第二章第五节
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-7
1. 已知y =x 3-x , 计算在x =2处当∆x 分别等于1, 0.1, 0.01时的∆y 及dy . 解 ∆y |x =2, ∆x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ∆x =1=(3x 2-1)∆x |x =2, ∆x =1=11;
∆y |x =2, ∆x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161, dy |x =2, ∆x =0.1=(3x 2-1)∆x |x =2, ∆x =0.1=1.1;
∆y |x =2, ∆x =0.01=[(2+0.01)3-(2+0.01)]-(23
-2)=0.110601,
dy |x =2, ∆x =0.01=(3x 2
-1)∆x |x =2, ∆x =0.01=0.11.
2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、∆y 及∆y - d y 并说明其正负.
解 (a )∆y >0, dy >0, ∆y -dy >0. (b )∆y >0, dy >0, ∆y -dy <0. (c )∆y <0, dy <0, ∆y -dy <0. (d )∆y <0, dy <0, ∆y -dy >0. 3. 求下列函数的微分:
(1)x x
y 21
+=;
(2) y =x sin 2x ; (3)1
2+=x x y ;
(4) y =ln 2(1-x );
(5) y =x 2 e 2x
;
(6) y =e -x cos(3-x );
(7)21arcsin x y -=;
(8) y =tan 2
(1+2x 2
); (9)2
2
11arctan
x x y +-=; (10) s =A sin(ωt +ϕ) (A , ω, ϕ是常数) .
解 (1)因为x
x
y 112+-=', 所以dx x
x
dy )11(2+-=.
(2)因为y '=sin2x +2x cos2x , 所以dy =(sin2x +2x cos2x )dx .
(3)因为1
)1(11
1122222++=
++⋅
-+=
'x x x x x x y , 所以dx x x dy 1
)1(122++=
.
(4)dx x x dx x x dx x dx y dy )1ln(1
2])
1(1)1ln(2[])1([ln 2--=--⋅-='-='=.
(5)dy =y 'dx =(x 2e 2x )'dx =(2x e 2x +2 x 2e 2x )dx =2x (1+x ) e 2x
.
(6) dy =y 'dx =[e -x cos(3-x )]dx =[-e -x cos(3-x )+e -x sin(3-x )]dx =e -x
[sin(3-x )-cos(3-x )]dx . (7)dx x x x dx x x dx x dx y dy 2
2
221||)12()
1(11)1(arcsin
--
=--
⋅--=
'-='=.
(8) dy =d tan 2(1+2x 2)=2tan(1+2x 2)d tan(1+2x 2)=2tan(1+2x 2)⋅sec 2(1+2x 2)d (1+2x 2) =2tan(1+2x 2)⋅sec 2(1+2x 2)⋅4x dx =8x ⋅tan(1+2x 2)⋅sec 2(1+2x 2)dx .
(9))11()
11(1111arctan 22
22
222
x x d x x x
x d dy +-+-+=
+-=
dx x x
dx x x x x x x x 4
222222
214)1()1(2)1(2)
11(11+-=+--+-⋅+-+=. (10) dy =d [A sin(ω t +ϕ) ]=A cos(ω t +ϕ)d (ωt +ϕ)= A ω cos(ωt +ϕ)dx .
4. 将适当的函数填入下列括号内, 使等式成立: (1) d ( )=2dx ; (2) d ( )=3xdx ; (3) d ( )=cos tdt ; (4) d ( )=sin ωxdx ; (5) d ( )dx x 1
1
+=
; (6) d ( )=e -2x dx ; (7) d ( )dx x
1=; (8) d ( )=sec 23xdx . 解 (1) d ( 2x +C )=2dx .
(2) d (C x +22
3
)=3xdx .
(3) d ( sin t +C )=cos tdt . (4) d (C x +-
ωω
cos 1
)=sin ωxdx .
(5) d ( ln(1+x )+C )dx x 1
1
+=
. (6) d (C e x +--22
1
)=e -2x dx .
(7) d (C x +2)dx x
1=.
(8) d (C x +3tan 3
1
)=sec 23xdx .
5. 如图所示的电缆B O A
的长为s , 跨度为2l , 电缆的最低点O 与杆顶连线AB 的距离为f ,