第二章 极限与连续习题解答
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. lim ln (1+α x) = α ;
x→0
x
(2) lim sin
x − sin a
=
lim
2 cos
x + a sin 2
x−a 2
=
cos a ;
x→a x − a
x→a
x−a
( ) (3) lim eαx − eβx
eβ x = lim
e(α −β )x −1
= lim eβx (α − β ) x = α − β .
lim f ( x) = 1 , lim f ( x) = 0 ,则 x = 1 为第一类跳跃间断点.
x→1+
x→1−
⎧x
2.
f
(
x
)
=
⎪ ⎨
0
⎪⎩− x
x < 1, x = 1, x > 1,
f (1+ ) = lim f ( x) = lim (−x) = −1, f (1− ) = lim f ( x) = lim x = 1
tan (2x) ⋅ ln (1+ x) sin (3x) ⋅arctan (2x)
=
lim
x→0
2x⋅ x 3x ⋅2x
=
1 3
;
( ) (2) lim 2 − 1+ cos x = lim
1− cos x
= 1⋅ 1 = 2 ;
x→0
sin2 x
x x→0 2 2 + 1+ cos x 2 2 2 8
x→1+
x→1+
x→1−
x→1−
f (−1+ ) = 1, f (−1− ) = −1
故 x = ±1 为第一类跳跃间断点.
( ) 3. f 0+ = lim f ( x) = lim x cos 1 = 0
x→0+
x→0+
x
f (0− ) = lim f ( x) = lim (a + x2 ) = a
+1
=
lim
x→−1
2−x x2 − x +1
=
1.
( ) 2. 由 lim ax + b − 2 = 1,得 lim ax + b − 2 = 0 ,即 b − 2 = 0 ⇒ b = 4 ,
x→0
x
x→0
又由 lim ax + 4 − 2 = lim
a
= a =1⇒ a = 4.
x→0
x
x→0 ax + 4 + 2 4
又因为 0
<
xn
≤ 10
,
{
百度文库
xn
}
为有界数列,故
lim
n→∞
xn
存在且 lim n→∞
xn
≥
0
;
设 lim n→∞
xn
=
a
,则有
a=
6 + a ,即 a2 − a − 6 = 0 ,
解得
a
=
3或a
=
−2
(舍去),所以 lim n→∞
xn
=
3.
1. x = 0,1 无定义,即为间断点,
又 lim f ( x) = ∞ ,则 x = 0 为第二类无穷间断点; x→0
x→0
x
x→0
x
x→0
x
6. 令 F ( x) = f ( x) − f ( x + π ) ,则 F ( x) ∈C [0,π ]
F (0) = f (0) − f (π ) , F (π ) = f (π ) − f (2π ) = f (π ) − f (0) 若 f (0) = f (π ) ,则ξ = 0 或ξ = π ,结论显然成立; 若 f (0) ≠ f (π ) , 则 F (0) ⋅ F (π ) < 0 , 由 零 点 定 理 , 至 少 存 在 ξ ∈(0,π ) , 使 F (ξ ) = 0 .
1
( ) 3.(1) lim f x→0−
x
=
lim
x→0−
1+
ex
1
= 1;
1− ex
−1
( ) (2) lim f x→0+
x
=
lim
x→0+
ex
−1
+1
=
−1 ;
e x −1
(3) lim f ( x) ≠ lim f ( x) ,故 lim f ( x) 不存在.
x→0−
x→0+
x→0
1.(1) lim x→0
x⋅ 1 x2 2 x3
=
1 2
;
(2)
lim
x→2
sin ( x − 2)
x2 − 4
=
lim
x→2
sin ( x − 2) (x − 2)
⋅
x
1 +
2
=
1 4
;
(3)
lim
x→∞
⎛ ⎜⎝
x − 2 ⎞x x ⎟⎠
=
lim
x→∞
⎛⎜⎝1
−
2
⎞
−
x 2
⋅(
−2)
x ⎟⎠
=
e−2 ;
(4)
lim
x→∞
x→0−
x→0−
x
x→0− a + x + a − x a
( ) ( ) 由 lim f ( x) 存在,即 f 0+ = f 0− ⇒ 1 = 2 ,得 a = 1 .
x→0
a
4
1.(1) lim x→0
tan x − sin x3
x
=
sin lim
x→0
x (1− cos x)
x3 cos x
= lim x→0
x→0−
x→0−
由 f ( x) 在 x = 0 连续,则有,即 a = 0 .
( ) 4.
由于当 x < 0 时
f
( x) = sin x ,当 x > 0 时
f
2
(x) =
1+ x −1
均为初等函数,故
x
x
连续,
x = 0 f (0) =1
( ) ( ) 2
f 0+ = lim f ( x) = lim
n→∞ 1− r 1− r
( ) (4) lim x x +1 − x = lim
x = lim 1 = 1 ;
x→+∞
x→+∞ x +1 + x x→+∞ 1+ 1 +1 2
x
( ) (5)
lim
x→−1
⎛ ⎜⎝
3 x3 +1
−
1⎞ x +1 ⎟⎠
=
lim
x→−1
(x
2+
+ 1)
x − x2 x2 − x
⎛ ⎜ ⎝
x2 x2
+ 1 ⎞x2
−
1
⎟ ⎠
=
lim
x→∞
⎛⎜⎝1
+
2 ⎞ x2 −1⋅2+1 2
x2 −1 ⎟⎠
= e2 .
2. x1 = 10 , x2 = 6 + x1 = 4 ,则 x2 < x1
设 n = k −1 时, xk < xk−1
则n = k 是
{ } xk+1 = 6 + xk < 6 + xk−1 = xk ,所以 xn 是单调递减的数列;
= lim 1 ⋅ 3 ⋅ 2 ⋅ 4 ⋅ 3 ⋅ 5 " n −1 ⋅ n +1 n→∞ 2 2 3 3 4 4 n n
=
lim
n→∞
1 2
⎛⎜⎝1 +
1 n
⎞ ⎟⎠
=
1 2
;
( ) ( ) (3) lim (1+ r ) 1+ r2 " 1+ r2n = lim 1− r2n+1 = 1 ;
n→∞
(3)
lim
x→0
1
−
cos (sin
x2
x)
=
lim
x→0
1 2
sin 2 x2
x
=
1 2
.
2. f (0+ ) = lim f ( x) = lim ln (1+ 2x) = 2
x→0+
x→0+
x
( ) f 0− = lim f ( x) = lim a + x − a − x = lim
2
=1
1+ x −1
2⋅1 x = lim 2 = 1
x→0+
x→0+
x
x x→0+
f (0− ) = lim f ( x) = lim sin x = 1
x→0−
x x→0−
f (0+ ) = f (0− ) = f (0) ,则 f ( x) 在 x = 0 连续
所以 f ( x) 在 (−∞, +∞) 内连续.
第二章 极限与连续
1.(1) lim n→∞
( −2 )n ( −2 )n+1
+ 3n + 3n+1
=
lim
n→∞
⎛ ⎜⎝
−
2 3
⎞n ⎟⎠
+1
( −2 )
⋅
⎛ ⎜⎝
−2 3
⎞n ⎟⎠
+
3
=
1 3
;
(2)
lim
n→∞
⎛⎜⎝1 −
1 22
⎞ ⎟⎠
⎛⎜⎝1 −
1 32
⎞⎟⎠ "⎛⎜⎝1 −
1 n2
⎞ ⎟⎠