.10

10
2.2 s 2的假设检验
拒绝域
0
χ 2 (n 1)s 2
7
2.2 s 2的假设检验
A证券交易所10支IPO股票的IPO折价率数据(单位:%)
股票
1 2 3 4 5 6 7 8 9 10
IPO折价率 -11.0 30.9 3.7 84.3 59.4 51.7 80.8 100.3 80.0 108.1
Underpricing (clsprice offerprice index1 index0 )100%
χα2 依据自由度为n - 1的卡方分布计算
χ 2 (n 1)s 2
σ
2 0
上侧面积= a
临界值法: Reject H0 if
p-值法:
χ 2 χα2
Reject H0 if p-value < a

正态总体方差的假设检验

正态总体方差的假设检验

原假设H0 检验统计量
5
2
2 0
2
2 0
2
2 0
(未知)
2 1
2 2
6
2 1
2 2
2 1
2 2
(
1
,

2
知)
D 0
7
D 0 D 0
(成对数据)
2 (n 1)S 2
2 0
F
S12 S22
t D0 SD / n
备择假设 H12Biblioteka 2 022 0
2
2 0
2 1
2 2
2 1
2 2
2 1
2 2
D 0 D 0 D 0
s12 s22
1.96,
因为 s12 0.34, s22 0.29,
s12 s22
1.17
1.96,
故接受 H0, 认为两总体具有方差齐性.
例7 两台车床加工同一零件, 分别取6件和9件测
量直径, 得: sx2 0.345, sy2 0.357. 假定零件直径
服从正态分布,
能否据此断定
.
当H0为真时, t ~ t(n1 n2 2).
n1 10, n2 10, t0.05(18) 2.101,
因为 t X Y 3.097 2.179
Sw
11 n1 n2
10(2.67 1.21) 2
18
10
1.436 2.101,
故接受 H0,
认为两系统检索资料时间无明显差别.
2 1
2 2
,
当 H0
为真时,
E
(
S12
)
2 1
2 2
E(S22 ),

正态总体方差的假设检验

正态总体方差的假设检验

正态总体方差的假设检验一、引言假设检验是统计学中常用的一种方法,用于判断关于总体参数的某种陈述是否成立。

在实际应用中,我们经常需要对总体方差进行假设检验,以确定样本数据是否能够代表总体的特征。

二、正态总体方差的假设检验在正态总体方差的假设检验中,我们通常使用方差比检验来判断总体方差是否有显著差异。

具体而言,我们设立原假设H0和备择假设H1,然后利用样本数据进行检验。

1. 原假设和备择假设原假设H0通常为总体方差等于某个特定值,记为σ^2 = σ0^2;备择假设H1通常为总体方差不等于该特定值,记为σ^2 ≠ σ0^2。

2. 检验统计量在正态总体方差的假设检验中,我们使用F检验统计量来进行判断。

F检验统计量的计算公式为F = S^2 / σ0^2,其中S^2为样本方差。

3. 拒绝域和接受域在给定显著性水平α的情况下,我们可以根据F检验统计量的分布来确定拒绝域和接受域。

一般来说,当F检验统计量落在拒绝域内时,我们拒绝原假设;当F检验统计量落在接受域内时,我们接受原假设。

4. F分布表的使用由于F检验统计量的分布是F分布,因此我们可以利用F分布表来确定拒绝域和接受域的临界值。

F分布表中给出了不同自由度和显著性水平下的临界值。

5. 计算步骤进行正态总体方差的假设检验时,我们需要按照以下步骤进行计算:(1) 提出原假设H0和备择假设H1;(2) 选择适当的显著性水平α;(3) 根据样本数据计算样本方差S^2;(4) 根据样本量n和显著性水平α确定F分布的自由度;(5) 根据F分布表找到对应的临界值;(6) 比较计算得到的F检验统计量与临界值,判断是否拒绝原假设。

三、实例分析为了更好地理解正态总体方差的假设检验,我们以某电子产品的寿命为例进行实例分析。

假设我们对该电子产品的寿命进行了100次观测,得到样本方差为S^2 = 200。

现在我们想要判断该电子产品的寿命是否满足某个特定的标准。

我们设立原假设H0:电子产品的寿命方差等于标准值,备择假设H1:电子产品的寿命方差不等于标准值。

正态总体方差的假设检验及应用

正态总体方差的假设检验及应用

中国包头职大学报2008年第2期正态总体方差的假设检验及应用邢航(阜新高等专科学校,辽宁阜新123000)摘要:在生产实际及现实生活中有很多现象量的变化是呈非线性正态分布的。

而对有些正态总体问题的研究,在不可能利用总体的全部数据进行分析时,要采取从所研究的总体中随机抽取部分样本,然后通过对样本数据的分析推断总体现象的情况。

并对不同研究方法及假设所产生的差异进行检验。

文章论述亍正态总体方差的假设检验方法及部分应用。

关键词:正态分布;总体方差;假设检验;应用中图分类号:0212文献标识码:A文章编号:1671一1440(2008)02—0094—02假设检验是抽样推断中用于探讨不同研究方法之间差异产生的原因,是由抽样误差影响还是处理方法不同而引起的一种数理统计方法。

即是以样本信息推断总体特征时,产生的差异用样本统计量验证假设的统计推理方法。

在假设检验中有很多检验方法与方差有着密切的联系,下面讨论非线性正态总体方差的假设检验及有关应用问题。

一、单个正态总体方差的假设检验一x2检验设"石。

是总体随机变量工一Ⅳ(I.L,cr2)的样本的观测值,检验c r2与矗是否相等,也就是检验统计假设//o:矿=矗是否成立。

假定总体均值“未知,检验统计量×2为:z2:堕掣(1)吒其中:.,z:苎!!二!!为c r2的估计值.n~l当d=商时,检验统计量x2服从自由度为n一1的x2分布,即:×2一x2(n一1),若取显著性水平为d,查x2分布表得到检验临界值x2(n—1).分双侧和单侧两种情况得结论.1.1双侧检验拒绝域为:{z2s如(一一1)}或{矿乏砬加一1)}(2)即:当不等式(2)成立时。

拒绝原假设胁。

接受域为:f《%<z2<嚷。

一I)j(3)即:当不等式(3)成立时,接受原假设风。

如图(1)z匆(n—1)碗(--t—1)图11.2单侧检验如果拒绝域分布在一侧,根据备择假设H一确定是进行右侧检验还是左侧检验。

一个正态总体均值和方差假设检验

一个正态总体均值和方差假设检验

0.6685
1.7531
16
故接受H0 ,即认为元件的平均寿命不大于225小时。
12
二. 未知期望,检验方差
1.双边假设检验
未知期望, H0: 2 = 02 , H1: 202
(1) 提出原假设H0: 2 = 02 ,H1: 202.
(2)
选择统计量
2
(n
1)S
2
2
(3) 在假设H0成立的条件下,确定该统计量服从的 分布:2~2(n-1),自由度为n-1.

2 0
2 (n
1)时, 则拒绝H0


2 0
2 (n
1)时,则接受H0
.
19
例5 某种导线要求其电阻的标准差不得超0.005欧. 今在生产的一批导线中取样品9根,测得s=0.007欧. 问在=0.05条件下,能认为这批导线的方差显著的 偏大吗?
解 提出原假设H0: 2 (0.005)2 ,H1: 2>(0.005)2.
选择统计量 T X
S
n
如果假设H0成立,那么
T
X
12 S
77
~
t(4)
5
9
取=0.05,得t0.025(4)=2.776,则
P{|
X
S
1277 |
2.776}
0.05
4
根据样本值计算得x =1259, s2=570/4.所以
x 1277
| t0 || 570
|
45
| 1259 1277| 3.37 2.776
1)时,
2
2
则拒绝H0 ;

2 1
(n 1)
2 0

正态分布总体的区间估计与假设检验汇总表

正态分布总体的区间估计与假设检验汇总表

(单侧检验)
2
(n
1)S 2
2 0
~2n1
2
2 /2
n
1

2
2 1- / 2
n 1
2 2 n 1
2

2 0
2
<
2 0
(单侧检验)
2
2 1-
n
1
2. 两个正态总体均值及方差的假设检验表(显著性水平 α)
条件 原假设 H0 备择假设 H1
检验统计量
拒绝域
12

2 2
已知
1 =2 1 2 1 2
1 2
1 2
(单侧检验)
SW
(n1 1)S12 (n2 1)S22 n1 n2 2
T < - t (n1 n2 2)
1,2
未知
2 1
=
2 2
2 1

2 2
2 1

2 2
(双侧检验)
2 1
>
2 2
(单侧检验)
F
S12 S22

F ( n1 - 1, n2 - 1)
F ≥ F /2 n1 1, n2 1
已知
0 / n
X
0 n
u
/2,
X
0 n
u
/2
2 未知 T X 0 ~ t(n 1) S/ n
X
S n 1
t / 2
n
1 ,
X
S n
1
t
/
2
n
1
方差 2
未知
2
(n 1)S 2
2 0
~2n1
(n 2 /
1)S 2

7-2正态总体参数的检验

7-2正态总体参数的检验
第二节 正态总体参数的假设检验
一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为

正态总体方差的假设检验

正态总体方差的假设检验

解 依题意需检验假设
由于 未知,故检验统计量
H0
: 2
2 0
82
,H1 : 2
82

2 (n 1)S 2 ~ 2 (n 1) .
2 0
已知 n 8, s2 93.268 ,代入公式得
2
(8 1) 93.268 82
10.201 2

ห้องสมุดไป่ตู้
又显著性水平 0.05 ,查表得
2 1
/2
(n
1)
概率论与数理统计
假设检验
正态总体方差的假设检验
1.1 单个正态总体方差的检验
设总体 X ~ N( , 2 ) , , 2 均未知,X 1 ,X2 , ,Xn 为来自总体 X 的样本,现检验假设
H0
: 2
2 0
,H1
: 2
2 0

其中
2 0
为已知常数.
由于 S 2
是 2 的无偏估计,当 H0
为真时,比值 s2
解 依题意需检验假设
H0
:12
2 2
,H1 :12
2 2

由于 1 ,2 未知,故检验统计量
F
S12 S22
~
F (m 1,n 1) .
经计算得 s12 0.885 7 ,s22 0.828 6 ,故检验统计量的观测值为
F
s12 s22
0.885 7 0.828 6
1.07 .
假设检验
又 m 1 7,n 1 7 , 0.05 ,查表得
2 1
/
2
(n
1)]
[ 2
2/2 (n 1)]} ,
则 H0 的拒绝域为

正态总体方差的假设检验

正态总体方差的假设检验
H0称为原假设或零假设, H1 称为备择假设.
(4). 拒绝域与临界点
当检验统计量取某个区域C中的值时, 我们拒绝原假
设H0, 则称区域C为拒绝域, 拒绝域的边界点称为临界点.
(5). 两类错误及记号
真实情况
所作
(未知)
接受 H0
H0 为真
正确
H0 不真
犯第II类错误
决策 拒绝 H0
犯第I类错误 正确
F0.975 (9,
9) 0.248, 取统计量F
sx2 sy2
2.67 2.12, 1.21
0.248 F 2.12 4.03,
故接受
H0,
认为
2 x
y2.
再验证 x y , 假设 H0 : x y , H1 : x y .
取统计量
犯第一类错误的概率为 当样本容量 n 一定时, 若减少犯第一类错误的概率,
则犯第二类错误的概率往往增大.
若要使犯两类错误的概率都减小, 除非增加样本容量.
(6). 显著性检验
只对犯第一类错误的概率加以控制, 而不考 虑犯第二类错误的概率的检验, 称为显著性检验.
(7). 双边备择假设与双边假设检验
在 H0 : 0 和 H1 : 0 中, 备 择 假 设H1 表 示 可 能 大 于0 , 也 可 能 小 于0 , 称 为 双 边 备 择 假 设, 形 如 H0 : 0 , H1 : 0 的 假 设 检 验 称 为 双 边 假设 检 验.
(8). 右边检验与左边检验
形如 H0 : 0 , H1 : 0 的假设检验 称为右边检验.
分布, 且总体方差相等. ( 0.05)
解 依题意, 两总体 X 和Y 分别服从正态分布
N (1, 2 )和N (2 , 2 ), 1, 2, 2均为未知,

第二节单正态总体的假设检验

第二节单正态总体的假设检验

P{|T |k }
查 t 分布表得 kt / 2t0.025(8) 2.306,从而拒绝域
为 | t | 2.306. (4) 因为 x 49.9, s2 0.29, 所以
| t | x 50 0.56 2.036,| t | 0.56 2.036, s/ n
故应接受 H0 , 即以为包装机工作正常.
由此即得拒绝域为
u
x
0
/n
u / 2 ,

W (,u / 2 ) (u / 2 ,).
根据一次抽样后得到旳样本观察值 x1, x2 ,, xn 计 算出 U旳观察值 u, 若 u u / 2 , 则拒绝原假设 H0 ,
即以为总体均值与0 有明显差别;
若 u u / 2 , 则接受原假设 H0 , 即以为总体均值与
S/ n 故选用 T 作为检验统计量,记其观察值 t. 因为 X
是 旳无偏估计量,S 2是 2 旳无偏估计量, 当 H0
成立时,t 不应太大,当 H1 成立时,t 有偏大旳趋
势, 故拒绝域形式为
t x 0 k
s/ n
( k 待定).
对于给定旳明显性水平 , 查分布表得
k t / 2(n 1), 使 P{T t / 2(n 1)} ,
使
P{ 2
2 1
/
2
(
n
1)

2
2
/
2
(
n
1)}
,
由此即得拒绝域为
2
n1
2 0
s
2
2 1
/
2
(
n
1)

2
n1
2 0
s
2
2 1

《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验

《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验
0
真)
P1 2
(
x y
11
k)
k t (n1 n2 2)
sw
n1 n2
2
概率统计
在显著性水平 下, H0 的拒绝域:
x y
sw
11
t (n1 n2 2)
2
n1 n2
注:

2 1
2 2
2
未知时
检验假设

H0 : 1 -2 (或1 2 ), H0 : 1 2 (或1 2 ),
2
概率统计
所以拒绝H 0 ,可认为这两种轮胎的耐磨性有显著差异。
注: ▲ 用两种不同的方法得到了两种不同的结论,那么
究竟应该采取哪一个结论比较合理呢?
显然,应该采取第二种方法得出的结论是合理的
因为数据配对的方法是针对同一架飞机的,它是 排除了因飞机之间的试验条件的不同而对数据产 生的干扰,所以它是直接反映了这两种轮胎的耐 磨性的显著差异的情况,因此,应采取第二种方 法得出的结论,即可认为这两种轮胎的耐磨性有 显著差异。
概率统计
按单个正态总体中当 2 未知时,关于 的假设检验
的计算公式,可得 H0 的拒绝域为:
C { t t t (n 1)}
2
经计算 d 320 , s2 89425 ,
t
d s
320 2.83 89425
n
8
t (n 1) t0.05 (7) 2.365
2
2
因为: t 2.83 t0.05 (7) 2.365
为已知常数,显著水平为
概率统计
Q 检验统计量
(X Y)
~ N (0,1)
2 1
2 2
n1 n2

正态总体方差的假设检验PPT课件

正态总体方差的假设检验PPT课件
规定产品尺寸的方差 2不得超过0.1, 为检验该自 动车床的工作精度, 随机的取25件产品, 测得样本
方差 s2=0.1975, x3.86 . 问该车床生产的产品是
否达到所要求的精度? (0.05)
解 要检 H 0 :验 2 0 .1 ,假 H 1 :2 设 0 .1 ,
n25, 0 2.0(52)43.6 41, 5
0
0
此处 k1和k2的值由下:式确定
P {H 0为 , 拒 真 H 0 绝 }
P 0 2 (n 1 0 2 )S 2 k 1 (n 1 0 2 )S 2 k 2 .
为了计算方便, 习惯上取
P02 (n 102)S2k1 2, P02 (n 102)S2k2 2,
P 2 0 2 (n 1 2 )S 2 (n 0 1 2 )k . (因2 为 0 2 )
要 P { H 0 为 使 ,拒 H 真 0 } 绝 ,
只需 P 2 0 2 令 (n 1 2 )S 2(n 0 1 2 )k .
因(为 n 12)S2~2(n1),所(以 n01 2)k 2(n1),
因(n 为 0 1 2 )s22 4 0 0 ..1 19 7 4.5 4 736.41,5
所以拒H0绝 , 认为该车床生产的产品没有达到所要求的精度.
二、两个总体 N (1 , 1 2 )N ,(2 , 2 2 )的情况
(0.02)
解 要检 H 0 :2 验 5,0 假 H 1 0 :2 0 设 5,00
n26, 0.0,2 02 500,0
2 /2 (n 1 )0 2 .0(2 1) 5 4.3 4,14
1 2 /2 (n 1 )0 2 .9(2 9) 5 1.5 1 ,24
拒绝域为:

正态总体的均值和方差的假设检验

正态总体的均值和方差的假设检验
χ
2
(x)
2
2
O 12 /2(n 1) 2 / 2(n 1)
x
P{ χ 2
χ12α / 2(n 1)}
P{ χ 2
χα2/ 2n 1}
α, 2
拒绝域:
W 1 {( x1, x2, , xn ) : χ 2 χ12α / 2(n 1)}
U{( x1,
x2 , ,
xn )
:
2
2 /2
是否可以认为由新工艺炼出的铁水含碳质量分
数的方差仍为0.1082( = 0.05)?
解 检验假设
(1)H0 : 2 0.1082, H1: 2 0.1082 ,
(2)取检验统计量:
χ2
(n 1)Sn*2 σ02
~
χ 2(n 1),(当H0为真时)
由n = 5, = 0.05算得,
χα2/ 2n 1 χ02.0254 11.1, χ12α / 2n 1 χ02.9754 0.484.
问: 若总体的均值 已知,则如何设计假设检验?
n
( Xi μ)2
构造χ 2 i1 σ2
~ χ 2(n)可类似进行检验.
例3 某炼钢厂铁水含碳质量分数X在正常情况下
服从正态分布 N ( μ,σ 2 ),现对操作工艺进行了改 革又测量了5炉铁水,含碳质量分数分别为:
4.421,4.052,4.357,4.287,4.683
t/2 n1 n2 2 t0.025 18 2.10
由| t | 2.49 2.10 t0.025 18 W1,
故拒绝假设H0,认为物品处理前后含脂率的均值 有显著差异。
3. 两正态总体方差的检验
设总体
X
~
N

正态总体均值与方差的假设检验概述PPT(50张)

正态总体均值与方差的假设检验概述PPT(50张)

而同一对中两个数据的差异则可看成是仅 由这两台仪器性能的差异所引起的. 这样, 局限 于各对中两个数据来比较就能排除种种其他因 素, 而只考虑单独由仪器的性能所产生的影响. 表中第三行表示各对数据的差 di xiyi
设 d1,d2, ,dn来自正 N (d 态 ,2)总 , 体
这里 d,2均为未 . 若两知 台机器的性能一样,
则各对数 d1,d 据 2, ,d 的 n属 差 随 异 机 , 误
随机误差可以认为服从正态分布, 其均值为零.
要检 H 0:验 d 0假 H ,1:d 设 0.
设 d 1 , d 2 ,, d n 的 样 本 均 值 d , 样 本 修 正 方 差 s n * 2 ,
按关于单个正态分布均值的t检验, 知拒绝域为
第5.2节 正态总体均值与方差的 假设检验
一、 t 检验 二、 2 检验
三、F 检验 四、单边检验
一、t 检验
1 . 2 为 已 知 ,关 于 的 检 验 ( U 检 验 )
在上节中讨论过正 体态 N(总,2)
当 2为已 ,关 知 于 时 0的检验 : 问题
假 设 检 验 H 0 : 0 ,H 1 : 0
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度服从正态分布, 且标准差没有变
化, 试问该机工作是否正常? (0.05 )
解 因X 为 ~N (,2),0.15,
要检验假设
H 0:1.5 0, H 1:1.5 0,
n15, x1.04,80.0,5
d0
t sn* /
n t/2(n1),
由n9, t /2 (8 ) t0 .0( 0 8 )5 3 .35 , d5 04 .06,

一个正态总体期望与方差的假设检验

一个正态总体期望与方差的假设检验
第八章
第二节 一个正态总体 期望与方差的假设检验
一、期望值的假设检验
检验 二、方差的假设检验-
2
一、期望值的假设检验
2 2 1、方差 0 为已知时对期望值 的检验— u 检验
设样本 X 1 , X 2 ,
, X n 来自正态总体 N ( , 2 ), 方
差 2已知,对 的检验问题由上节中的五个步骤来进行. ①建立假设 关于正态均值 常用的三对假设 (a) H0 : 0 ,H1 : 0 ; (双边假设检验问题) (b) H0 : 0 ,H1 : 0 ; (单边假设检验问题) } (c) H0 : 0 ,H1 : 0 . 选择哪一种假设应根据问题的需要.
② 检验统计量都选择 U 统计量
U
X 0
/ n
~ N (0,1)
(8.2.1)
③ 确定显著性水平
显著性水平 的大小应根据研究问题的需要而定,
一般为0.05. ④ 确定临界值,给出拒绝域 对于三种不同的假设,其拒绝域如图所示,其中u1 / 2 是标准正态分布的 1 分位数, 其他意义相同. 2
即样本观测值落在拒绝域之外, 故接受原假设, 认为该批金 属丝折断力的方差与64无显著差异.
以上对方差的检验属于双侧检验,另外还有单侧检验:
2 2 H0 : 2 0 ;H1 : 2 0
(8.2.8)
2 2 H0 : 2 0 ;H1 : 2 0 (8.2.9) 关于假设检验问题 2 2 (8.2.10) H0 : 2 0 ;H1 : 2 0 它与假设检验问题式(8.2.8)在同一显著性水平α下的检验 方法是一样的,其他的单侧检验也类同. 例4 某车间生产一种保险丝,规定保险丝熔化时间的 方差不得超过400.今从一批产品中抽处25个,测得其熔化时 间的方差为388.58, 试根据所给数据, 检验这批产品的方差 是否符合要求(α=0.05). 已知保险丝的熔化时间服从正态 分布.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n 1 s2
2 0
2 9
2 2 0.02 9 = 19.679, 0.98 9 = 2.532
2 1 2 9
2 2 9
解 这是一个正态总体方差的双侧检验
提出假设 H0 : 2= 02=752,H1:2 752
0
2. 确定单侧检验还是双侧检验佛山汽车团购-车 欢网:/ 2 n 1 , 过好看潮汕视频:/ 2 2 0, 1 2 n 1 2 n 1 , /
引入统计量
2 =
n 1 s2
2 0
2 9
2 2 0.02 9 = 19.679, 0.98 9 = 2.532 计算临界值
2 2 确定拒绝域 0, 0.98 9 0.02 9 ,
由样本值计算 n 1 s2 2 2 = = 10.74 19.679 = 0
7 8625 = 27.6 15.507 由样本值计算 = 2500
2
从而拒绝H0, 认为产品的寿命方差超过规定标准.
小结
1. 确定方差的卡方分布检验 n 1 s2 取统计量 2 = ~ 2 n 1 2
0
从而接受H0, 即水稻产量的标准差没有显著变化.
例2 某种电子元件的寿命服从=50的正态分布, 先 随机抽取9件, 测得寿命: 1025 965 1105 885 985 1205 1075 975 1005 检验该产品是否合格?(= 0.05)
解 这是一个正态总体方差的单侧检验
提出假设 H0 : 202=502,H1:2 > 502


σ26710
提出假设 H0 : 2= 02=752,H1:2 752
引入统计量
2 =
n 1 s2
2 0
2 9
解 这是一个正态总体方差的双侧检验 提出假设 H0 : 2= 02=752,H1:2 752 引入统计量
2 =
计算临界值
例1 设某地水稻单位面积产量往年服从=75的正态 分布, 先随机抽取10地, 测得单位面积产量(kg): 540 630 674 680 694 695 708 736 780 845 检验该地区水稻单位面积产量的标准差是否发生显
著性变化?(= 0.04)
解 这是一个正态总体方差的双侧检验
σ28625
引入统计量
2 =
n 1 s2
2 0
2 8
解 这是一个正态总体方差的单侧检验
提出假设 H0 : 202=502,H1:2 > 502
引入统计量
7s2 2 = 2 8 2500
2 0.05 8 = 15.507
计算临界值
相关文档
最新文档