CMOS射频功率放大器高效率和高线性度研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CMOS射频功率放大器高效率和高线性度研究进展
摘要: CMOS工艺价格低廉且兼容基带工艺,是单片集成电路的理想材料。根据现代无线通信系统所采用的调制方式对功率放大器的性能要求,重点介绍了功率放大器的效率和线性增强技术,比较了相应技术间的优点和缺点,最后阐述包络放大器的发展趋势及其在LTE(4G)的应用。
关键词:功率放大器;效率;线性度;LTE;CMOS;包络跟综
0 引言
目前,全球应用于智能手机等便携性移动设备的移动网络急速发展和扩张,且多功能智能手机应用愈加广泛,为满足用户实时通信的用户体验,应用于智能手机的通信系统应该能够更加有效地处理文字、声音和视频数据并实现全球漫游。为了提供高数据速率的大数据传输,现代通信系统(WCDMA/3G/4G/LTE)采用了更加复杂的高频谱效率的调制方式,如OFDM 或QPSK和QAM等相移键控和幅移键控相结合的调制方式。为满足不同用户的使用需求,智能手机一般都支持两种或者两种以上网络制式,而随着手机的工作制式不同,其有效的频率带宽不同,因此,作为通信模组之一的功率放大器(PA)应具备多频多模(Multi-band and Multi-mode)的能力。
作为3GPP(3rd Generation Partnership Project)的演进路线中的主流技术,LTE-Advanced将是2015年的主流通信方式。LTE的关键技术有多载波和多天线技术,其中多载波技术采用正交频分复用(OFDM)的调制方式,使各个子载波重叠排列,大大提高频谱效率的同时保持了载波之间的正交性,以避免载波之间的干扰。不过,LTE信号在给定的受限的带宽内,有着非常高的峰均比(PAPR),这使PA常工作在功率回退区,造成PA的实际效率低下的现象。另外,为了线性放大LTE这类非常包络信号(non-constant envelope signal),要求PA有着较高的线性度(Linearity),因此,应用于新一代通信系统的功率放大器,必须有着较高的功率效率和线性度,且有着较宽的工作带宽或者是满足多频多模的通信要求。
随着便携设备的功能模块越来越复杂,将各个模块单片集成起来,将大大缩短设备制造商的加工时间,因此,如何减小芯片的有效面积和用廉价的工艺在单一芯片上实现整个射频模组将是未来的研究主流。现代比较流行的集成电路工艺主要有六种:硅CMOS、BICMOS、Bipolar、GaAs、HBT和SiGe,但由于硅工艺是最为成熟的,也是成本最低、集成度高和应用最广泛的集成工艺,另外,大多数无线收发机的基带处理部分都使用硅工艺,因此,硅CMOS 工艺是单片实现各个模块集成的理想解决方案。不过CMOS工艺自身存在着物理缺陷,如低截止电压(breakdown voltage)、较差的电流能动能力、片上无源器件的Q值小、较大的寄生电容、地衬底电阻率较低、没有较为精确的RF模型和较差的线性度等,这些缺陷都大大限制了CMOS在RFIC领域的应用,而且通信系统对高效率、高线性度和可实现性有着很高的要求,所以目前PA制造商还是常使用价格比较昂贵的III-V类混合硅半导体工艺器件(Compound Semiconductor Device)[1-4],这些器件通过TWV(Through-Wafer-via)技术提供一个具有良好散热效率的理想环境,常用于Bluetooth、WLAN和GSM/GPRS等应用[5]。不过,CMOS工艺的物理缺陷可以通过一系列技术来缓解,在高供电电压的情况下,可以选择HV CMOS和BCD(Bipolar-CMOS-DMOS)工艺[6]。采用下行键合线(Down-bonding Wires)可以实现在给定的负载下得到较高的输出功率,这种方法的缺点是会减小电压摆幅,不过可以通过引入差分结构克服这个缺点。解决CMOS工艺低截止电压的一个很好的技术是引入共源共栅的Cascode 结构,不过这种结构会使等效的knee电压增加,所以也会在一定程度上减小电压摆幅。CMOS 的寄生电容和衬底较低的电阻率,使得在晶体管引脚间的信号存在着耦合,不过这种耦合影响也不全是消极的,通过利用在Cascode结构中的共栅(CG)晶体管的RF泄露信号(Leakage signals)提供一个负反馈,不仅可以增强线性度,而且可以减小栅极和漏极间的电压耦合,
这种方法最大的一个优点就是不需要额外的器件和芯片面积,而且容易实现。由于CMOS的跨导较低,其电流驱动能力较其他III-V类半导体低,需要通过级联结构来实现(Cascaded-stage)较大的功率增益,所以,多级级联(multistage cascade topology)是CMOS PA中最常见的一种电路拓扑。虽然采用Cascode结构和栅氧厚度较厚的晶体管可以减轻CMOS 的热载流体效应和低栅氧厚度的低击穿电压的问题,但这并不是最理想的办法。根据最新的研究报告,应用于3G/4G的手持设备的硅工艺PAs的性能已经可以和III-V类PAs相比拟[7],另外,类似于III-V类工艺的TWV技术,在SiGe BiCMOS工艺中, TSV(Through-Silicon-Via)技术同样可以为SiGe BiCMOS工艺提供一个理想的回流地环境和热释放条件,因此,采用TSV 技术的SiGe CMOS工艺将会是PA设计的一个首选方案[8]。
1 PA效率增强技术的关键研究进展
功率放大器是手持移动设备中耗能最大的模块之一,因此为了延长电池的使用寿命和迎合新一代通信(4G/LTE)的要求,高效率是PA设计的一个很重要而且颇有挑战性的指标。由于传统的PA供电电压是固定的,而且它的最优负载仅仅是当PA输出最大功率时的最优阻抗,对于LTE这种有着高PAPR的调制方式,PA常工作在功率回退区,因此PA的实际工作效率非常低。
提高这类PA效率的关键技术主要有两类:通过一定方法调制负载,使每个功率回退点都对应于一个最优阻抗[9]和通过输出的瞬时功率调制供电电压,从而减小功率回退时的静态功耗。第一种通过调制负载的方法常用于手机等移动设备,第二种方法常常直接通过利用调制信号的包络直接去调制PA的工作电压,从而减小功耗[10]。
通过直接调制PA的工作电压而达到增强PA效率的技术主要有PM(Polar Modulation)、EER(Envelope Elimination and Restoration)和ET(Envelope Tracking),。PM利用数字信号处理技术(DSP)来产生相位和幅度调制信号[11,12],不过这种方法受限于DC-DC转换器自身的效率、带宽和面积,并且DC-DC转换模块通常需要使用片外的电感和开关实现,这大大限制了PM在RFIC中的应用。EER和ET是目前PA效率增强的主流技术。EER通过包络检波器和限幅器将输入信号分解成幅度信号和相位信号,因此可以用非线性PA来放大相位信号,而PA的电压则由幅度信号调制,从而可以达到较大的效率,,但EER内部固有的非线性导致幅度调制路径和相位调制路径间存在延时[13,14]。
与EER不同的是,ET使用线性的PA,。因此,ET的最大的一个好处就是没有类似于EER 的这种延时失配现象[15],从而使ET技术可以在增强效率的基础上通过其他技术来取得线性度和效率之间的折中,并可以应用于宽带信号[16]。ET主要目标是为了当输入高PARP信号时,同时在最大输出功率和在功率回退区域获得最大工作效率,且满足高线性度的要求,如EVM和ACLR等。另外,ET技术的效率和线性度依赖于电源调制器(Supply Modulator),如果电源调制效率低下,则ET整体的效率就非常低,因此必须增强电源调制器的线性度,文献[17]通过双开关和前馈信号来增强电源调制器的效率。为了精确跟踪宽带信号并不产生明显失真,需要提高电源调制器的工作带宽[18]。
使用ET技术可以大幅度提高功率回退时的效率,,为了减小复杂性和提高跟踪精度,电源调制器可以通过开关实现在线性区使PA工作电压保持一个较小的恒定值,而在过渡区和压缩区则通过调制信号的包络来调制PA的工作电压,。采用这种方式的ET技术有一个缺点,那就是增益会有所降低,,但这种方式较固定电压的方式有着较低的ACLR和EVM,特别是在高输出功率的情况下,。