【经典】常用的求导和定积分公式(完美)
高等数学公式(定积分 微积分 三角函数 导函数 等等 应有尽有) 值得搜藏Word版
![高等数学公式(定积分 微积分 三角函数 导函数 等等 应有尽有) 值得搜藏Word版](https://img.taocdn.com/s3/m/c8fa4ab476a20029bd642de4.png)
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C=++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
常用的求导和定积分公式.doc
![常用的求导和定积分公式.doc](https://img.taocdn.com/s3/m/9ab7b7b0f12d2af90342e60d.png)
一.基本初等函数求导公式(1) (2)(3) (4)(5) (6)(7) (8)(9) (10)(11) (12) ,(13) (14)(15) (16)函数的和、差、积、商的求导法则设,都可导,则( 1)( 2)(是常数)( 3)( 4)反函数求导法则若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且或复合函数求导法则设,而且及都可导,则复合函数的导数为或二、基本积分表( 1) kdx kx C ( k 是常数)( 2)x dx x 1C , (u1)1( 3)1dx ln | x | C xdx( 4)arl tan x C21 x( 5)dxarcsin x C 1 x2( 6)cos xdx sin x C ( 7) sin xdx cos x C( 8)1dx tan x C 2cos x( 9)12 dx cot x Csin x(10) secx tan xdx secx C( 11)cscx cot xdx cscx C( 12)e x dx e x C( 13)a x dx a x C , (a 0, 且 a 1)ln a( 14)shxdx chx C( 15)chxdx shx C (16)(17)(18)(19)(20)a 21 2 dx1arc tanxCx a ax2 1 2 dx1ln |x a| Ca 2a x a1 dx arc sinxCa2 x2 a1 dx ln( x a2 x2 ) C a2 x2dxa2ln | x x2 a2 | C x2( 21)tan xdx ln | cosx | C( 22)cot xdx ln | sin x | C( 23)secxdx ln | secx tan x | C( 24)cscxdx ln | cscx cot x | C注: 1、从导数基本公式可得前 15 个积分公式, (16)-(24)式后几节证。
【经典】常用的求导和定积分公式(完美)
![【经典】常用的求导和定积分公式(完美)](https://img.taocdn.com/s3/m/f031908f0722192e4536f6ca.png)
.基本初等函数求导公式(1)(C) =0(2) (X ,)-七心⑶ (sin x) = cosx(4)(cosx) - -sinx (5)(tan x)二 sec x(6)(cot x)二- csc 2x⑺(secx) = secxtan x (8) (cscx) = - cscx cot x(9)(a xf-a xln a(10)(e x)—函数的和、差、积、商的求导法则= u (x ),v=v (x )都可导,则反函数求导法则若函数x= Uy )在某区间Iy 内可导、单调且(y^"0,则它的反函数y = f (x )在对应区间Ix内也可导,且(11)DU(12)(ln x)二丄x , (13) (arcsin x),=( 1-x 2(14)(arccosx)" =1 - x(15)(arctan x)1 +x(arccot x)=(16)1 1 x 2(1)(U 士 V )= u 士 V(2)(Cu )'C 「( C 是常数)(3)(uv) = u v uv(4)v 2少丄 dx 一 dxdy复合函数求导法则设y= f (u),而U v (x)且f (u)及(x)都可导,则复合函数 y = f [「(x)]的导数为、基本积分表(1)kdx=kx ・c ( k 是常数)(2)x'dx 二+ C, (u 」1)."1 1(3) dx = I n | x | C • x dx(4)= arl tan x C ‘1 +x 2(6) cosxdx =s in x C (7) sin xdx = -cosx C1(8) 厂dx = ta n x C ' cos x1(9) 厂 dx = - cot x C ' sin x(10)secxtanxdx^secx Cf (X )二 dy dy_du dx du dx 或 y\f (U)L (x)(5)(11) cscxcot xdx = - cscx C (12)e xdx =e xCx(13) a x dx— C , (a 0,且 a 厂1) In a(14) shxdx 二 chx C (15)chxdx = shx C1 x=—arc tan — C a a1 1 x —a(17)二 ------ 2 dx ln || C x -a 2a x+axdx 二 arc sin — C■ a 2-x 2a(19) J , 1 dx = ln(x + Ja 2 +x 2) + C ,Ja 2 +x 2 (20) J —dx = ln | x + J x 2 _a 2 | +C$ !2 2 1 1.x -a(21) tanxdx 二-ln |cosx | C (22) cotxdx=ln |sinx | C (23) secxdx = l n |secx tanx| C (24) cscxdx = l n|cscx-cotx| C注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
常用导数+积分公式
![常用导数+积分公式](https://img.taocdn.com/s3/m/7cb8d4e0f71fb7360b4c2e3f5727a5e9856a27c4.png)
常⽤导数+积分公式
1. 导数
1.1 导数基本公式
1.2 导数的四则运算法则
1.3 复合函数求导法则
2. 积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。
在应⽤上,积分作⽤不仅如此,它被⼤量应⽤于求和,通俗的说是求曲边三⾓形的⾯积,这巧妙的求解⽅法是积分特殊的性质决定的。
2.1 不定积分
设
是函数f(x)的⼀个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进⾏积分。
2.2 定积分
积分是微积分学与数学分析⾥的⼀个核⼼概念。
通常分为定积分和不定积分两种。
直观地说,对于⼀个给定的实函数f(x),在区间[a,b]上的定积分记为:
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平⾯上,曲由线(x,f(x))、直线
x=a、x=b以及x轴围成的⾯积值(⼀种确定的实数值)。
2.3 基本积分公式
2.4 积分的基本运算法则。
积分求导公式表
![积分求导公式表](https://img.taocdn.com/s3/m/54bd4ac3a5e9856a57126063.png)
1x11x,, 4dx,arcsin,C ,,3dx,arctan,C,,2222aaaa,xa,x
11x,a ,,5dx,ln,C,222ax,ax,a
bba
f(x)dx,f(t)dtf(x)dx,0,,,aaa (1) (2)
bcb
f(x)dx,f(x)dx,f(x)dxba,,,aac (3) (4) ,,,,fxdx,,fxdx,,ab
4、积分定理:
,x,,(1) ,,,,ftdt,fx,,,a,,
,bx,,,,,,(2),,,,,,,,,, ,,,,ftdt,fbxbx,faxax,,,,,ax,,
bbf(x)dx,F(x),F(b),F(a)a,a(3)若F(x)是f(x)的一个原函数,则
5、积分方法
ax,b,t;设: ,,,,1fx,ax,b
22x,asint;设: ,,,,2fx,a,x
22 ;设: x,asect,,fx,x,a
22x,atant ;设: ,,fx,a,x
udv,uv,vdu分部积分法: ,,3,,
积分求导公式表
积分与求导公式最全
![积分与求导公式最全](https://img.taocdn.com/s3/m/ae7b14cdd1d233d4b14e852458fb770bf68a3b64.png)
积分与求导公式最全一、求导公式求导是对函数进行微分运算,求函数的导数。
导数有一些基本的运算规则,下面是一些常用的求导公式。
1.常数函数的导数为0:如果f(x)=c,其中c为常数,则f'(x)=0。
2. 幂函数的导数:如果f(x)=x^n,其中n为常数,则f'(x)=nx^(n-1)。
3. 指数函数的导数:如果f(x)=a^x,其中a为常数且a>0,则f'(x)=ln(a) * a^x。
4. 对数函数的导数:如果f(x)=ln(x),其中x>0,则f'(x)=1/x。
5. 三角函数的导数:如果f(x)=sin(x),则f'(x)=cos(x);如果f(x)=cos(x),则f'(x)=-sin(x);如果f(x)=tan(x),则f'(x)=sec^2(x)。
6. 反三角函数的导数:如果f(x)=arcsin(x),则f'(x)=1/√(1-x^2);如果f(x)=arccos(x),则f'(x)=-1/√(1-x^2);如果f(x)=arctan(x),则f'(x)=1/(1+x^2)。
7. 对数导数:如果f(x)=log_a(x),其中a为常数且a>0,则f'(x)=1/(xln(a))。
8.基本四则运算法则:求导公式也满足基本的四则运算法则,例如:如果f(x)=u(x)+v(x),则f'(x)=u'(x)+v'(x)。
二、积分公式积分是对函数进行求和运算,求解函数的原函数。
积分有一些基本的规则和公式,下面是一些常用的积分公式。
1. 常数函数的积分:∫(c)dx = cx + C,其中c为常数,C为积分常数。
2. 幂函数的积分:∫(x^n)dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为积分常数。
3. 指数函数的积分:∫(e^x)dx = e^x + C,其中C为积分常数。
常用求导与定积分公式(完美)培训讲学
![常用求导与定积分公式(完美)培训讲学](https://img.taocdn.com/s3/m/197d4f0a804d2b160b4ec0ae.png)
常用求导与定积分公式(完美)仅供学习与交流,如有侵权请联系网站删除 谢谢2一.基本初等函数求导公式(1) 0)(='C(2) 1)(-='μμμx x (3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan ='(6)x x 2csc )(cot -='(7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9)a a a x x ln )(=' (10) (e )e xx '=(11)a x x a ln 1)(log =' (12)x x 1)(ln =',(13) 211)(arcsin x x -='(14) 211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+ 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间x I 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则仅供学习与交流,如有侵权请联系网站删除 谢谢3设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰(5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰仅供学习与交流,如有侵权请联系网站删除 谢谢4(11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+⎰ (19)ln(x C =+(20)ln |x C =+⎰(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
求导公式表、积分方法及泰勒公式
![求导公式表、积分方法及泰勒公式](https://img.taocdn.com/s3/m/fe9671b5960590c69ec376c1.png)
一、导数的四则运算法则()u v u v '''±=±()uv u v uv '''=+2u u v uv v v '''-⎛⎫= ⎪⎝⎭二、基本导数公式⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '= ⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()x xe e '=⑽()ln x x a a a'=⑾()1ln x x'=⑿()1log ln xax a '=⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+ ⒄()1x '=⒅'=三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax bn ax bea e++=⋅ (3)()()ln n xx n aa a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+(7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1logln x a d dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a =++⎰ 2211ln 2x a dx c x a a x a-=+-+⎰arcsinx c a =+ ln x c =++八、下列常用凑微分公式九、分部积分法公式⑴形如n axx e dx ⎰,令n u x =,axdv e dx =形如sin nx xdx ⎰令nu x =,sin dv xdx =形如cos nx xdx ⎰令nu x =,cos dv xdx =⑵形如arctan nx xdx ⎰,令arctan u x =,n dv x dx =形如ln nx xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos axe xdx ⎰令,sin ,cos axu e x x =均可。
基本求导积分公式
![基本求导积分公式](https://img.taocdn.com/s3/m/51a4766fec630b1c59eef8c75fbfc77da26997c3.png)
基本求导积分公式求导积分是微积分中最基本的概念之一,它们可以帮助我们理解函数的性质和计算函数在特定区间的变化。
在本文中,我将为您介绍一些基本的求导和积分公式,并详细解释它们的推导和应用。
一、求导公式1.常数函数求导公式如果f(x)=c,其中c是常数,那么f'(x)=0。
因为常数函数没有变化率,所以它的导数永远为零。
2.幂函数求导公式如果 f(x)=x^n,其中 n 是实数,则有 f'(x) = nx^(n-1)。
这个公式可以通过对函数 f(x) 进行直接求导来得到,也可以通过使用指数函数的导数公式来得到。
3.指数函数求导公式如果 f(x)=a^x,其中 a 是正数且a ≠ 1,那么 f'(x) = a^x * ln(a)。
这个公式可以通过对函数 f(x) 进行直接求导来得到。
4.对数函数求导公式如果 f(x)=log_a(x),其中 a 是正数且a ≠ 1,那么 f'(x) =1/(x * ln(a))。
这个公式可以通过对函数 f(x) 进行直接求导来得到。
5.三角函数求导公式(1) sin(x) 的导数是 cos(x);(2) cos(x) 的导数是 -sin(x);(3) tan(x) 的导数是 sec^2(x),其中 sec(x) 是 secant 函数,其定义为 sec(x) = 1/cos(x);(4) cot(x) 的导数是 -csc^2(x),其中 csc(x) 是 cosecant 函数,其定义为 csc(x) = 1/sin(x);(5) sec(x) 的导数是 sec(x) * tan(x);(6) csc(x) 的导数是 -csc(x) * cot(x)。
6.反三角函数求导公式(1) arcsin(x) 的导数是1/√(1-x^2);(2) arccos(x) 的导数是 -1/√(1-x^2);(3) arctan(x) 的导数是 1/(1+x^2);(4) arccot(x) 的导数是 -1/(1+x^2);(5) arcsec(x) 的导数是 1/(,x,* √(x^2-1));(6) arccsc(x) 的导数是 -1/(,x,* √(x^2-1))。
(完整word版)高等数学公式(定积分微积分三角函数导函数等等应有尽有)值得搜藏
![(完整word版)高等数学公式(定积分微积分三角函数导函数等等应有尽有)值得搜藏](https://img.taocdn.com/s3/m/18ec8a9e0b4e767f5bcfce2f.png)
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
高等数学导数积分公式大全
![高等数学导数积分公式大全](https://img.taocdn.com/s3/m/32012b95c67da26925c52cc58bd63186bceb92a0.png)
高等数学导数积分公式大全数学是一种抽象语言,它以一系列规则和公式来描述客观事物,使你能用数字和数学符号表达出这种客观事物。
这些规则和公式的正确使用,使复杂的问题变得更加可操作性。
其中,高等数学导数积分是一个重要的研究方向。
它包含了一系列有关求导和求积分的公式,是理解数学、研究计算机科学等相关学科过程中不可或缺的重要元素。
这里,介绍几个比较常见的高等数学导数积分公式:首先是求导公式,求导最基本的公式是泰勒公式,它表达的是曲线在点a处的切线斜率。
它的表达式如下:f(a)=lim(h->1) (f(a+h)-f(a))/h接下来是欧拉公式,它是有关函数的偏导数的求解公式。
它的表达式如下:fxy(a,b)=lim((Δx,Δy)->(0,0)) (f(a+Δx,b+Δy)-f(a,b))/(Δx)再来就是梯度公式,它是求取函数的梯度。
它的表达式如下:gradf(a,b)=(fxa(a,b),fxy(a,b))积分的话,有牛顿-森定积分和拉格朗日积分。
牛顿-森定积分是高等数学中最基本的积分计算方法,它的表达式如下:∫f(x)dx=lim(n->∞)n (f(x1)+f(x2)+…+f(xn))拉格朗日积分是微分方程在某些特殊情况下的解法,它的表达式如下:∫f(x)dx=Σc f(x)*Δt以上就是高等数学导数积分公式大全。
以上公式皆是解决数学问题时需要熟练掌握的,学生在学习过程中应重视练习,牢记背诵,以求解更多的数学问题。
此外,高等数学还包括一些其他的知识,比如几何学、代数学、概率论等。
在学习这些知识时,同样要把握在了解其特点和定义基础上,还要加强练习,以求能够熟练掌握,才能更好地学习和理解高等数学。
常用基本初等函数求导公式积分公式
![常用基本初等函数求导公式积分公式](https://img.taocdn.com/s3/m/ff5aef9c29ea81c758f5f61fb7360b4c2f3f2a76.png)
常用基本初等函数求导公式积分公式常用的基本初等函数求导公式有:1.常数函数求导公式:对于常数函数f(x)=C,其中C是一个常数,其导函数为f'(x)=0。
2.幂函数求导公式:对于幂函数f(x) = x^n,其中n是任意实数,其导函数为f'(x) =nx^(n-1)。
3.指数函数求导公式:对于指数函数f(x) = a^x,其中a是一个大于0且不等于1的常数,其导函数为f'(x) = ln(a) * a^x。
4.对数函数求导公式:对于自然对数函数f(x) = ln(x),其导函数为f'(x) = 1/x。
5.三角函数求导公式:a) 正弦函数求导公式:f(x) = sin(x)的导函数为f'(x) = cos(x)。
b) 余弦函数求导公式:f(x) = cos(x)的导函数为f'(x) = -sin(x)。
c) 正切函数求导公式:f(x) = tan(x)的导函数为f'(x) =sec^2(x)。
6.反三角函数求导公式:a) 反正弦函数求导公式:f(x) = arcsin(x)的导函数为f'(x) =1/√(1 - x^2)。
b) 反余弦函数求导公式:f(x) = arccos(x)的导函数为f'(x) = -1/√(1 - x^2)。
c) 反正切函数求导公式:f(x) = arctan(x)的导函数为f'(x) =1/(1 + x^2)。
常用的基本初等函数积分公式有:1.幂函数积分公式:对于幂函数f(x) = x^n,其中n不等于-1,其不定积分为∫x^n dx= (1/(n+1)) x^(n+1) + C,其中C为积分常数。
2.反函数积分公式:对于反函数f(x) = F^(-1)(x),其中F(x)为连续可导函数,其不定积分为∫f(x) dx = x * F(x) - ∫F(x) dF(x) + C,其中C为积分常数。
常用的求导和定积分公式
![常用的求导和定积分公式](https://img.taocdn.com/s3/m/8bafdae6dc3383c4bb4cf7ec4afe04a1b171b044.png)
常用的求导和定积分公式一、常用的求导公式1. 幂函数:若f(x) = x^n,其中n为实数,则有f'(x) = nx^(n-1)2. 指数函数:若f(x) = a^x,其中a为正实数且a ≠ 1,则有f'(x) = a^x * ln(a)3. 对数函数:若f(x) = log_a(x),其中a为正实数且a ≠ 1,则有f'(x) = 1/(x * ln(a))4.三角函数:- 正弦函数:若f(x) = sin(x),则有f'(x) = cos(x)- 余弦函数:若f(x) = cos(x),则有f'(x) = -sin(x)- 正切函数:若f(x) = tan(x),则有f'(x) = sec^2(x)5.反三角函数:- 反正弦函数:若f(x) = arcsin(x),则有f'(x) = 1/sqrt(1 - x^2)- 反余弦函数:若f(x) = arccos(x),则有f'(x) = -1/sqrt(1 - x^2)- 反正切函数:若f(x) = arctan(x),则有f'(x) = 1/(1 + x^2) 6.双曲函数:- 双曲正弦函数:若f(x) = sinh(x),则有f'(x) = cosh(x)- 双曲余弦函数:若f(x) = cosh(x),则有f'(x) = sinh(x)- 双曲正切函数:若f(x) = tanh(x),则有f'(x) = sech^2(x)1. 常数函数:∫c dx = cx + C,其中C为常数2. 幂函数:若f(x) = x^n,其中n ≠ -1,则有∫x^n dx =(x^(n+1))/(n+1) + C3. 指数函数:若f(x) = a^x,其中a > 0且a ≠ 1,则有∫a^x dx = (a^x)/(ln(a)) + C4. 对数函数:若f(x) = log_a(x),其中a > 0且a ≠ 1,则有∫1/x dx = ln,x, + C5.三角函数:(以下a、b和c为常数)- 正弦函数:∫sin(ax) dx = -1/a * cos(ax) + C- 余弦函数:∫cos(bx) dx = 1/b * sin(bx) + C- 正切函数:∫tan(cx) dx = -1/c * ln,cos(cx), + C6.双曲函数:(以下a为常数)- 双曲正弦函数:∫sinh(ax) dx = (1/a) * cosh(ax) + C- 双曲余弦函数:∫cosh(ax) dx = (1/a) * sinh(ax) + C- 双曲正切函数:∫tanh(ax) dx = (1/a) * ln,cosh(ax), + C以上只是常用的求导和定积分公式的一部分,实际上还有很多其他的公式,在具体的数学应用中根据具体问题选择适用的公式。
常用求导与定积分公式
![常用求导与定积分公式](https://img.taocdn.com/s3/m/fa5b65b481c758f5f61f67e9.png)
一.基本初等函数求导公式(1) 0)(='C(2) 1)(−='μμμx x(3)x x cos )(sin ='(4)x x sin )(cos −='(5) x x 2sec )(tan =' (6)x x 2csc )(cot −=' (7) x x x tan sec )(sec ='(8)x x x cot csc )(csc −='(9)a a a x x ln )(=' (10) (e )e x x '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x −='(14)211)(arccos x x −−='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=−+函数的和、差、积、商的求导法则设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2)u C Cu '=')((C 是常数)(3)v u v u uv '+'=')((4) 2v v u v u v u '−'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则 设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠− (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =−+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=−+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =−+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a−=+−+⎰ (18)sin xarc C a =+(19)ln(x C =++(20)ln ||x C =+(21)tan ln |cos |xdx x C =−+⎰(22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =−+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
16个微积分公式
![16个微积分公式](https://img.taocdn.com/s3/m/ecc60661ae45b307e87101f69e3143323968f5be.png)
16个微积分公式微积分是数学的一个重要分支,研究的是函数的极限、导数和积分等概念及其应用。
下面将介绍16个微积分公式,包括导数和积分的基本公式以及一些常用的微积分技巧。
一、导数的基本公式1. 常数函数的导数公式:常数函数的导数为0。
这是因为常数函数在任意点的斜率都是0。
2. 幂函数的导数公式:幂函数的导数等于指数乘以底数的指数减1。
3. 指数函数的导数公式:指数函数的导数等于该函数自身乘以底数的自然对数。
4. 对数函数的导数公式:对数函数的导数等于该函数自身除以自变量。
5. 三角函数的导数公式:三角函数的导数可以通过基本的三角函数关系推导得出。
二、积分的基本公式1. 定积分的基本公式:定积分可以看作是函数在给定区间上的面积。
计算定积分可以使用牛顿-莱布尼茨公式,即求导和积分的逆运算。
2. 不定积分的基本公式:不定积分是积分的一种形式,表示函数的原函数。
计算不定积分可以使用导数和积分的基本公式。
三、微积分的常用技巧1. 函数的导数与原函数的关系:函数的导数可以用来求函数的原函数,而函数的原函数可以用来求函数的积分。
2. 导数的链式法则:如果一个函数是两个函数的复合函数,那么它的导数可以通过链式法则来计算。
3. 积分的换元法:积分的换元法是一种常用的求积法则,可以通过变量代换来简化积分的计算。
4. 积分的分部积分法:分部积分法是积分的一种常用技巧,可以将一个复杂的积分转化为两个简单的积分。
5. 积分的化简技巧:有时候,积分的式子可以通过一些化简技巧来简化,如分子分母的拆分、积分区间的变换等。
6. 导数的极值问题:导数可以用来求函数的极值点,通过判断导数的正负可以确定函数的增减性。
7. 积分的应用:积分在物理学、经济学等领域有广泛的应用,如求曲线的长度、求物体的质心等。
8. 微分方程的解法:微分方程是微积分的一个重要应用,可以用来描述物理系统的变化规律。
求解微分方程可以通过积分的方法来得到解析解。
9. 隐函数的求导:隐函数是指用一个方程来表示的函数,它的导数可以通过求偏导数来计算。
高等数学微积分公式大全
![高等数学微积分公式大全](https://img.taocdn.com/s3/m/75002d39bb1aa8114431b90d6c85ec3a86c28b5b.png)
高等数学微积分公式大全高等数学微积分公式是高等数学中重要的一部分,也是我们在研究数学问题和应用数学技术时必须掌握的基础。
下面就让我们来看看高等数学微积分中常用的公式吧。
第一部分:导数公式1. 导数的定义公式$$f'(x)=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$2. 导数的四则运算公式$$\left(f(x)\pm g(x)\right)'=f'(x)\pm g'(x)$$$$\left(f(x)g(x)\right)'=f'(x)g(x)+f(x)g'(x)$$$$\left(\frac{f(x)}{g(x)}\right)'=\frac{f'(x)g(x) -f(x)g'(x)}{g^2(x)}(g(x)\neq 0)$$$$\left(g(f(x))\right)'=g'(f(x))f'(x)$$3. 高阶导数公式$$f''(x)=(f'(x))'$$$$f'''(x)=(f''(x))'$$$$f^{(n)}(x)=\left(f^{(n-1)}(x)\right)'$$4. 链式法则$$\frac{d}{dx}f(g(x))=f'(g(x))g'(x)$$5. 反函数求导若$f(x)$的反函数为$y=g(x)$,则有$$\frac{d}{dx}g(x)=\frac{1}{f'(g(x))}$$6. 隐函数求导设有方程$F(x,y)=0$,其中$y$是$x$的隐函数,则有$$\frac{dy}{dx}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$$第二部分:微分公式7. 微分的定义公式$$df(x)=f'(x)dx$$8. 微分的四则运算公式$$(u\pm v)'=u'dx\pm v'dx$$$$(uv)'=(u'v+uv')dx$$$$\left(\frac{u}{v}\right)'=\frac{u'v-uv'}{v^2}dx(v\neq 0)$$$$(g\circ f)'=(g'\circ f)f'dx$$9. 高阶微分公式$$d^2y=d(dy)=d\left(\frac{dy}{dx}\right)=\frac{d^ 2y}{dx^2}dx$$$$d^3y=d(d^2y)=d\left(\frac{d^2y}{dx^2}\right)=\f rac{d^3y}{dx^3}dx$$$$d^ny=d(d^{n-1}y)=d\left(\frac{d^{n-1}y}{dx^{n-1}}\right)=\frac{d^ny}{dx^n}dx$$10. 多元函数微分公式设$z=f(x,y)$,则有$$dz=\frac{\partial z}{\partialx}dx+\frac{\partial z}{\partial y}dy$$其中,$\frac{\partial z}{\partial x}$表示$f(x,y)$对$x$的偏导数,$\frac{\partial z}{\partialy}$表示$f(x,y)$对$y$的偏导数。
高等数学积分导数公式
![高等数学积分导数公式](https://img.taocdn.com/s3/m/dc3382e00129bd64783e0912a216147916117e75.png)
高等数学积分导数公式高等数学中的积分和导数是两个重要的概念,它们在微积分中起着至关重要的作用。
积分和导数的公式是我们研究和解决各种数学问题的基础工具。
本文将介绍一些高等数学中常用的积分和导数公式,帮助读者更好地理解和掌握微积分的核心概念和方法。
一、基本积分公式1.常数函数积分公式:∫kdx=kx+C,其中k为常数,C为常数项。
2.幂函数积分公式:∫x^ndx=1/(n+1)x^(n+1)+C,其中n不等于-13.指数函数积分公式:∫e^xdx=e^x+C。
4.三角函数积分公式:(1)∫sinxdx=-cosx+C。
(2)∫cosxdx=sinx+C。
(3)∫sec^2xdx=tanx+C。
(4)∫csc^2xdx=-cotx+C。
(5)∫secxdxtanxdx=secx+C。
二、基本导数公式1.常数函数导数公式:d/dx(k)=0,其中k为常数。
2.幂函数导数公式:d/dx(x^n)=nx^(n-1),其中n是任意实数。
3.指数函数导数公式:d/dx(e^x)=e^x。
4.对数函数导数公式:d/dx(lnx)=1/x。
5.三角函数导数公式:(1)d/dx(sinx)=cosx。
(2)d/dx(cosx)=-sinx。
(3)d/dx(tanx)=sec^2x。
(4)d/dx(cotx)=-csc^2x。
(5)d/dx(secx)=secxtanx。
(6)d/dx(cscx)=-cscxcotx。
三、基本积分和导数公式的应用1.利用基本积分公式计算确定积分的值。
例如,∫(2x+3)dx=x^2+3x+C。
2.利用基本导数公式计算函数在特定点的导数。
例如,求函数f(x)=3x^2-8x+5在x=2的导数,可使用f'(2)=6(2)-8=43.应用积分和导数来求解各种数学问题。
例如,利用导数和积分来计算曲线的切线和曲线下面积,求解极值点等。
四、基本积分和导数公式的拓展1.利用线性公式,可以把求和的情况化为求一个个积分,例如∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx。
常用的求导和定积分公式(完美版)
![常用的求导和定积分公式(完美版)](https://img.taocdn.com/s3/m/60acd9c904a1b0717fd5dd7d.png)
一.基本初等函数求导公式(1) 0)(='C(2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a x x ln )(='(10) (e )e xx '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -=' (14)211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=二、基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x=++⎰ (5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰(18)sinxarc C a=+⎰(19)ln(x C =+(20)ln |x C =+⎰(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰(24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.基本初等函数求导公式
(1)
(C) =0
(2) (X ,)-七心
⑶ (sin x) = cosx
(4)
(cosx) - -sinx (5)
(tan x)二 sec x
(6)
(cot x)二- csc 2
x
⑺
(secx) = secxtan x (8) (cscx) = - cscx cot x
(9)
(a x
f-a x
ln a
(10)
(e x
)—
函数的和、差、积、商的求导法则
= u (x ),v
=v (x )都可导,则
反函数求导法则
若函数
x
= Uy )在某区间Iy 内可导、单调且
(y
^"0,则它的反函数y = f (x )在对应区间Ix
内也可导,且
(11)
DU
(12)
(ln x)二丄
x , (13) (arcsin x),=( 1
-x 2
(14)
(arccosx)" =
1 - x
(15)
(arctan x)
1 +x
(arccot x)=
(16)
1 1 x 2
(1)
(U 士 V )= u 士 V
(2)
(Cu )'C 「( C 是常数)
(3)
(uv) = u v uv
(4)
v 2
少丄 dx 一 dx
dy
复合函数求导法则
设
y
= f (u),而U v (x)且f (u)及(x)都可导,则复合函数 y = f [「(x)]的导数为
、基本积分表
(1)
kdx=kx ・c ( k 是常数)
(2)
x'dx 二+ C, (u 」1)
."1 1
(3) dx = I n | x | C • x dx
(4)
= arl tan x C ‘1 +x 2
(6) cosxdx =s in x C (7) sin xdx = -cosx C
1
(8) 厂dx = ta n x C ' cos x
1
(9) 厂 dx = - cot x C ' sin x
(10)
secxtanxdx^secx C
f (X )二 dy dy_du dx du dx 或 y
\f (U)L (x)
(5)
(11) cscxcot xdx = - cscx C (12)
e x
dx =e x
C
x
(13) a x dx
— C , (a 0,且 a 厂1) In a
(14) shxdx 二 chx C (15)
chxdx = shx C
1 x
=—arc tan — C a a
1 1 x —a
(17)二 ------ 2 dx ln |
| C x -a 2a x+a
x
dx 二 arc sin — C
■ a 2-x 2
a
(19) J , 1 dx = ln(x + Ja 2 +x 2) + C ,Ja 2 +x 2 (20) J —dx = ln | x + J x 2 _a 2 | +C
$ !2 2 1 1
.x -a
(21) tanxdx 二-ln |cosx | C (22) cotxdx=ln |sinx | C (23) secxdx = l n |secx tanx| C (24) cscxdx = l n|cscx-cotx| C
注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
(16) (18)
3、复习三角函数公式:
c . 2 1 + cos2x
sin2 x cos2 x = 1,tan2 x 1 = sec2 x,sin 2x
=2sin x cosx, cos x =
2
.2 1 -cos2x
sin x =
2
注:由J f[®(x)]®(xdx = f[ (Mid梓x ,此步为凑微分过程,所以第一类换元法也叫
凑微分法。
此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。
小结:
1常用凑微分公式
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。