高中数学选修2-2第三章复数测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2第三章复数测试题

时间:120分钟 总分:150分 第Ⅰ卷(选择题,共60分)

题号 1 2 3 4 5 6 7 8 9 10 11 12 答案

一、选择题(每小题5分,共60分)

1.i 为虚数单位,⎝

⎛⎭

⎪⎫

1-i 1+i 2=( ) A .-1 B .1 C .-i D .i 2.设复数z =1+2i ,则z 2-2z 等于( )

A .-3

B .3

C .-3i

D .3i

3.若复数z =(x 2-4)+(x -2)i 为纯虚数,则实数x 的值为( ) A .-2 B .0 C .2 D .-2或2 4.如右图,在复平面内,向量OP

→对应的复数是1-i ,将OP →向左平移一个单位后得到O 0P 0→,则P 0对应的复数为( )

A .1-i

B .1-2i

C .-1-i

D .-i

5.已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )

A .5-4i

B .5+4i

C .3-4i

D .3+4i

6.复数z =1+i ,z 为z 的共轭复数,则z z -z -1=( ) A .-2i B .-i C .i D .2i

7.z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),

则z =( )

A .1+i

B .-1-i

C .-1+i

D .1-i

8.满足条件|z -1|=|5+12i|的复数z 在复平面上对应Z 点的轨迹是( )

A .一条直线

B .两条直线

C .圆

D .椭圆

9.定义运算⎪⎪⎪⎪⎪⎪

a c

b d =ad -b

c ,则符合条件⎪⎪⎪⎪⎪⎪1z -1z i =4+2i 的复

数z 为( )

A .3-i

B .1+3i

C .3+i

D .1-3i 10.已知复数z 1=a +2i ,z 2=a +(a +3)i ,且z 1z 2>0,则实数a 的值为( )

A .0

B .0或-5

C .-5

D .以上均不对 11.复数z 满足条件:|2z +1|=|z -i|,那么z 对应的点的轨迹是( )

A .圆

B .椭圆

C .双曲线

D .抛物线 12.设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i)等于( )

A .8

B .6

C .4

D .2

第Ⅱ卷(非选择题,共90分)

二、填空题(每小题5分,共20分) 13.复数i 2(1+i)的实部是__________.

14.复数z =2+i

1+i (i 为虚数单位),则z 对应的点在第________象限.

15.设a ,b ∈R ,a +b i =11-7i

1-2i (i 为虚数单位),则a +b 的值为

________.

16.已知复数z =a +b i(a ,b ∈R +,i 是虚数单位)是方程x 2-4x +5=0的根.复数ω=u +3i(u ∈R)满足|ω-z |<25,则u 的取值范围为________.

三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)

17.(10分)m 为何实数时,复数z =(2+i)m 2-3(i +1)m -2(1-i)是:(1)实数;(2)虚数;(3)纯虚数.

18.(12分)计算:

(1)(2+i )(1-i )21-2i ; (2)4+5i (5-4i )(1-i )

.

19.(12分)已知复数z =(-1+3i )(1-i )-(1+3i )i

,ω=z +a i(a ∈R),当⎪⎪⎪⎪

⎪⎪

ωz ≤2时,求a 的取值范围. 20.(12分)在复平面内,复数z 1在连结1+i 和1-i 的线段上移动,设复数z 2在以原点为圆心,半径为1的圆周上移动,求复数z 1+z 2在复平面上移动范围的面积.

21.(12分)设复数z =x +y i(x ,y ∈R)满足z ·z +(1-2i)·z +(1+2i)·z ≤3,求|z |的最大值和最小值.

22.(12分)关于x 的方程x 2-(1+3i)x +(2i -m )=0(m ∈R)有纯虚根x 1.

(1)求x 1和m 的值;

(2)利用根与系数的关系猜想方程的另一个根x 2,并给予证明; (3)设x 1,x 2在复平面内的对应点分别为A ,B ,求|AB |.

答案

1.A ⎝ ⎛⎭

⎪⎫1-i 1+i 2=(1-i )2(1+i )2=-2i 2i =-1,故选A. 2.A z 2-2z =z (z -2) =(1+2i)(2i -1) =-2-1=-3.

3.A ∵z =(x 2-4)+(x -2)i 为纯虚数, ∴{ x 2-4=0,x -2≠0,⇒x =-2.

4.D 要求P 0对应的复数,根据题意,只需知道OP 0→,而OP 0→=OO 0

→+O 0P 0→,从而可求P 0对应的复数.

∵O 0P 0→=OP →,OO 0→对应的复数是-1,

∴P 0对应的复数即OP 0

→对应的复数是-1+(1-i)=-i. 5.D 由a -i 与2+b i 互为共轭复数,可得a =2,b =1.所以(a +b i)2=(2+i)2=4+4i -1=3+4i.

6.B ∵z =1+i ,∴z =1-i. ∴z ·z =|z |2=2.

∴z ·z -z -1=2-(1+i)-1=-i.

7.D 设z =a +b i(a ∈R ,b ∈R),则z =a -b i. 由z +z =2,得2a =2,即a =1; 又由(z -z )i =2,得2b i·i =2,即b =-1. 故z =1-i.

8.C 本题中|z -1|表示点Z 到点(1,0)的距离,|5+12i|表示复数5+12i 的模长,所以|z -1|=13,表示以(1,0)为圆心,13为半径的圆.注

相关文档
最新文档