北邮出版社大学物理(第四版)上册答案第一章
大学物理(第四版)课后习题及答案 磁场教学内容
大学物理(第四版)课后习题及答案磁场习题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0105 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x Bd d = 0;0d d 22 xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。
题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3。
大学物理(第四版)课后习题及答案 刚体
题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理(上册)参考答案
⼤学物理(上册)参考答案⼤学物理第⼀章作业题P21 1.1; 1.2; 1.4;1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -?,x 的单位为 m. 质点在x =0处,速度为101s m -?,试求质点在任何坐标处的速度值.解:∵x v v t x x v t v a d d d d d d d d ===分离变量:x x adx d )62(d 2+==υυ两边积分得 cx x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-?++=x x v1.10已知⼀质点作直线运动,其加速度为 a =4+3t 2s m -?,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故2234t t v += ⼜因为2234d d t t t x v +==分离变量, tt t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+?+?=?=?+=-x v1.11⼀质点沿半径为1 m 的圆周运动,运动⽅程为θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的⽅向和半径成45°⾓时,其⾓位移是多少?解:t t t t 18d d ,9d d 2====ωβθω(1)s 2=t 时, 2s m 362181-?=??==βτR a2222s m 1296)29(1-?=??==ωR a n(2)当加速度⽅向与半径成ο45⾓时,有145tan ==na a τ即βωR R =2亦即 t t 18)9(22= 则解得923=t 于是⾓位移为rad67.29232323=?+=+=t θ1.12 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1)bt v t sv -==0d dR bt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n -+=+=τ加速度与半径的夹⾓为20)(arctanbt v Rba a n --==τ?(2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-?-+=bt v R bt v b b∴当b v t 0=时,b a =第⼆章作业题P612.9 质量为16 kg 的质点在xOy 平⾯内运动,受⼀恒⼒作⽤,⼒的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位⽮;(2)速度.解:2s m 83166-?===m f a x x2s m 167-?-==mf a y y(1)--?-=?-=+=?-=?+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度 1s m 8745-?--=ji v(2)m874134)167(21)4832122(21)21(220j i ji jt a i t a t v r y x --=?-+??+?-=++=2.10 质点在流体中作直线运动,受与速度成正⽐的阻⼒kv (k 为常数)作⽤,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t mke )(-];(3)停⽌运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减⾄0v 的e 1,式中m 为质点的质量.答: (1)∵t v m kv a d d =-= 分离变量,得m tk v v d d -=即 ??-=vv t m t k v v 00d dmkt e v v -=ln ln 0∴ tm k ev v -=0(2)---===tttm k m ke k mv t ev t v x 000)1(d d(3)质点停⽌运动时速度为零,即t →∞,故有∞-=='00d k mv t ev x tm k(4)当t=k m时,其速度为e v e v ev v km m k 0100===-?-即速度减⾄0v 的e 1.2.11⼀质量为m 的质点以与地的仰⾓θ=30°的初速0v ?从地⾯抛出,若忽略空⽓阻⼒,求质点落地时相对抛射时的动量的增量.解: 依题意作出⽰意图如题2-6图题2-6图在忽略空⽓阻⼒情况下,抛体落地瞬时的末速度⼤⼩与初速度⼤⼩相同,与轨道相切斜向下,⽽抛物线具有对y 轴对称性,故末速度与x 轴夹⾓亦为o30,则动量的增量为0v m v m p -=?由⽮量图知,动量增量⼤⼩为v m ?,⽅向竖直向下.2.13 作⽤在质量为10 kg 的物体上的⼒为i t F ?)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及⼒给予物体的冲量.(2)为了使这⼒的冲量为200 N ·s ,该⼒应在这物体上作⽤多久,试就⼀原来静⽌的物体和⼀个具有初速度j ?6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静⽌,则it i t t F p t10401s m kg 56d )210(d -??=+==,沿x 轴正向,i p I im p v ??111111s m kg 56s m 6.5--??=?=?=?=?若物体原来具有6-1s m -?初速,则+-=+-=-=t ttF v m t m F v m p v m p 000000d )d (,??于是 ??==-=?t p t F p p p 0102d ?,同理, 12v v ?=?,12I I =这说明,只要⼒函数不变,作⽤时间相同,则不管物体有⽆初动量,也不管初动量有多⼤,那么物体获得的动量的增量(亦即冲量)就⼀定相同,这就是动量定理.(2)同上理,两种情况中的作⽤时间相同,即+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)3.14⼀质量为m 的质点在xOy 平⾯上运动,其位置⽮量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合⼒的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和t 分别代⼊上式,得j b m p ??ω=1,i a m p ??ω-=2,则动量的增量亦即质点所受外⼒的冲量为)(12j b i a m p p p I +-=-=?=ω2.15 ⼀颗⼦弹由枪⼝射出时速率为10s m -?v ,当⼦弹在枪筒内被加速时,它所受的合⼒为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设⼦弹运⾏到枪⼝处合⼒刚好为零,试计算⼦弹⾛完枪筒全长所需时间;(2)求⼦弹所受的冲量.(3)求⼦弹的质量.解: (1)由题意,⼦弹到枪⼝时,有0)(=-=bt a F ,得b a t =(2)⼦弹所受的冲量-=-=tbt at t bt a I 0221d )(将b at =代⼊,得b a I 22=(3)由动量定理可求得⼦弹的质量202bv a v I m ==第三章作业题P88 3.1; 3.2; 3.7;3.13计算题2-27图所⽰系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦⼒作⽤下旋转,忽略桌⾯与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受⼒图如图(b)所⽰.对1m ,2m 运⽤⽜顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运⽤转动定律,有(212Mr r T r T =- ③⼜,βr a = ④联⽴以上4个⽅程,得2212s m 6.721520058.92002-?=++?=++=M m m g m a题2-27(a)图题2-27(b)图题2-28图3.14 如题2-28图所⽰,⼀匀质细杆质量为m ,长为l ,可绕过⼀端O 的⽔平轴⾃由转动,杆于⽔平位置由静⽌开始摆下.求:(1)初始时刻的⾓加速度; (2)杆转过θ⾓时的⾓速度. 解: (1)由转动定律,有β)31(212ml mg=∴ l g23=β(2)由机械能守恒定律,有22)31(21sin 2ωθml l mg =∴ l g θωsin 3=题2-29图3.15 如题2-29图所⽰,质量为M ,长为l 的均匀直棒,可绕垂直于棒⼀端的⽔平轴O ⽆摩擦地转动,它原来静⽌在平衡位置上.现有⼀质量为m 的弹性⼩球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最⼤⾓度=θ30°处. (1)设这碰撞为弹性碰撞,试计算⼩球初速0v 的值;(2)相撞时⼩球受到多⼤的冲量?解: (1)设⼩球的初速度为0v ,棒经⼩球碰撞后得到的初⾓速度为ω,⽽⼩球的速度变为v ,按题意,⼩球和棒作弹性碰撞,所以碰撞时遵从⾓动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω②上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的⾓位移;碰撞后,棒从竖直位置上摆到最⼤⾓度o30=θ,按机械能守恒定律可列式:)30cos 1(2212?-=lMg I ω③由③式得2121)231(3)30cos 1(?-=-=l g I Mglω由①式ml I v v ω-=0 ④由②式m I v v 2202ω-= ⑤所以22001)(2ωωm v ml I v -=-求得glmM m m M l ml I l v +-=+=+=31232(6)311(2)1(220ωω (2)相碰时⼩球受到的冲量为-==0d mvmv mv t F由①式求得ωωMl l I mv mv t F 31d 0-=-=-=?glM 6)32(6--=负号说明所受冲量的⽅向与初速度⽅向相反.第五章作业题P145 5.1; 5.2;5.7 质量为kg 10103-?的⼩球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最⼤值;(2)最⼤的回复⼒、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?(3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准⽅程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A ⼜πω8.0==A v m 1s m -? 51.2=1s m -?2.632==A a m ω2s m -?(2) N 63.0==m m a FJ 1016.32122-?==m mv E J 1058.1212-?===E E E k p当p k E E =时,有p E E 2=,即 )21(212122kA kx ?=∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=?t t5.8 ⼀个沿x 轴作简谐振动的弹簧振⼦,振幅为A ,周期为T ,其振动⽅程⽤余弦函数表⽰.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2Ax -=处向正向运动.试求出相应的初位相,并写出振动⽅程.解:因为 -==000sin cos φωφA v A x将以上初值条件代⼊上式,使两式同时成⽴之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5.9 ⼀质量为kg 10103-?的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受⼒的⼤⼩和⽅向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=?=-T A ∴ 1s rad 5.02-?==ππωT⼜,0=t 时,0,00=∴+=φA x 故振动⽅程为m )5.0cos(10242t x π-?=(1)将s 5.0=t 代⼊得0.17mm )5.0cos(102425.0=?=-t x πN102.417.0)2(10103232--?-=-=-=-=πωxm ma F⽅向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且∴ s 322/3==?=ππωφt(3)由于谐振动中能量守恒,故在任⼀位置处或任⼀时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--?====πωA m kA E5.11 图为两个谐振动的t x -曲线,试分别写出其谐振动⽅程.题4-8图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x ⼜πφ即 1s rad 2-?==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x⼜ππωφ253511=+?= ∴πω65= 故 m t x b )3565cos(1.0ππ+= 5.12 ⼀轻弹簧的倔强系数为k ,其下端悬有⼀质量为M 的盘⼦.现有⼀质量为m 的物体从离盘底h ⾼度处⾃由下落到盘中并和盘⼦粘在⼀起,于是盘⼦开始振动.(1)此时的振动周期与空盘⼦作振动时的周期有何不同? (2)此时的振动振幅多⼤?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘⼦的振动⽅程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增⼤.(2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为⼀系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20 于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)gm M khx v )(2tan 000+=-=ωφ (第三象限),所以振动⽅程为 ?+++++=g m M kh t M m k gM m khk mg x )(2arctan cos )(215.15 试⽤最简单的⽅法求出下列两组谐振动合成后所得合振动的振幅:(1) +=+=cm )373cos(5cm )33cos(521ππt x t x (2)??+=+=cm)343cos(5cm )33cos(521ππt x t x 解: (1)∵ ,233712πππφφφ=-=-=?∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=?∴合振幅 0=A5.16 ⼀质点同时参与两个在同⼀直线上的简谐振动,振动⽅程为-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别⽤旋转⽮量法和振动合成法求合振动的振动幅和初相,并写出谐振⽅程。
大学物理上册答案第四版(罗益民 吴烨)北邮出版第一章
第1章质点运动学1-1一运动质点某一瞬时位于径矢()r x y ,的端点处,关于其速度的大小有4种不同的看法,即(1)d d t r ;(2)d d t r;(3)d d s r;(4下列判断正确的是().(A)只有(1)和(2)正确(B)只有(2)正确(C)只有(3)和(4)正确(D)(1)(2)(3)(4)都正确答案:(C )解析:瞬时速度的大小等于瞬时速率,故(3)正确;速度可由各分量合成,故(4)正确。
1-2一质点的运动方程为22cos cos sin sin x At Bt y At Bt θθθθ⎧⎪⎨⎪⎩=+,=+,式中A ,B ,θ均为常量,且A >0,B >0,则该质点的运动为().(A)一般曲线运动(B)匀速直线运动(C)匀减速直线运动(D)匀加速直线运动答案:(D )解析:由tan y x θ可知,质点做直线运动.a x =2B cos θa y =2B sin θa=2B加速度a 为定值,故质点做匀加速直线运动.1-3一质点沿半径为R 的圆周运动,其角速度随时间的变化规律为ω=2bt ,式中b 为正常量.如果t =0时,θ0=0,那么当质点的加速度与半径成45°角时,θ角的大小为()rad.(A)12(B)1(C)b (D)2b 答案:(A )解析:a t =R β=2bRa n =R 2ω=4Rb 2t 2a t =a nt 2=b 21θ=20tω⎰d t =bt 2=211-4一人沿停靠的台阶式电梯走上楼需时90s ,当他站在开动的电梯上上楼,需时60s .如果此人沿开动的电梯走上楼,所需时间为().(A)24s(B)30s (C)36s (D)40s答案:(C )解析:设电梯长度为s ,则=+9060s s s t ,解得t =36s.1-5已知质点的加速度与位移的关系式为32a x =+,当t =0时,v 0=0,x 0=0,则速度v 与位移x 的关系式为________.答案:v 2=3x 2+4x 解析:d d d d d d d d v v x v a v t x t x===,d d v v a x =,00d =(3+2)d v x v v x x ⎰⎰,v 2=3x 2+4x .1-6在地面上以相同的初速v 0,不同的抛射角θ斜向上抛出一物体,不计空气阻力.当θ=________时,水平射程最远,最远水平射程为________.答案:45°20v g解析:对于斜抛运动:0cos x v tθ⋅=201sin 2y v t gt θ⋅=-当y =0时,解得02sin v t gθ=物体的水平射程20sin 2v x gθ=当θ=45°时有最远水平射程,其大小为20max v x g=1-7某人骑摩托车以115m s -⋅的速度向东行驶,感觉到风以115m s -⋅的速度从正南吹来,则风速的大小为________m·s -1,方向沿________.答案:m/s 东偏北45°解析:如答案1-7图所示,由图可知=+v v v 风地风人人地故风速大小m/sv风地=方向为东偏北45°.答案1-7图1-8一质点作直线运动,加速度2sin a A t ωω=,已知t =0时,x 0=0,v 0=-ωA ,则该质点的运动方程为_______________.答案:sin x A t ω=-,解析:d d v a t=20d sin d v tA v A t t ωωω-=⎰⎰解得,该质点的速度为cos v A tωω=-d d x v t=00d cos d x t x A t t ωω=-⎰⎰解得,该质点的运动方程为sin x A tω=-1-9一质点在xOy 平面上运动,运动方程为x =3t +5,y =12t 2+3t -4式中,t 以s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)计算第1s 内质点的位移;(3)计算t =0s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度.(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)质点t 时刻位矢为21(35)342r t i t t j ⎛⎫=+++- ⎪⎝⎭(m)(2)第1s 内位移为11010()()r x x i y y j∆=-+- 2213(10)(10)3(10)23 3.5()i j i j m ⎡⎤=-+-+-⎢⎥⎣⎦=+ (3)前4s 内平均速度为11(1220)35(m s )4r v i j i j t -∆==⨯+=+⋅∆ (4)质点速度矢量表示式为1d 3(3)(m s )d r v i t j t-==++⋅ t =4s 时质点的速度为143(43)37(m s )v i j i j -=++=+⋅ (5)前4s 内平均加速度为240731(m s )4s 4v v v a j j t -∆--====⋅∆ (6)质点加速度矢量的表示式为2d 1(m s )d v a j t-==⋅ t =4s 时质点的加速度为241(m s )a j -=⋅ 1-10质点沿直线运动,速度v =(t 3+3t 2+2)m·s -1,如果当t =2s 时,x =4m ,求:t =3s 时,质点的位置、速度和加速度.解:32d 32d x v t t t==++431d d 24x x v t t t t c ===+++⎰⎰当t =2时,x =4,代入可得c =-12.则质点的位置、速度和加速度的表达式分别为4312124x t t t =++-32232d 36d v t t v a t t t=++==+将t =3s 分别代入得上述各式,解得1233341.25m 56m s 45m s x v a --==⋅=⋅,,1-11质点的运动方程为2[4(32)] m r t i t j =++,t 以s 计.求:(1)质点的轨迹方程;(2)t =1s 时质点的坐标和位矢方向;(3)第1s 内质点的位移和平均速度;(4)t =1s 时质点的速度和加速度.解:(1)由运动方程2432x t y t⎧=⎨=+⎩消去t 得轨迹方程2(3)0x y --=(2)t =1s 时,114m 5m x y ==,,故质点的坐标为(4,5).由11tan 1.25y x α==得51.3α=︒,即位矢与x 轴夹角为53.0°.(3)第1s 内质点的位移和平均速度分别为1(40)(53)42(m)r i j i j ∆=-+-=+1142(m s )r v i j t-∆==+⋅∆ (4)质点的速度与加速度分别为d 82d r v ti j t==+ d 8d v a i t== 故t =1s 时的速度和加速度分别为1182m s v i j -=+⋅ ()218m s a i -=⋅ ()1-12以速度v 0平抛一球,不计空气阻力,求:t 时刻小球的切向加速度a t 和法向加速度a n 的量值.解:小球下落过程中速度为v故切向加速度为2t d d v a t =由222n t a g a =-得,法向加速度为n a =1-13一种喷气推进的实验车,从静止开始可在1.80s 内加速到1600km·h -1的速率.按匀加速运动计算,它的加速度是否超过了人可以忍受的加速度25g ?这1.80s 内该车跑了多少距离?解:实验车的加速度为3222160010m /s 2.4710m/s 3600 1.80v a t ⨯===⨯⨯故它的加速度略超过25g .1.80s 内实验车跑的距离为3160010 1.80m 400m 223600v s t ⨯==⨯=⨯1-14在以初速率-1015.0 m s v ⋅=竖直向上扔一块石头后,(1)在1.0s 末又竖直向上扔出第二块石头,后者在h =11.0m 高度处击中前者,求第二块石头扔出时的速率;(2)若在1.3s 末竖直向上扔出第二块石头,它仍在h =11.0m 高度处击中前者,求这一次第二块石头扔出时的速率.解:(1)设第一块石头扔出后经过时间t 被第二块击中,则2012h v t gt =-代入已知数据得2111159.82t t =-⨯解此方程,可得二解为111.84s 1.22st t ==,′第一块石头上升到顶点所用的时间为10m 15.0s 1.53s 9.8v t g ===1m t t >,这对应于第一块石头回落时与第二块相碰;1m t t <′,这对应于第一块石头上升时被第二块赶上击中.设20v 和20v ′分别为在t 1和1t ′时刻两石块相碰时第二石块的初速度,则由于22011111()()2h v t t g t t =---D D 所以2211201111()119.8(1.841)22m/s 17.2m/s 1.841h g t t v t t +-∆+⨯⨯-===-∆-同理,2211201111()119.8(1.221)22m/s 51.1m/s 1.221h g t t v t t +-∆+⨯⨯-===-∆-′′′(2)由于211.3s t t ∆=>′,所以第二块石头不可能在第一块上升时与第一块相碰。
大学物理上册-课后习题答案全解
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程图,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ= rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α.运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A B AB v v + uv - u A Bv u u vv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图1h lα图 mf =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ是mb cos φ,邻边是mg + mb sin φ,由此可得: , 12图 2 图 (2)因此角度为; 而张力为 .(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以,图图因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt , 设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,图小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2). 根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).v x Δv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .图由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理(第四版)课后习题及答案-机械振动
13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m ,周期T=1.0s ,初相=3π/4。
试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。
13-1分析 弹簧振子的振动是简谐运动。
振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A 、ϕ已知外,ω可通过关系式Tπω2=确定。
振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。
解 因Tπω2=,则运动方程()⎪⎭⎫⎝⎛+=+=ϕπϕωt T t A t A x 2cos cos根据题中给出的数据得]75.0)2cos[()100.2(12ππ+⨯=--t s m x振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+⋅⨯-==---t s s m dt dx vπππ75.0)2cos[()108(/112222+⋅⨯-==---t s s m dt x d ax-t 、v-t 及a-t 图如图13-l 所示13-2 若简谐运动方程为⎥⎦⎤⎢⎣⎡+=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和初相;(2)t=2s 时的位移、速度和加速度。
13-2分析 可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。
解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()ϕω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相πϕ25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。
(2)t= 2s 时的位移、速度、加速度分别为mm x 21007.7)25.040cos()10.0(-⨯=+=ππ)25.040sin()2(/1πππ+⋅-==-s m dt dx v )25.040cos()40(/2222πππ+⋅-==-s m dt x d a13-3 设地球是一个半径为R 的均匀球体,密度ρ5.5×103kg •m -3。
大学物理上册答案第四版(罗益民 吴烨)北邮出版第一章
第1章质点运动学1-1一运动质点某一瞬时位于径矢()r x y ,的端点处,关于其速度的大小有4种不同的看法,即(1)d d t r ;(2)d d t r;(3)d d s r;(4下列判断正确的是().(A)只有(1)和(2)正确(B)只有(2)正确(C)只有(3)和(4)正确(D)(1)(2)(3)(4)都正确答案:(C )解析:瞬时速度的大小等于瞬时速率,故(3)正确;速度可由各分量合成,故(4)正确。
1-2一质点的运动方程为22cos cos sin sin x At Bt y At Bt θθθθ⎧⎪⎨⎪⎩=+,=+,式中A ,B ,θ均为常量,且A >0,B >0,则该质点的运动为().(A)一般曲线运动(B)匀速直线运动(C)匀减速直线运动(D)匀加速直线运动答案:(D )解析:由tan y x θ可知,质点做直线运动.a x =2B cos θa y =2B sin θa=2B加速度a 为定值,故质点做匀加速直线运动.1-3一质点沿半径为R 的圆周运动,其角速度随时间的变化规律为ω=2bt ,式中b 为正常量.如果t =0时,θ0=0,那么当质点的加速度与半径成45°角时,θ角的大小为()rad.(A)12(B)1(C)b (D)2b 答案:(A )解析:a t =R β=2bRa n =R 2ω=4Rb 2t 2a t =a nt 2=b 21θ=20tω⎰d t =bt 2=211-4一人沿停靠的台阶式电梯走上楼需时90s ,当他站在开动的电梯上上楼,需时60s .如果此人沿开动的电梯走上楼,所需时间为().(A)24s(B)30s (C)36s (D)40s答案:(C )解析:设电梯长度为s ,则=+9060s s s t ,解得t =36s.1-5已知质点的加速度与位移的关系式为32a x =+,当t =0时,v 0=0,x 0=0,则速度v 与位移x 的关系式为________.答案:v 2=3x 2+4x 解析:d d d d d d d d v v x v a v t x t x===,d d v v a x =,00d =(3+2)d v x v v x x ⎰⎰,v 2=3x 2+4x .1-6在地面上以相同的初速v 0,不同的抛射角θ斜向上抛出一物体,不计空气阻力.当θ=________时,水平射程最远,最远水平射程为________.答案:45°20v g解析:对于斜抛运动:0cos x v tθ⋅=201sin 2y v t gt θ⋅=-当y =0时,解得02sin v t gθ=物体的水平射程20sin 2v x gθ=当θ=45°时有最远水平射程,其大小为20max v x g=1-7某人骑摩托车以115m s -⋅的速度向东行驶,感觉到风以115m s -⋅的速度从正南吹来,则风速的大小为________m·s -1,方向沿________.答案:m/s 东偏北45°解析:如答案1-7图所示,由图可知=+v v v 风地风人人地故风速大小m/sv风地=方向为东偏北45°.答案1-7图1-8一质点作直线运动,加速度2sin a A t ωω=,已知t =0时,x 0=0,v 0=-ωA ,则该质点的运动方程为_______________.答案:sin x A t ω=-,解析:d d v a t=20d sin d v tA v A t t ωωω-=⎰⎰解得,该质点的速度为cos v A tωω=-d d x v t=00d cos d x t x A t t ωω=-⎰⎰解得,该质点的运动方程为sin x A tω=-1-9一质点在xOy 平面上运动,运动方程为x =3t +5,y =12t 2+3t -4式中,t 以s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)计算第1s 内质点的位移;(3)计算t =0s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度.(位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)质点t 时刻位矢为21(35)342r t i t t j ⎛⎫=+++- ⎪⎝⎭(m)(2)第1s 内位移为11010()()r x x i y y j∆=-+- 2213(10)(10)3(10)23 3.5()i j i j m ⎡⎤=-+-+-⎢⎥⎣⎦=+ (3)前4s 内平均速度为11(1220)35(m s )4r v i j i j t -∆==⨯+=+⋅∆ (4)质点速度矢量表示式为1d 3(3)(m s )d r v i t j t-==++⋅ t =4s 时质点的速度为143(43)37(m s )v i j i j -=++=+⋅ (5)前4s 内平均加速度为240731(m s )4s 4v v v a j j t -∆--====⋅∆ (6)质点加速度矢量的表示式为2d 1(m s )d v a j t-==⋅ t =4s 时质点的加速度为241(m s )a j -=⋅ 1-10质点沿直线运动,速度v =(t 3+3t 2+2)m·s -1,如果当t =2s 时,x =4m ,求:t =3s 时,质点的位置、速度和加速度.解:32d 32d x v t t t==++431d d 24x x v t t t t c ===+++⎰⎰当t =2时,x =4,代入可得c =-12.则质点的位置、速度和加速度的表达式分别为4312124x t t t =++-32232d 36d v t t v a t t t=++==+将t =3s 分别代入得上述各式,解得1233341.25m 56m s 45m s x v a --==⋅=⋅,,1-11质点的运动方程为2[4(32)] m r t i t j =++,t 以s 计.求:(1)质点的轨迹方程;(2)t =1s 时质点的坐标和位矢方向;(3)第1s 内质点的位移和平均速度;(4)t =1s 时质点的速度和加速度.解:(1)由运动方程2432x t y t⎧=⎨=+⎩消去t 得轨迹方程2(3)0x y --=(2)t =1s 时,114m 5m x y ==,,故质点的坐标为(4,5).由11tan 1.25y x α==得51.3α=︒,即位矢与x 轴夹角为53.0°.(3)第1s 内质点的位移和平均速度分别为1(40)(53)42(m)r i j i j ∆=-+-=+1142(m s )r v i j t-∆==+⋅∆ (4)质点的速度与加速度分别为d 82d r v ti j t==+ d 8d v a i t== 故t =1s 时的速度和加速度分别为1182m s v i j -=+⋅ ()218m s a i -=⋅ ()1-12以速度v 0平抛一球,不计空气阻力,求:t 时刻小球的切向加速度a t 和法向加速度a n 的量值.解:小球下落过程中速度为v故切向加速度为2t d d v a t =由222n t a g a =-得,法向加速度为n a =1-13一种喷气推进的实验车,从静止开始可在1.80s 内加速到1600km·h -1的速率.按匀加速运动计算,它的加速度是否超过了人可以忍受的加速度25g ?这1.80s 内该车跑了多少距离?解:实验车的加速度为3222160010m /s 2.4710m/s 3600 1.80v a t ⨯===⨯⨯故它的加速度略超过25g .1.80s 内实验车跑的距离为3160010 1.80m 400m 223600v s t ⨯==⨯=⨯1-14在以初速率-1015.0 m s v ⋅=竖直向上扔一块石头后,(1)在1.0s 末又竖直向上扔出第二块石头,后者在h =11.0m 高度处击中前者,求第二块石头扔出时的速率;(2)若在1.3s 末竖直向上扔出第二块石头,它仍在h =11.0m 高度处击中前者,求这一次第二块石头扔出时的速率.解:(1)设第一块石头扔出后经过时间t 被第二块击中,则2012h v t gt =-代入已知数据得2111159.82t t =-⨯解此方程,可得二解为111.84s 1.22st t ==,′第一块石头上升到顶点所用的时间为10m 15.0s 1.53s 9.8v t g ===1m t t >,这对应于第一块石头回落时与第二块相碰;1m t t <′,这对应于第一块石头上升时被第二块赶上击中.设20v 和20v ′分别为在t 1和1t ′时刻两石块相碰时第二石块的初速度,则由于22011111()()2h v t t g t t =---D D 所以2211201111()119.8(1.841)22m/s 17.2m/s 1.841h g t t v t t +-∆+⨯⨯-===-∆-同理,2211201111()119.8(1.221)22m/s 51.1m/s 1.221h g t t v t t +-∆+⨯⨯-===-∆-′′′(2)由于211.3s t t ∆=>′,所以第二块石头不可能在第一块上升时与第一块相碰。
大学物理(第四版)课后习题及答案 动量
题3.1:质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。
若不计空气阻力,求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。
题3.1分析:重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可。
由抛体运动规律可知,物体到达最高点的时间g v t αsin 01=∆,物体从出发到落回至同一水平面所需的时间是到达最高点时间的两倍。
这样,按冲量的定义即可求出结果。
另一种解的方法是根据过程的始、末动量,由动量定理求出。
解1:物体从出发到达最高点所需的时间为g v t αsin 01=∆ 则物体落回地面的时间为gv t t αsin 22012=∆=∆ 于是,在相应的过程中重力的冲量分别为 j j F I αsin d 0111mv t mg t t -=∆-==⎰∆j j F I αsin 2d 0222mv t mg t t -=∆-==⎰∆解2:根据动量定理,物体由发射点O 运动到A 、B 的过程中,重力的冲量分别为j j j I αsin 00y Ay 1mv mv mv -=-= j j j I αsin 200y By 2mv mv mv -=-=题3.2:高空作业时系安全带是必要的,假如质量为51.0kg 的人不慎从高空掉下来,由于安全带的保护,使他最终被悬挂起来。
已知此时人离原处的距离为2米,安全带的缓冲作用时间为0.50秒。
求安全带对人的平均冲力。
题3.2解1:以人为研究对象,在自由落体运动过程中,人跌落至2 m 处时的速度为ghv 21= (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12mv mv t -=∆+P F (2)由(1)式、(2)式可得安全带对人的平均冲力大小为 ()N 1014.123⨯=∆+=∆∆+=tgh m mg t mv mg F解2:从整个过程来讨论,根据动量定理有N 1014.1/23⨯=+∆=mg g h tmgF 题 3.3:如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
大学物理上册 第一章习题答案详解
� ⎛1 ⎞� r = (3t + 5)i + ⎜ t 2 + 3t − 4 ⎟ j (m) ⎝2 ⎠
(2) 第一秒内位移
� � � ∆r1 = ( x1 − x 0 )i + ( y1 − y 0 ) j �⎡ 1 ⎤� = 3(1 − 0)i ⎢ (1 − 0) 2 + 3(1 − 10)⎥ j ⎣2 ⎦ � � = 3i + 3.5 j (m)
负号表示 a 的方向指向岸边,因而船向岸边加速运动.
1-8 在 生 物 物 理 实 验 中 用 来 分 离 不 同 种 类 分 子 的 超 级 离 心 机 的 转 速 是 6 × 10 4 r ⋅ min −1 ,在这种离心机的转子内,离轴 l0cm 远的一个大分子的向心加速 度是重力加速度的几倍?
解: 物体 A 下降的加速度(如图所示)为
2h 2 × 0.4 = = 0.2m/s 2 2 2 t 2 此加速度也等于轮缘上一点在 t ′ = 3s 时的切向加速度,即
a=
′ at = 0.2(m/s 2 )
在 t ′ = 3s 时的法向加速度为
an =
′ v ′ 2 (a t t ) 2 (0.2 × 3) 2 = = = 0.36(m/s 2 ) R R 1.0
ds l dl s 2 + h2 = =− v0 dt s l 2 − h 2 dt
习题 1-7 图
负号表示船在水面上向岸靠近. 船的加速度为
a=
⎡d ⎛ dv l = −⎢ ⎜ ⎜ 2 2 dt ⎢ ⎣ dl ⎝ l − h
2 ⎞ ⎤ dl h 2v ⎟v 0 ⎥ = − 30 ⎟ s ⎠ ⎥ ⎦ dt
将 t=3s 代入证
1 x3 = 41 (m) 4
大学物理第一章课后习题答案
1.1 一质点在Oxy 平面内运动,运动方程为)SI (53+=t x ,)SI (432/2-+=t t y 。
(1)以时间t 为变量,写出质点位矢的表达式;(2)求出质点速度分量的表达式,并计算s 4=t 时,质点速度的大小和方向;(3)求出质点加速度分量的表达式,并计算出s 4=t 时,质点加速度的大小和方向。
解:(1))SI (53+=t x ,)SI (432/2-+=t t y 质点位矢的表达式为:j t t i t j y i x r )432/()53(2-+++=+=; (2)m/s 3)53(=+==t dt d dt dx v x ,m/s )3()432/(2+=-+==t t t dt d dt dy v ys 4=t ,m/s 3=x v ,m/s 7=y v ,m/s 6.7m/s 5822==+=y x v v v设θ是v 和x v 的夹角,则37tan ==x y v v θ,8.66=θ°; (3)2m/s 0)3(===dt d dt dv a x x ,2m/s 1)3(=+==t dt ddt dv a y ys 4=t ,2m/s 0=x a ,2m/s 1=y a ,222m/s 1=+=y x a a a方向沿y 轴方向。
1.2 质点在Oxy 平面内运动,运动方程为)SI (3t x =,)SI (22t y -=。
(1)写出质点运动的轨道方程;(2)s 2=t 时,质点的位矢、速度和加速度。
解:(1)质点运动方程)SI (3t x =,)SI (22t y -=,质点运动的轨道方程为:9/2)3(222x xy -=-=或2189x y -=;(2)j t i t j y i x r )2()3(2-+=+=,s 2=t 时: j i r 26-=j t i v 23-=,s 2=t 时:j i v43-=j a 2-=,s 2=t 时:j a2-=1.3质点沿直线运动,其坐标x 与时间t 有如下关系:)SI (cos t Ae x tωβ-=(A 和β皆为常量)。
大学物理第一章 质点运动学 习题解(详细、完整)
第一章 质点运动学1–1 描写质点运动状态的物理量是 。
解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。
1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。
解:匀速率;直线;匀速直线;匀速圆周。
1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。
解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。
解:将s t 1=代入t x 2=,229t y -=得2=x m ,7=y ms t 1=故时质点的位置矢量为j i r 72+=(m )由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s )质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。
1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。
解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=7.81m/s ;1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。
大学物理上册课后练习答案解析
初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。
现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。
式中x 、y 的单位为m , t 的单位为s 。
试求: (1)初速度的大小和方向;(2)加速度的大小和方向。
分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。
一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。
解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。
大学物理第1章习题解答(全)ppt课件
23 23 t t 0 3 3
1-24 一质点在半径为0.10m 的圆周上运动, 3 2 4 t 其角位置为 ,式中 的单位为 rad , t的单位为s。求: (1)在 t=2.0s时质点的法向加速度和切向 加速度。 (2)当切向加速度的大小恰等于总加速度大 小的一半时, 值为多少? (3)t为多少时,法向加速度和切向加速度 相等? d 2 3 得: 12 t 2 4 t 解 (1)由 dt
(2)加速度的大小和方向。 解:(1)速度的分量式为 dx dy v 10 60 t v 15 40 t x y dt dt
v ( t ) v v 10 60 t 15 40 t
2 2 x y 2 2
v ( t ) v v 10 60 t 15 40 t
解 (1)由参数方程
x 2 . 0 t , y 19 . 0 2 . 0 t
2
消去t得质点的轨迹方程:
y 19 . 0 0 . 50 x
(2)
2
t1 1 .0 s
t2 2 .0 s
r r r 2 1 v 2 . 0 i 6 . 0 j t t t 2 1
dv d 2 2 2 a (v v ) 3 . 58 m s tt 1 x y dt dt
a a a 1 . 79 m s n
2 2 t
2
(4)
t 1 . 0 s时质点的速度大小为
2 2 1 v v v 4 . 47 m s x y
2
a a a 72 . 1 m s
设 a与 x 轴正向的夹角为
大学物理(第四版)课后习题及答案电介质共14页
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差 1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R VR =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 轮船在水上以相对于水的速度 V1 航行, 水流速度为 V2 , 一人相对于甲板以速度 V3 行走。 如人相对于岸静止,则 V1 、 V2 和 V3 的关系是 [答案: V1 + V2 + V3 = 0 ]
r
r
r
r
r
r
。
r
r
r
1.3
一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研 究问题的性质决定。 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3; (2)x=-4t3+3t2+6; (3)x=-2t2+8t+4; (4)x=2/t2-4/t。 给出这个匀变速直线运动在 t=3s 时的速度和加速度,并说明该时刻运动是加速的还 是减速的。 (x 单位为 m,t 单位为 s) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间 的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为
2
一秒钟后质点的速度 (A)等于零 (C)等于 2m/s [答案:D]
(B)等于-2m/s (D)不能确定。
(3) 一质点沿半径为 R 的圆周作匀速率运动,每 t 秒转一圈,在 2t 时间间隔中,其平均 速度大小和平均速率大小分别为 (A)
2πR 2πR , t t
(B) 0,
(C) 0,0 [答案:B] 1.2 填空题
计,求:(1) t =2 s时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时, 其角位移是多少?
解: (1) t = 2 s 时,
ω=
dθ dω = 9t 2 , β = = 18t dt dt
aτ = Rβ = 1×18 × 2 = 36 m ⋅ s −2 a n = Rω 2 = 1 × (9 × 2 2 ) 2 = 1296 m ⋅ s −2
v=
dr dt
a=
d2r dt 2
其二,可能是将
dr d 2 r dr 与 2 误作速度与加速度的模。在 1.6 题中已说明 不是速度的模, dt dt dt d2r 也不是加速度的模,它只是加速度在径向分量中 dt 2
而只是速度在径向上的分量,同样,
2 d2r v dθ 或者概括性地说, 前一种方法只考虑了位矢 r 在径向 (即 的一部分 a径 = 2 − r 。 d t t d v v 量值)方面随时间的变化率,而没有考虑位矢 r 及速度 v 的方向随时间的变化率对速度、加
则 加速度与半径的夹角为
2 a = aτ2 + a n = b2 +
(v0 − bt ) 4 R2
ϕ = arctan
(2)由题意应有
aτ − Rb = a n (v 0 − bt ) 2
a = b = b2 +
(v0 − bt ) 4 R2
即
b2 = b2 +
v0 时, a = b b
(v0 − bt ) 4 , ⇒ (v0 − bt ) 4 = 0 R2
v v v v v v ∆v v4 − v0 4 j a= = = =1j m ⋅ s −2 ∆t 4 4 v v v dv (6) a= = 1 j m ⋅ s −2 dt 这说明该点只有 y 方向的加速度,且为恒量。
1.9 质点沿 x 轴运动,其加速度和位置的关系为 a =2+6 x , a 的单位为 m ⋅ s , x 的单位
1.6 | ∆r |与 ∆r 有无不同? 试举例说明.
dr dr dv dv 和 有无不同? 和 有无不同?其不同在哪里? dt dt dt dt
v v
解:(1) ∆r 是位移的模, ∆ r 是位矢的模的增量,即 ∆r = r2 − r1 , ∆r = r2 − r1 ; (2)
dr dr ds 是速度的模,即 =v = . dt dt dt
dx dy v = v +v = + dt dt
2 x 2 y 2 2 x 2 y
2
2
d2 x d2 y a= a +a = + 2 dt 2 dt
2
而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作
2 2
dr d 2r 及 a = 2 而求得结果;又有人先计算速度和加速度的 dt dt
2
2 2
分量,再合成求得结果,即
dx dy v= + ,a= dt dt
正确?为什么?两者差别何在?
2
d2 x d2 y dt 2 + 2 dt
1.4
v=
dx = 4t + 8 dt d 2x a= 2 =4 dt
t=3s 时的速度和加速度分别为 v=20m/s,a=4m/s2。因加速度为正所以是加速的。 在以下几种运动中, 质点的切向加速度、 法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。 1.5
(2)当加速度方向与半径成 45 即 则解得 于是角位移为
aτ =1 an
Rω 2 = Rβ (9t 2 ) 2 = 18t t3 = 2 9 2 9
θ = 2 + 3t 3 = 2 + 3 × = 2.67rad
1 2 bt 的规律运动,式中 s 为质点离圆周上某点的 2
−2
a=
dv = 4 + 3t dt
dv = (4 + 3t )dt
3 v = 4t + t 2 + c1 2
3 v = 4t + t 2 2 dx 3 v= = 4t + t 2 dt 2 3 dx = (4t + t 2 )dt 2 1 x = 2t 2 + t 3 + c 2 2
由题知 t = 0 , x0 = 5 ,∴ c 2 = 5
故 所以 t = 10 s 时
1 x = 2t 2 + t 3 + 5 2
v10 = 4 × 10 +
3 × 10 2 = 190 m ⋅ s −1 2 1 x10 = 2 × 10 2 + × 10 3 + 5 = 705 m 2
1.11
一质点沿半径为1 m 的圆周运动,运动方程为
θ =2+3 t 3 ,式中 θ 以弧度计, t 以秒
你认为两种方法哪一种
解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 r = xi + yj ,
v
v
v
v v dr dx v dy v = i+ j ∴v = dt dt dt v v d2r d2 x v d2 y v a= 2 = 2 i+ 2 j dt dt dt
故它们的模即为
(3)∵
v v v v v v r0 = 5i − 4 j , r4 = 17i + 16 j
v v v v v v v v ∆r r4 − r0 12i + 20 j v= = = = 3i + 5 j m ⋅ s −1 ∆t 4−0 4
∴
(4) 则 (5)∵
v v v v dr v= = 3i + (t + 3) j m ⋅ s −1 dt v v v v 4 = 3i + 7 j m ⋅ s −1 v v v v v v v0 = 3i + 3 j , v 4 = 3i + 7 j
∴当 t =
1.13 飞轮半径为0.4 m,自静止启动,其角加速度为 β=ٛ0.2 rad・ s ,求 t =2s时边缘 上各点的速度、法向加速度、切向加速度和合加速度. 解:当 t = 2 s 时, ω = βt = 0.2 × 2 = 0.4 rad ⋅ s 则 v = Rω = 0.4 × 0.4 = 0.16 m ⋅ s
2
−2
为 m. 质点在 x =0处,速度为10 m ⋅ s ,试求质点在任何坐标处的速度值. 解: ∵
−1
a=
dv dv dx dv = =v dt dx dt dx
分离变量: 两边积分得
vdv = adx = (2 + 6 x 2 )dx
1 2 v = 2x + 2x3 + c 2
由题知, x = 0 时, v0 = 10 ,∴ c = 50 ∴
,所以 ∵有 v = v τ (τ 表轨道节线方向单位矢)
v v
v v dv dv v dτ = τ +v dt dt dt
式中
dv 就是加速度的切向分量. dt v v ˆ dτ ˆ dr (Q 的运算较复杂,超出教材规定,故不予讨论) 与 dt dt
1.7 设质点的运动方程为 x = x ( t ), y = y ( t ),在计算质点的速度和加速度时,有人先求 出r= x + y ,然后根据 v =
1.12 质点沿半径为 R 的圆周按 s = v0 t −
弧长, v 0 , b 都是常量,求:(1) t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等 于b . 解: (1)