一元二次方程的解法大全
一元二次方程的几种解法
![一元二次方程的几种解法](https://img.taocdn.com/s3/m/1453b141a417866fb84a8eb6.png)
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
x2 4x 1 0.
x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
6x2 x 5 0.
答:a=6, b=1, c= -5.
例2、 已知:关于x的方程
(2m-1)x2-(m-1)x=5m
是一元二次方程, 求:m的取值范围. 解:∵ 原方程是一元二次方程, ∴ 2m-1≠0,
1 ∴ m≠ 2.
二、一元二次方程的解法
形如 ax2=0 (a≠0) 的一元二次方程的解法:
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
除以二次项系数,得
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一次项 x2 4x 4 1 4.
系数一半的平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
开平方,得
x 2 5.
x1 2 5, x2 2 5.
2xx 3 2x2 1 (不是二次方程)
一元二次方 程的一般形式
完全的一元二次方程
九年级数学 一元二次方程解法大全
![九年级数学 一元二次方程解法大全](https://img.taocdn.com/s3/m/c8e4f99a77232f60dccca15c.png)
一元二次方程有哪些解法?解法怎么用?1.配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0把常数项移项得:x^2+2x=3等式两边同时加1(构成完全平方式)得:x^2+2x+1=4因式分解得:(x+1)^2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当2.公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b^2-4ac0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”.如:解方程:x^2+2x+1=0利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-14.直接开平方法(可解部分一元二次方程)5.代数法(可解全部一元二次方程)ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为(y^2+b^2/4-by)除以(by-b^2/2)+c=0再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]怎样求解一元二次方程(四种)怎样求一元二次方程aX²+bX+c=0(a≠0)的在实数域上的解(即实根)?我提供四种方法一、公式法二、配方法三、直接开平方法四、因式分解法下面我一一讲解!•一元二次方程aX²+bX+c=0(a≠0)1.1先判断△=b²-4ac,若△<0原方程无实根;2. 2 若△=0,原方程有两个相同的解为:X=-b/(2a);3. 3 若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
一元二次方程的解法和应用
![一元二次方程的解法和应用](https://img.taocdn.com/s3/m/4778874002d8ce2f0066f5335a8102d277a26165.png)
一元二次方程的解法和应用一元二次方程是高中数学中常见的一类方程,它具有形如ax² + bx + c = 0的一般形式,其中a、b、c为常数且a ≠ 0。
解一元二次方程的方法有两种:因式分解法和求根公式法。
本文将介绍这两种解法以及一元二次方程在实际生活中的应用。
一、因式分解法因式分解法是解一元二次方程的一种基本方法,它的核心思想是将方程进行因式分解,然后使得每个因式为零。
具体步骤如下:步骤一:将一元二次方程写成标准形式ax² + bx + c = 0。
步骤二:观察方程,尝试将其因式分解为(a₁x + b₁)(a₂x + b₂) = 0的形式。
步骤三:令每个因式为零,得到两个一元一次方程,分别求解。
步骤四:求解得到的一元一次方程的根,并代回原方程验证。
步骤五:得到一元二次方程的解集。
二、求根公式法求根公式法是解一元二次方程的另一种常用方法,它基于二次方程的通解公式:x = (-b ± √(b²-4ac))/(2a)。
具体步骤如下:步骤一:将一元二次方程写成标准形式ax² + bx + c = 0。
步骤二:根据求根公式,计算出方程的两个根。
步骤三:检验根的有效性,即将根代入原方程验证。
三、一元二次方程的应用一元二次方程在实际生活中有着广泛的应用,例如:1. 物理学:一元二次方程常用于描述物体在自由落体运动中的位移、速度、加速度等关系。
2. 经济学:一元二次方程可以用于建立成本、收益、利润等经济模型。
3. 工程学:一元二次方程可用于建模和解决物理工程、电子电路等问题。
4. 生物学:一元二次方程可以用于描述生物种群的增长或衰减规律。
5. 计算机科学:一元二次方程广泛应用于图形学、计算机视觉等领域。
总结:通过因式分解法和求根公式法,我们可以解决一元二次方程的问题。
同时,一元二次方程在实际生活中的广泛应用也说明了它的重要性和实用性。
在学习和应用过程中,我们需要灵活掌握解题方法,并善于将数学理论与实际问题相结合,发挥数学在解决实际问题中的作用。
一元二次方程的几种解法
![一元二次方程的几种解法](https://img.taocdn.com/s3/m/a5fe0c25bcd126fff7050b7d.png)
第一节解一元二次方程的几种方法
1.直接开平方法:利用平方根的定义,直接开平方求一元二次方程的根的方法叫做直接开平方法。
例题1. 解方程(x+3)2=81
解:两边开平方,得x+3=8
即x+3=8或x+3=-8
所以x=5或x=-11
2.因式分解法:因式分解法就是利用因式分解的手段求出方程解的方法。
例题2. 解方程x2+4x+3=0
解:原方程变形为(x+1)(x+3)=0
即x+1=0或x+3=0
所以x=-1或x=-3
3配方法:对于一个一元二次方程,首先利用恒等变形,通过配方把它花为一边含有未知数的完全平方形式,另一边是非负数,再用开平方法解方程的方法就是配方法。
例题3 解方程x2-6=4x
解:移项得x2+4x=6
配方得x2+4x+22=6+22
即(x+2)2=10
x+2=10
±
所以x=-12或x=8
4公式法:由一元二次方程的一般形式ax2+bx+c=0(a≠0),应用配方
法可推出一元二次方程的求根公式为X=
a ac
b b
2
4 2-
±
-例题4 解方程x2+5x+6=0
b2-4ac=52-4×6=1
x=(﹣5±1)/2
即x=﹣3或x=﹣2。
一元二次方程的解法总结
![一元二次方程的解法总结](https://img.taocdn.com/s3/m/884c553eb90d6c85ec3ac669.png)
x a 0或x a 0
x1 a
形如
2
x2 a
的式子运用完全平方公式得:
x2 2ax a 2 0
( x a) 0 x1 x2 a 或 x1 x2 a
例题讲解
例1 解下列方程
16(2 x) 9 0 (1) 解:原方程变形为: 9 2 (2 x) 16
解:提公因式得:
(3x 2)( x 6) 0
(3x 5)( x 2) 0
3x 5 0或x 2 0
3x 2 0或x 6 0
2 x1 3
5 x1 3
x2 6
x2 2
平方差公式与完全平方公式
形如
x2 a2 0 运用平方差公式得:
2
(2) x( x 2) 1 0 解:原方程变形为:
直接开平方得:
x2 2 x 1 0
( x 1)2 0
3 2 x 4 11 5 x2 x1 4 4
x1 x2 1
2 十字相乘法
步骤:
1 二次项系数为1的情况:
将一元二次方程常数项进行分解成两个数(式)p , q的乘 积的形式,且p + q = 一次项系数。
例题讲解
例1. 用配方法解下列方程
x2+6x-7=0
解:
x 6x 7 2 x 6x 9 7 9 2 x 3 16 x 3 4 x1 1 x2 7
2
例题讲解
例2. 用配方法解下列方程
2x2+8x-5=0
5 解: x 4x 2 5 2 x 4x 4 4 2
一元二次方程的几种解法
![一元二次方程的几种解法](https://img.taocdn.com/s3/m/3076b52bfad6195f312ba6bd.png)
写成()2 的形式,得
x2 4x 4 5.
x 22 5.
x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
ቤተ መጻሕፍቲ ባይዱ
x 22 5.
x2 4x 1 0.
(3)3x2 5x 2. 3x2 5x 2 0.
答:a=3, b=-5, c= 2.
(4)2x 13x 2 3. 6x2 4x 3x 2 3,
6x2 x 5 0.
答:a=6, b=1, c= -5.
例2、 已知:关于x的方程
写成()2 的形式,得
x 22 5.
开平方,得
x 2 5.
x1 2 5, x2 2 5.
解这两个方程,得
怎样配方:常数项是一次项 系数一半的平方.
a2±2ab+b2=(a±b)2.
解:
3x2 12x 3 0.
二次项系数化1:两边同时
除以二次项系数,得
x2 2 y 3 0 (不是一元方程)
2xx 3 2x2 1 (不是二次方程)
一元二次方 程的一般形式
完全的一元二次方程
ax2+bx+c=0
ax2+bx+c=0
(a≠0)
不完全的
(a≠0, b≠0, c≠0)
ax2+bx=0 (a≠0,b≠0)
一元二次方程 ax2+c=0 (a≠0,c≠0)
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
一元二次方程的几种解法
![一元二次方程的几种解法](https://img.taocdn.com/s3/m/c120e40b376baf1ffd4fad1a.png)
系数一半的平方,得
2 4 4 2
写成()2 的形式,得
x
7 2
49
24 .
4 16 16
开平方,得
x 7 25 .
4
16
2
x1 , x2 3.
1
解这两个方程,得
44
44
x1 , x2 .
75
75
解法2:配方法
配方法的基本步骤:
1、将二次项系数化为1:两边同时除以二次项系数; 2、移项:将常数项移到等号一边; 3、配方:左右两边同时加上一次项系数一半的平方; 4、等号左边写成( )2 的形式; 5、开平方:化成一元一次方程; 6、解一元一次方程; 7、写出方程的解.
2
2x 22 5.
解:系数化1,得 x 22 5 ,
2
开平方,得
x2
5.
2
x 2 10 或 x 2 10 .
2
2
解这两个一元一次方程,得
2
2
x1 2 10 , x2 2 10 .
解法1:直接开平(a≠0, ac<0) 或 a(x+p)2+q=0 (a≠0, aq<0)
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
解: 3x2 7,
x2 7 , 3
x 7, 3
x 21 , 3 21
(完整版)一元二次方程的解法大全
![(完整版)一元二次方程的解法大全](https://img.taocdn.com/s3/m/0eb1bf8f83c4bb4cf7ecd1d9.png)
一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。
一元二次方程的解法合辑
![一元二次方程的解法合辑](https://img.taocdn.com/s3/m/b250930b777f5acfa1c7aa00b52acfc789eb9fdd.png)
一元二次方程的解法合辑【初中数学】一元二次方程的解法合辑_高校资讯_资讯_中招网_中招考生服务平台_非官方报名平台1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3) 能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
一元二次方程的几种解法
![一元二次方程的几种解法](https://img.taocdn.com/s3/m/d58b9f1f4b35eefdc8d33391.png)
解法1:直接开平方法
凡形如 ax2+c=0 (a≠0, ac<0) 或 a(x+p)2+q=0 (a≠0, aq<0)
的一元二次方程都可用直接开平方法解.
x2 4x 4 5.
x 22 5.
写成()2 的形式,得
x2 4x 4 5.
x 22 5.
x2 4x 1.
写成()2 的形式,得
x 22 5.
开平方,得
x 2 5.
x1 2 5, x2 2 5.
解这两个方程,得
怎样配方:常数项是一次项 系数一半的平方.
a2±2ab+b2=(a±b)2.
解:
3x2 12x 3 0.
二次项系数化1:两边同时
除以二次项系数,得
数,凑成完全平方,得
x2 4x 4 5.
写成()2 的形式,得
x 22 5.
解:
x2 4x 1 0.
移项:将常数项移到等号一边,得 x2 4x 1.
配方:左右两边同时加上一个常 x2 4x 4 1 4.
数,凑成完全平方,得
x2 4x 4 5.
3
3
y1
1
23 3,ຫໍສະໝຸດ y2123 3
,
或写成y1
3
2 3
3
,
y2
32 3
3.
四、小结
1、一元二次方程的概念; 2、两种解法:(1)直接开平方法;
(2)配方法. 3、转化的数学思想.
五、作业
P15 A组 用直接开平方法解下列方
1程. :
一元二次方程的6种解法
![一元二次方程的6种解法](https://img.taocdn.com/s3/m/0fc0f7a4690203d8ce2f0066f5335a8102d26605.png)
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法
![一元二次方程的解法](https://img.taocdn.com/s3/m/bc813cc5bdeb19e8b8f67c1cfad6195f312be8cb.png)
一元二次方程的解法一元二次方程是数学中常见的一种方程形式,通常表示为 ax^2 + bx + c = 0。
解一元二次方程的方法有多种,其中包括求解公式和配方法。
一、求解公式1. 对于一元二次方程 ax^2 + bx + c = 0,其中a ≠ 0,可以使用求解公式来求解。
求解公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)2. 根据求解公式,首先计算出判别式Δ = b^2 - 4ac 的值。
a) 当Δ > 0 时,方程有两个不相等的实数根。
根据求解公式,将Δ 的值代入并计算得到两个根。
b) 当Δ = 0 时,方程有一个重根,即两个相等的实数根。
将Δ 的值代入求解公式,得到重根。
c) 当Δ < 0 时,方程没有实数根。
因为在实数范围内不能对负数开根号,所以方程的解为复数。
二、配方法1. 对于某些特殊的一元二次方程,可以使用配方法来求解。
配方法的基本思想是通过变换将方程转化为可因式分解的形式。
2. 如果一元二次方程的 b 项可以拆成两个数的和或差的平方,那么就可以利用配方法进行求解。
a) 首先,将方程中的 x^2 项系数设置为1,即将方程化为形如 x^2 + px + q = 0 的形式。
b) 找到两个数 a 和 b,使得 a + b = p 和 ab = q。
将这两个数代入方程中进行转化,得到 (x + a)(x + b) = 0。
c) 根据零乘法则,当且仅当 (x + a) = 0 或 (x + b) = 0 时,方程成立。
分别解出 x 的值,即为方程的解。
三、实例应用现举一个具体的例子来说明一元二次方程的解法。
例:解方程 x^2 - 5x + 6 = 0。
1. 使用求解公式求解:首先计算判别式Δ = (-5)^2 - 4(1)(6) = 1。
因为Δ > 0,所以方程有两个不相等的实数根。
将Δ 的值代入求解公式:x1 = (5 + √1) / 2 = (5 + 1) / 2 = 6 / 2 = 3x2 = (5 - √1) / 2 = (5 - 1) / 2 = 4 / 2 = 2方程的解为 x = 3 和 x = 2。
一元二次方程的解法
![一元二次方程的解法](https://img.taocdn.com/s3/m/56658b8a71fe910ef12df813.png)
一元二次方程的解法一元二次方程的解法有:(注:以下^ 是平方的意思。
)一、直接开平方法。
如:x^2-4=0解:x^2=4x=±2(因为x是4的平方根)∴x1=2,x2=-2二、配方法。
如:x^2-4x+3=0解:x^2-4x=-3配方,得(配一次项系数一半的平方)x^2-2*2*x+2^2=-3+2^2(方程两边同时加上2^2,原式的值不变)(x-2)^2=1【方程左边完全平方公式得到(x-2)^2】x-2=±1x=±1+2∴x1=1,x2=3三、公式法。
(公式法的公式是由配方法推导来的)-b±∫b^2-4ac(-b加减后面是根号下b^2-4ac)公式为:x=-------------------------------------------(用中2a文吧,希望你能理解:2a分之-b±根号下b^2-4ac)利用公式法首先要明确什么是a、b、c。
其实它们就是最标准的二元一次方程的形式:ax^2+bx+c=0△=b2-4ac称为该方程的根的判别式。
当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根。
有些时候,做到b2-4ac<0时,需要讨论△,因为根号下的数字是非负数,<0也就没有实数根,也就没有做的意义了。
a代表二次项的系数,b代表着一次项系数,c是常数项注意:用公式法解一元二次方程时首先要化成一般形式,也就是ax^2+bx+c=0的形式,然后才能做。
解题时按照上面的公式,把数字带入计算就OK了。
这对任何一元二次方程都可以操作。
四、十字相乘法。
(这种方法在初中教材上没有,但是老师还是带着说了一点。
相信在高中已经学过了,我就简单的说一下。
)十字相乘简单的说就是交叉相乘,把常数项分解成积等于常数项,和为一次项的系数。
如:x^2+3x+2=0x +1x +2(十字相乘时可以写成这种形式,因为,1*2等于2,且1+2等于3,符合原方程。
一元二次方程的解法规律总结
![一元二次方程的解法规律总结](https://img.taocdn.com/s3/m/ab3e60164a35eefdc8d376eeaeaad1f347931172.png)
一元二次方程的解法规律总结1.一元二次方程的解法1直接开平方法:根据平方根的意义,用此法可解出形如a x 2=a ≥0,b )a x (2=-b ≥0类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2=-的形式,也可以用此法解.2因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程xx -3=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程xx -3=0有两个根,而不是一个根. 3配方法:任何一个形如bx x 2+的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,22226726x 6x ⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++,即2)3x (2=+,从而得解. 注意:1“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1.2解一元二次方程时,一般不用此法,掌握这种配方法是重点.3公式法:一元二次方程0c bx ax 2=++a ≠0的根是由方程的系数a 、b 、c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方程的一般步骤:①先把方程化为一般形式,即0c bx ax 2=++a ≠0的形式;②正确地确定方程各项的系数a 、b 、c 的值要注意它们的符号;③计算0ac 4b 2<-时,方程没有实数根,就不必解了因负数开平方无意义;④将a 、b 、c 的值代入求根公式,求出方程的两个根.说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法.2.一元二次方程根的判别式一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=∆叫做一元二次方程0c bx ax 2=++的根的判别式.△>0⇔方程有两个不相等的实数根.△=0⇔方程有两个相等的实数根. △<0⇔方程没有实数根.判别式的应用1不解方程判定方程根的情况;2根据参数系数的性质确定根的范围;3解与根有关的证明题.3.韦达定理及其应用定理:如果方程0c bx ax 2=++a ≠0的两个根是21x x ,,那么a c x x ab x x 2121=⋅-=+,. 当a =1时,c x x b x x 2121=⋅-=+,.应用:1已知方程的一根,不解方程求另一根及参数系数;2已知方程,求含有两根对称式的代数式的值及有关未知系数;3已知方程两根,求作以方程两根或其代数式为根的一元二次方程;4已知两数和与积求两数.4.一元二次方程的应用1面积问题;2数字问题;3平均增长率问题.步骤:①分析题意,找到题中未知数和题给条件的相等关系包括隐含的;②设未知数,并用所设的未知数的代数式表示其余的未知数;③找出相等关系,并用它列出方程;④解方程求出题中未知数的值;⑤检验所求的答数是否符合题意,并做答.这里关键性的步骤是②和③.注意:列一元二次方程应用题是一元一次方程解应用题的拓展,解题的方法是相同的,但因一元二次方程有两解,要检验方程的解是否符合题意及实际问题的意义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的解法大全【直接开平方法解一元二次方程】
把方程ax2+c=0(a≠0),
这解一元二次方程的方法叫做直接开平方法。
例:用直接开平方法解方程:
1.9x2-25=0;
2.(3x+2)2-4=0;
4.(2x+3)2=3(4x+3).
解:1.9x2-25=0
9x2=25
2.(3x+2)2-4=0
(3x+2)2=4
3x+2=±2
3x=-2±2
∴x1=x2=3.
4.(2x+3)2=3(4x+3)
4x2+12x+9=12x+9
4x2=0
∴x1=x=0.
【配方法解一元二次方程】
将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如
x2+
例:用配方法解下列方程:
1.x2-4x-3=0;2.6x2+x=35;
3.4x2+4x+1=7;4.2x2-3x-3=0.
解:1.x2-4x-3=0
x2-4x=3
x2-4x+4=3+4
(x-2)2=7
2.6x2+x=35
3.4x2+4x+1=7
4.2x2-3x-3=0
【公式法解一元二次方程】一元二次方程ax2+bx+c=0(a
广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法
=0(a≠0)的求根公式。
例:用公式法解一元二次方程:
2.2x2+7x-4=0;
4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x).
2.2x2+7x-4=0
∵a=2,b=7,c=-4.
b2-4ac=72-4×2×(-4)=49+32=81
4.x2-a(3x-2a+b)-b2=0(a-2b≥0)
x2-3ax+2a2-ab-b2=0
∵a=1,b=-3a,c=2a2-ab-b2
b2-4ac=(-3a)2-4×1×(2a2+ab-b2)
=9a2-8a2-4ab+4b2
=a2-4ab+4b2
=(a-2b)2
当(a-2b≥0)时,得
【不完全的一元二次方程的解法】
在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:
例:解下列一元二次方法:
3.(m2+1)x2=0;4.16x2-25=0.
3.(m2+1)x2=0;其中m2+1>0,x2=0.
∴x1=x2=0.4.16x2-25=0
6x2=25。