初中数学 一次函数的实际应用
初中数学 一次函数在音乐中的应用有哪些
![初中数学 一次函数在音乐中的应用有哪些](https://img.taocdn.com/s3/m/f3e1f4f2a0c7aa00b52acfc789eb172ded63998d.png)
初中数学一次函数在音乐中的应用有哪些一次函数在音乐中有许多应用,它们可以帮助我们分析和解决与音乐相关的问题。
以下是一次函数在音乐中的一些应用:1. 音高与弦长关系:一次函数可以用来描述音高与弦长之间的关系。
在乐器演奏中,弦乐器如吉他、小提琴等,音高是指乐器弦的振动频率。
我们可以使用一次函数来计算不同弦长对应的音高,并预测不同音高下的弦长要求。
这有助于我们理解乐器演奏、音高调整和音乐创作。
2. 节奏与速度关系:一次函数可以用来描述节奏与速度之间的关系。
在音乐中,节奏是指音符之间的时间关系,速度是指音符的演奏速度。
我们可以使用一次函数来计算不同速度下的节奏要求,并预测不同节奏下的演奏时间。
这有助于我们理解音乐演奏、节奏控制和曲目选择。
3. 音乐形态的变化:一次函数可以用来描述音乐形态的变化。
在音乐创作中,形态是指音乐作品的结构和发展。
我们可以使用一次函数来描述不同音乐区段之间的过渡关系,并预测未来形态的变化。
这有助于我们理解音乐创作、曲式分析和艺术表达。
4. 音乐声音的衰减:一次函数可以用来描述音乐声音的衰减。
在音乐演奏中,声音的衰减是指音量随时间的减弱。
我们可以使用一次函数来计算不同时间段内的音量变化,并预测未来声音的衰减趋势。
这有助于我们理解音乐演奏、声学特性和音响设计。
5. 和弦音的变化:一次函数可以用来描述和弦音的变化。
在和弦进行中,和弦音是指多个音符同时演奏所形成的和声。
我们可以使用一次函数来计算不同和弦音之间的音程关系,并预测未来和弦音的变化。
这有助于我们理解和声学、和弦进行和编曲技巧。
以上是一次函数在音乐中的一些应用。
一次函数的线性关系使得它在音乐分析中具有广泛的应用,帮助我们理解和解决与音乐相关的问题。
希望以上内容能够帮助你了解一次函数在音乐中的应用。
初中数学微课 一次函数应用——调配问题
![初中数学微课 一次函数应用——调配问题](https://img.taocdn.com/s3/m/d29cd3caed3a87c24028915f804d2b160b4e86b0.png)
一次函数应用——调配问题Array 1.A,B两个红十字会分别有100吨和120吨生活物资,准备直接运送给甲、乙两个灾区,甲地需160吨,乙地需60吨,A,B两地到甲、乙两地的路程以及每吨每千米的运费如图所示.(1)设A红十字会运往甲地物资x吨,完成如表,(2)求总运费y关于x的函数表达式,并写出自变量x的取值范围.(3)当A、B两红十字会各运往甲、乙两地多少吨物资时,总运费最省?最省运费是多少元?2.“天行健,君子以自强不息;地势坤,君子以厚德载物”.中国海关总署统计数据显示,2021年1至5月我国进出口总值累计147595.4亿元,同比增长28.2%,其中出口总值累计80414.2亿元,同比增长30.1%.依靠祖国的强大,某公司决定通过海运向海外A、B 两国出口共计180吨的货物,计划租用大、小集装箱共10个,每个大集装箱可装20吨货物,每个小集装箱可装15吨货物,这10个集装箱恰好能装完这批货物.已知这两种集装箱的运费如表:A国(元/个)B国(元/个)目的地集装箱型大集装箱10001200小集装箱600900现安排上述装好货物的10个集装箱(每个大集装箱装20吨货物,每个小集装箱装15吨货物)中的5个运往A国,其余运往B国,设运往A国的大集装箱有x个,这10个集装箱的总运费为y元.(1)这10个集装箱中,大集装箱、小集装箱各有多少个?(2)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(3)若运往B国的物资不超过90吨,求总运费y的最小值.3.新疆棉花以纤维长、质地柔软、弹性好闻名于世,深受国人青睐.某产销公司现有新疆棉花500吨,全部运往A,B两公司,其中A公司不少于100吨,B公司不少于300吨.已知运往A,B两公司的费用分别为每吨250元和100元.设运往A公司的新疆棉花为x 吨.(1)设运往A,B公司的总运费为y元,求y与x之间的函数关系式,并求出自变量x 的取值范围;(2)若运往B公司320吨,求总运费;(3)实际运输时,由于前往A地的运输条件(车辆、道路、时间等)大为改善,导致运费每吨减少a元(a>0),而前往B地的没有变化.若总运费的最小值不小于51000元,求a的取值范围.。
初中数学一次函数的应用
![初中数学一次函数的应用](https://img.taocdn.com/s3/m/883a5e15905f804d2b160b4e767f5acfa0c78364.png)
初中数学一次函数的应用一、引言初中数学中,一次函数是一个重要的内容,也是数学思维的基础。
掌握一次函数的应用可以帮助学生更好地理解实际问题,并且培养其解决实际问题的能力。
本教案将以一次函数的应用为主题,通过具体的案例分析,让学生深入了解一次函数在现实生活中的应用。
二、案例分析1. 飞机票价问题假设一架飞机从A城市到B城市,飞行距离为800公里,飞行时间为2小时。
已知该航线的燃油成本为每公里4元,且其他开销为固定费用5000元。
每张机票定价为p元。
假设有x人订购机票,请问如何确定机票的价格才能使航空公司利润最大化?解析:这是一个典型的一次函数应用问题。
设定x为订购机票的人数,p为机票价格。
首先,我们可以列出航空公司的收入函数和成本函数:收入函数:R(x) = px成本函数:C(x) = 800 * 4 + 5000 = 3800利润函数:P(x) = R(x) - C(x) = px - 3800为了使航空公司的利润最大化,我们需要求出利润函数的最大值点。
通过求导可知,利润函数的最大值点即为极值点。
令利润函数的导数为零,得到:P'(x) = p = 0因此,当机票价格为0时,航空公司可以获得最大利润。
但这是不现实的,所以我们需要考虑在满足航空公司成本的情况下,选择一个合理的价格。
2. 高楼坠物问题某座高楼上有一块距离地面h米的平台,设一个物体从此平台自由下落。
已知物体每经过一个时间单位,下落的距离与时间的关系是:每个时间单位下落h/10米。
请问,当物体下落到平台下方10米处时,经过了多少个时间单位?解析:这是一个典型的一次函数应用问题。
根据题意,我们可以列出物体下落的距离与时间的关系为一次函数:距离函数:d(t) = h - (h/10)t为了求解物体下落到平台下方10米处所需的时间单位,我们需要找到方程d(t) = 10的解。
代入距离函数,得到:h - (h/10)t = 10解方程可得:t = (h/10) / (h/10 - 1)这个式子就是物体下落到平台下方10米处所需的时间单位。
生活中的一次函数
![生活中的一次函数](https://img.taocdn.com/s3/m/da91da6531b765ce05081499.png)
生活中的一次函数作者:马娇来源:《初中生世界·八年级》2016年第02期数学来源于生活,又服务于生活,同学们若能灵活运用数学知识解决生活问题,不仅能提高对数学知识的掌握理解能力,更能提高对知识的综合运用水平.函数是初中数学的重要内容,在生活中,一次函数随处可见:某人带了100元钱,要去买3元一只的羽毛球,他买了x只羽毛球,剩下的钱数y=-3x+100,在这里-3是一次函数中k的值,它的实际意义是买一个羽毛球花了3元,100是一次函数中b的值,它的实际意义是该人共带了100元.本文通过几例生活中常见问题的分析,提供函数问题的处理方法,希望能帮助同学们更好地解决实际问题.【思路分析】利用题目给定的函数信息,将AC=x转化成函数意义为客船从A驶向B离开A码头x km,客船从B返回A还距离A码头x km,GH表示客船在往返A、B两码头的过程中离A码头还有x km要用的时间,因而GH表示两个时间的差,只需求出表示AD、DF两条直线的解析式,当s=x后H与G两点横坐标的差即为y与x的函数关系式.温馨提示:函数图像的呈现使我们可以直接利用图像信息(图像上有具体数值的点坐标)求出函数解析式,根据函数解析式结合问题中的量的含义进行函数信息的转化.利用函数解析式解决实际问题关键在于找到并理解图像信息中的点的实际意义,正确与实际问题中的相关量进行转化,利用函数解析式进行解答.这一方法培养了同学们的函数思想,在理解函数信息的基础上巧妙与实际问题联系,提升同学们的函数识图能力,提高同学们解决函数问题的能力.方法2:实际应用法【思路分析】将本问题实际化,CH∥t轴,说明GH表示的是时间,将GH转化成客船从离A码头x km的地方出发到B码头后返回到刚才的出发地所用的时间,而AB间的距离为90 km,出发地离A码头x km,故往返所行进的距离为90-x,利用时间的计算公式求出两端的时间和就可.【温馨提示】函数问题的背景是实际生活情境,将函数问题实际化,利用实际问题的处理思路和方法,抓住实际生活问题中的公式,用实际生活背景方式解决.同学们对于行程问题很是熟悉,根据水流问题中的顺流、逆流公式及行程问题中的线段分析方法,同学们能较快正确地利用速度、时间与路程之间的关系表示出题中线段的含义,进行解决.这一方法培养了同学们实际问题的处理能力,提升了大家的互化技能,突出了函数信息实际问题解决策略的运用.方法3:几何图形法【温馨提示】将函数信息问题几何图形化,把函数图像抽象成几何图形,抓住几何图形的性质得到关系式列出等式得出结论.函数图像几何图形化是解决函数信息题的一种好方法,由于在函数图像中会出现一些与坐标轴平行的线段,因而利用线段的关系可以转化成几何图形中的全等、相似或直角三角形等相关知识加以解决.这一方法培养了大家的识图能力,提升学生的图形间互化的技能.对于问题(3),同学们理解了问题(2)的三种不同的处理方法,运用实际应用法或函数图像解析法就可解决,本文介绍函数解析法供参阅.如图建立坐标系,设客船、橡皮艇离开码头C的距离s(千米)与航行的时间t(小时)之间的函数关系如图2所示.从上述两例可以看出一次函数所描述的关系在生活中很多,利用一次函数可以更好地认识生活中一些事物的规律.笔者在进行生活数学问题的教学中发现很多同学在处理过程中只会解题,不会思考,不会类比,不会抓问题的关键,更不会主动提问,处理问题和灵活应变的能力都很薄弱.因而希望同学们在解答数学问题时要抓住问题的症结,充分挖掘题目中的信息与数学知识的联系,巧妙利用数学知识对实际生活中的问题进行转化,构建数学模型进行有效解答,提升自己的综合实力.(作者单位:江苏省无锡市阳山中学)。
一次函数在生活中的具体应用
![一次函数在生活中的具体应用](https://img.taocdn.com/s3/m/31697f4703020740be1e650e52ea551810a6c9c0.png)
一次函数在生活中的具体应用一次函数是初中数学中的一个重要概念,它在数学领域中有着广泛的应用。
但是除了数学之外,一次函数还可以在我们日常生活中发现许多具体的应用。
本文将重点介绍一次函数在生活中的具体应用,并从实际案例中加深我们对一次函数的理解。
1. 价格与销量关系在市场经济中,商品的价格与销量之间存在着一种很典型的一次函数关系。
假设某种商品的价格为P(单位:元),销量为Q(单位:件),那么这两者之间可以用一次函数来描述。
一般来说,商品的价格越低,销量就会越大;价格越高,销量就会越小。
那么可以用以下的一次函数来描述这种关系:Q = a - bP其中a和b为常数,a表示商品的市场需求量,b表示价格对销量的影响程度。
当我们掌握了商品价格与销量之间的一次函数关系,就可以通过适当的价格策略来调节销量,从而达到最大化利润的目的。
举个例子,某公司生产的笔记本电脑,售价为2000元每台,每个月的销量约为1000台。
如果公司希望提高销量,可以适当降低售价,利用一次函数关系来计算出适当的销售价格,从而提高销量,增加收入。
2. 距离与时间关系一次函数还可以被应用于描述距离与时间之间的关系,这在生活中也是非常常见的。
一辆汽车以恒定的速度行驶,那么它所行驶的距离与时间之间就存在着一种线性关系,可以用一次函数来描述。
假设汽车以速度v(单位:米/秒)行驶,时间为t(单位:秒),那么汽车所行驶的距离可以用以下的一次函数来描述:D = vt其中D表示距离。
这个函数关系在实际生活中可以应用于各种场景,比如公交车、火车、飞机的行驶距离与时间的关系,以及人们行走、跑步的距离与时间的关系。
在职场工作中,我们的工资收入通常与时间之间也存在着一种一次函数的关系。
通常情况下,我们的工资是按照小时工资、日工资或月工资来计算的,这就可以用一次函数来描述。
假设我们的工资与工作时间t(单位:小时)成一次函数关系,那么我们的收入可以用以下的一次函数来描述:其中W表示收入,p表示单位时间的工资。
初中数学 一次函数在物理学中的应用有哪些
![初中数学 一次函数在物理学中的应用有哪些](https://img.taocdn.com/s3/m/a96ab9030812a21614791711cc7931b765ce7b1a.png)
初中数学一次函数在物理学中的应用有哪些一次函数在物理学中有许多应用,它们可以帮助我们分析和解决与物理相关的问题。
以下是一次函数在物理学中的一些应用:1. 位移与时间的关系:一次函数可以用来描述物体在匀速直线运动中的位移与时间之间的关系。
当一个物体以恒定的速度沿直线运动时,它的位移与时间呈线性关系。
我们可以使用一次函数来计算不同时间点的位移,并预测未来的位置。
这有助于我们理解物体的运动轨迹、速度和加速度。
2. 速度与时间的关系:一次函数可以用来描述物体在运动中的速度与时间之间的关系。
当一个物体以恒定的加速度加速或减速时,它的速度与时间呈线性关系。
我们可以使用一次函数来计算不同时间点的速度,并预测未来的速度变化。
这有助于我们理解物体的加速度、运动状态和运动规律。
3. 加速度与时间的关系:一次函数可以用来描述物体在运动中的加速度与时间之间的关系。
当一个物体受到恒定的外力作用时,它的加速度与时间呈线性关系。
我们可以使用一次函数来计算不同时间点的加速度,并分析物体的运动状态。
这有助于我们理解物体的力学性质、受力情况和运动变化。
4. 温度与时间的关系:一次函数可以用来描述物体的温度与时间之间的关系。
当一个物体受到加热或冷却时,它的温度与时间呈线性关系。
我们可以使用一次函数来计算不同时间点的温度,并预测未来的温度变化。
这有助于我们理解物体的热学性质、热传导和热平衡。
5. 衰减与时间的关系:一次函数可以用来描述物体的衰减与时间之间的关系。
例如,在放射性衰变中,放射性物质的衰减与时间呈指数衰减,但在较短时间尺度上,可以使用一次函数近似描述。
我们可以使用一次函数来计算不同时间点的衰减量,并分析物质的衰减规律。
这有助于我们理解放射性物质的性质、衰变速率和辐射安全。
以上是一次函数在物理学中的一些应用。
一次函数的线性关系使得它在物理分析中具有广泛的应用,帮助我们理解和解决与物理相关的问题。
希望以上内容能够帮助你了解一次函数在物理学中的应用。
初中数学一次函数应用(含答案)
![初中数学一次函数应用(含答案)](https://img.taocdn.com/s3/m/87da018f763231126edb119e.png)
17题一次函数应用1.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.2.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A 地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发 1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是(填写所有正确结论的序号).3.快、慢两车分别从相距480km的甲,乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图象,则当两车第一次相遇时,快车距离甲地的路程是千米.4.甲,乙两车分别从A,B两地同时相向匀速行驶,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车到达B地后修整了1个小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数图象如图所示,则A,C两地相距千米.5.小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距米.6.周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发小时后与小明相遇.7.5月13日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y与x的函数图象如图所示,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是米.8.甲、乙两人相约从A地到B地,甲骑自行车先行,乙开汽车,两人均在同一路线上匀速行驶,乙到B地后即停车等甲,甲、乙两人之间的距离y(千米)与甲行驶的时间x(小时)之间的函数关系如图所示,则乙从A地到B地所用的时间为小时.9.小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要分钟才能到家.10.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,当快车到达乙地后停留了一段时间,立即从原路以另一速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y(千米)与慢车行驶的时间t(小时)之间的函数图象如图所示,则甲乙两地的距离是千米.11.甲、乙两车分别从A、B两地同时出发匀速相向而行,大楼C位于AB之间,甲与乙相遇在AC中点处,然后两车立即掉头,以原速原路返回,直到各自回到出发点.设甲、乙两车距大楼C的距离之和为y(千米),甲车离开A地的时间为t(小时),y与t的函数图象所示,则第21小时时,甲乙两车之间的距离为千米.12.某天早晨,小刚从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,小刚跑到体育场后发现要下雨,立即以另一速度按原路返回,遇到妈妈后,妈妈立即以小刚返回的速度和小刚一起回家(妈妈与小刚行进的路线相同).如图是两人离家的距离y(米)与小刚出发的时间x(分)之间的函数图象,则小刚第一次和妈妈相遇时,妈妈离家的距离为米.13.甲、乙两辆汽车从A地出发前往相距250千米的B地,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到B地,如图是甲、乙两车之间的距离s(km2),乙车出发时间t(h)之间的函数关系图象,则甲车比乙车早到分钟.14.某周末,小明到彩云湖公园画画写生,小明家到彩云湖公园的路程为 3.5千米,步行20分钟后,在家的小明妈妈发现小明画画的某工具没拿,立即通知小明等着自己把工具送过去,小明妈追上小明把工具给了小明后立即返回,同时小明以原来1.5倍的速度前往目的地,如图是小明与小明妈距家的路程(千米)与小明所用时间(分钟)之间的函数图象,则小明到达目的地比小明妈返回家晚分钟.15.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地,中途与甲车相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时).y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为千米.16.已知A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来 1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,则当甲车到达B市时乙车已返回A市的时间为小时.17.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以v1的速度匀速跑至点B,原地休息半小时后,再以v2的速度匀速跑至终点C;乙以v3的速度匀速跑至终点C,甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象如图所示,则AB长为千米,v1﹣v2=.18.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.当两车之间的距离首次为300千米时,经过小时后,它们之间的距离再次为300千米.19.“欢乐跑中国?重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了分钟.20.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图所示.在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图中的虚线所示,在行驶的过程中,经过小时时邮政车与客车和货车的距离相等.21.欢欢和乐乐骑自行车从滨江路上相距10600米的A、B两地同时出发,先相向而行,行驶一段时间后欢欢的自行车坏了,她立刻停车并马上打电话通知乐乐,乐乐接到电话后立刻提速至原来的倍,碰到欢欢后用了5分钟修好了欢欢的自行车,修好车后乐乐立刻骑车以提速后的速度继续向终点A地前行,欢欢则留在原地整理工具,2分钟以后欢欢再以原速返回A地,在整个行驶过程中,欢欢和乐乐均保持匀速行驶(乐乐停车和打电话的时间忽略不计),两人相距的路程s (米)与欢欢出发的时间t(分钟)之间的关系如图所示,则乐乐到达A地时,欢欢与A地的距离为米.22.甲、乙两人同时从各自家里出发,沿同一条笔直的公路向公园进行跑步训练.乙的家比甲的家离公园近100米,5分钟后甲追上乙,此时乙将速度提高到原来的2倍,又经过15分钟,乙先到达公园并立即返回,但因体力不支,乙返回时的速度又降低到原来的速度.甲跑到公园后也立即掉头回家,整个过程中,甲的速度始终保持不变,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的部分函数关系如图所示,则当乙回到自己家时,甲离自己的家还有米.23.如图,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中.如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图.则小明的家和小亮的家相距米.24.如图所示的图象反映的过程是:甲乙两人同时从A地出发,以各自的速度匀速向B地行驶,甲先到B地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇.乙的速度为60km/h,y(km)表示甲乙两人相距的距离,x(h)表示乙行驶的时间.现有以下4个结论:①A、B两地相距305km;②点D的坐标为(2.5,155);③甲去时的速度为152.5km/h;④甲返回的速度是95km/h.以上4个结论中正确的是.25.甲、乙两车在依次连通A、B、C三地的公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车人B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶.在两车行驶的过程中,甲、乙两车与B地的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,所用时间为小时.26.已知A,B两港航程为60km,甲船从A港出发顺流匀速驶向B港,同时乙船从B港出发逆流匀速驶向A港,行至某刻,甲船发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.这样甲乙两船同时到达各自目的地,若甲、乙两船在静水中的速度相同,两船之间的距离y(km)与行驶时间x(h)之间的函数图象如图所示,则水流速度为km/h.27.“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.28.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y甲(千米),乙与学校相离y乙(千米),甲离开学校的时间为t(分钟).y甲、y 乙与x之间的函数图象如图所示,则乙返回到学校时,甲与学校相距千米.29.某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止,特快巴士到达乙地停留45分钟后,按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示.求普通巴士到达乙地时,特快巴士与甲地之间的距离为千米.30.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/时,两车之间的距离y(千米)与两车行驶时间x(小时)之间的函数图象如图所示,则快车从乙地返回时的速度为千米/时.31.不览夜景,未到重庆.山城夜景,早在清乾隆时期就已有名气,被时任巴县知县王尔鉴,列为巴渝十二景之一.在朝天门码头坐船游两江(即长江、嘉陵江),是游重庆赏夜景的一个经典项目.一艘轮船从朝天门码头出发匀速行驶,1小时后一艘快艇也从朝天门码头出发沿同一线路匀速行驶,当快艇先到达目的地后立刻按原速返回并在途中与轮船第二次相遇.设轮船行驶的时间为t(h),快艇和轮船之间的距离为y(km),y与t的函数关系式如图所示.问快艇与轮船第二次相遇时到朝天门码头的距离为千米.32.初三某班学生去中央公园踏青,班级信息员骑自行车先从学校出发,5分钟后其余同学以60米/分的速度从学校向公园行进,信息员先到达公园后用5分钟找到聚集地点,再立即按原路以另一速度返回到队伍汇报聚集地点,最后与同学们一起步行到公园,信息员离其余同学的距离y(米)与信息员出发的时间x(分)之间的关系如图所示,则信息员开始返回之后,再经过分钟与其余同学相距720米.33.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过小时恰好装满第1箱.级景区某日迎来客流高峰,从索道开始运行前3小时开始,每小时34.国家“5A”都有a名游客源源不断地涌入候客大厅排队.索道每小时运送b名游客上山,索道运行2小时后,景区调来若干辆汽车和索道一起送游客上山,其中每小时有b 名游客乘坐汽车上山.5小时后,在候客大厅排队的游客人数降至1000人,候客大厅排队的游客人数y(人)与游客开始排队后的时间x(小时)之间的关系如图所示.则a=.35.甲、乙两人骑车从学校出发,先上坡到距学校6千米的A地,再下坡到距学校16千米的B地,甲、乙两人行驶的路程y(千米)与时间x(小时)之间的函数关系如图所示,若甲、乙两人同时从B地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变,则在返回途中二人相遇时离A地的距离是千米.36.甲、乙二人同时从A地出发以相同速度匀速步行去B地,甲途中发现忘带物品匀速跑步回A地取,之后立刻返程以相同速度跑步追赶乙,期间乙继续步行去往B地,会合时乙发现仍然有物品没带,时间紧迫,故乘车返回A地取,期间甲继续以先前的速度步行至B地后等待乙,乙取到物品后乘车也到了终点B 地(假定来回车速匀速不变,且甲、乙二人取物品的时间忽略不计).如图所示是甲乙二人之间的距离y(米)与他们从A地出发所用的时间x的(分钟)的函数图象,则当曱到达B地时,乙与A地相距米.37.在一次集训中,一支队伍出发10分钟后,通讯员骑自行车追上队尾传达命令,然后按原速到队首传达命令后继续按原速原路返回.在此过程中队伍一直保持匀速行进,如图所示是通讯员与队首的距离S(米)和通讯员所用时间t(分钟)之间的函数图象.若传达命令所花时间都为2分钟,则当通讯员再次回到队尾时,他一共走了米.38.在我校刚刚结束的缤纷体育节上,初三年级参加了60m迎面接力比赛.假设每名同学在跑步过程中是匀速的,且交接棒的时间忽略不计,如图是A、B两班的路程差y(米)与比赛开始至A班先结束第二棒的时间x(秒)之间的函数图象.则B班第二棒的速度为米/秒.39.已知重庆和成都相距340千米,甲车早上八点从重庆出发往成都运送物资,行驶1小时后,汽车突然出现故障,立即通知技术人员乘乙车从重庆赶来维修(通知时间不计),乙车达到后经30分钟修好甲车,然后以原速返回重庆,同时甲车以原来速度的 1.5倍继续前往成都.两车分别距离成都的路程y(千米)与甲车所用时间x(小时)之间的函数图象如图所示,下列四个结论:①甲车提速后的速度是90千米/时;②乙车的速度是70千米/时;③甲车修好的时间为10点15分;④甲车达到成都的时间为13点15分,其中,正确的结论是(填序号)40.甲、乙两车在连通A、B、C三地的公路上行驶,B地在A地、C地之间,甲车从A地出发匀速向C地行驶,同时乙车从C地出发匀速向B地行驶,到达B 地并在B地停留1h后,按原路原速返回到C地.在两车行驶的过程中,甲、乙两车距B地的路程y(km)与行驶时间x(h)之间的函数图象如图所示.当甲车出发h后,甲、乙两车与B地距离相等.17题一次函数应用参考答案与试题解析一.填空题(共40小题)1.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.2.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A 地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发 1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是②③④(填写所有正确结论的序号).【分析】①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发 1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.【解答】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发 1.5h时,两车相距170km,结论②正确;③∵(240+200﹣60)÷(60+80)=2(h),∴乙车出发2h时,两车相遇,结论③正确;④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.【点评】本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.3.快、慢两车分别从相距480km的甲,乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图象,则当两车第一次相遇时,快车距离甲地的路程是320千米.【分析】根据行程问题的数量关系:速度=路程÷时间及路程=速度×时间就可以得出:乙的速度和a的值,所以可求出点D的坐标,再由题意可以求出快车的速度就可以求出点B的坐标,由待定系数法求出AB的解析式及OD的解析式就可以求出结论.【解答】解:由题意,得慢车的速度为:480÷(9﹣1)=60千米/时,∴a=60×(7﹣1)=360.则5×60=300,∴D(5,300),设y OD=k1x,由题意,得300=5k1,∴k1=60,∴y OD=60x.∵快车的速度为:(480+360)÷7=120千米/时.∴480÷120=4小时.∴B(4,0),C(8,480).设y AB=k2x+b,由题意,得,解得:,∴y AB=﹣120x+480∴,解得:.∴480﹣160=320千米.答:快车与慢车第一次相遇时,距离甲地的路程是320千米;故答案为:320.【点评】本题考查了行程问题的数量关系路程=速度×时间的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出一次函数的解析式是关键.4.甲,乙两车分别从A,B两地同时相向匀速行驶,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车到达B地后修整了1个小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数图象如图所示,则A,C两地相距420千米.。
初中数学 一次函数的斜率和截距有何实际意义
![初中数学 一次函数的斜率和截距有何实际意义](https://img.taocdn.com/s3/m/fa3d9bbc03d276a20029bd64783e0912a2167c1a.png)
初中数学一次函数的斜率和截距有何实际意义一次函数的斜率和截距在实际生活中有着重要的意义。
它们可以帮助我们解决各种问题,并且在各种应用中起着关键作用。
以下是一次函数的斜率和截距的实际意义的一些例子:1. 直线的倾斜程度:斜率决定了一条直线的倾斜程度。
斜率为正时,表示直线向上倾斜;斜率为负时,表示直线向下倾斜;斜率为零时,表示直线水平。
在实际中,我们可以用斜率来描述坡度、坡度以及物体的运动速度等。
例如,建筑工程师可以使用斜率来设计坡道的倾斜程度,运动员可以使用斜率来衡量他们的速度。
2. 直线与y 轴的交点位置:截距表示了直线与y 轴的交点位置。
截距为正时,表示直线与y 轴的交点在y 轴上方;截距为负时,表示直线与y 轴的交点在y 轴下方。
在实际中,截距可以用来表示起点、初始位置或基准值等。
例如,在经济学中,截距可以表示起始的资本投资或生产成本。
3. 函数的变化率:斜率表示了函数在不同点之间的变化率。
斜率越大,表示函数的变化速度越快;斜率越小,表示函数的变化速度越慢。
在实际中,我们可以使用斜率来描述温度的变化率、物体的加速度以及人口的增长率等。
例如,在气象学中,我们可以使用斜率来描述温度的变化速度,这有助于预测天气的变化。
4. 解决实际问题:一次函数的斜率和截距可以帮助我们解决各种实际问题。
通过观察和分析问题,我们可以将问题抽象化为一次函数的形式,并利用斜率和截距来解决问题。
例如,在经济学中,我们可以使用一次函数来描述成本与产量之间的关系,从而确定最佳的生产量。
以上是一次函数的斜率和截距的一些实际意义的例子。
斜率和截距在实际中有着广泛的应用,可以帮助我们理解和解决各种问题。
希望以上内容能够帮助你理解一次函数的斜率和截距的实际意义。
一次函数在生活中的应用
![一次函数在生活中的应用](https://img.taocdn.com/s3/m/ded04b970c22590103029d20.png)
一次函数在生活中的应用作者:蔡建锋来源:《教学与管理(中学版)》2008年第09期一次函数是初中数学的核心内容,也是重要的基础知识和重要的数学思想,不仅与高中知识有着密切的联系,而且还与生活中的实际问题有着极为广泛的联系,是联系数学知识与实际问题间的纽带和桥梁,是中考数学试卷中不可缺少的重要内容。
现以2007年的中考题目为例,浅析一次函数在生活中的应用。
一、用水用电问题例1、为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度。
已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元。
(1)求a,b的值;(2)设该用户每月用电量为x(度),应付电费为y(元)。
①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?(2007年福建省三明市)解:(1)根据题意,得115a=69,120a+20b=94.解这个方程组,得a=0.6,b=1.1.(2)①当0≤x≤120时,y=0.6x.当x>120时,y=120×0.6+1.1(x-120),即y=1.1x-60.②∵83>120×0.6=72,∴y与x之间的函数关系式为y=1.1x-60..由题意得:1.1x-60≤83所以x≤130.∴该用户七月份最多可用电130度.【评析】随着人民生活水平的提高,家庭电器化已基本普及,为鼓励居民节约用电用水,节能降耗,采取了居民用电、用水分段计价的办法进行收费。
解决此类问题的关键是把实际问题建构为一次函数的数学模型,并通过数学的方式把问题解决。
二、通讯网络问题例2、李明因工作需要,每月要发送一定数量的手机短信,于是向同事老王和小张询问有关的费用标准。
老王说:“我平常发短信不多,我用拇指卡。
”说完递给李明一张宣传单(见下表)。
初中数学知识点总结:利用一次函数解决实际问题
![初中数学知识点总结:利用一次函数解决实际问题](https://img.taocdn.com/s3/m/8a62a51ef78a6529647d53aa.png)
知识点总结
应用一次函数知识解决最值问题
一次函数中的自变量取值范围是全体实数,其图象是一条直线,所以此函数既没有最大值,也没有最小值,但由于在实际问题中,所列函数表达式中自变量往往有一定的限制,故就有了最大或最小值,在求函数最值时,就先求出函数表达式,并确定出增减性,再根据题目条件确定出自变量的取值范围,然后结合增减性确定出最大值或最小值。
常见考法
(1)根据图象获取信息解决问题;
(2)设计一个方案,比较哪个方案更优。
误区提醒
(1)不能正确的建立一次函数模型;
(2)忽视变量的实际意义。
【典型例题】(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).。
初中数学 一次函数在化学中的应用有哪些
![初中数学 一次函数在化学中的应用有哪些](https://img.taocdn.com/s3/m/02d3852b0a4e767f5acfa1c7aa00b52acfc79c8d.png)
初中数学一次函数在化学中的应用有哪些一次函数在化学中有许多应用,它们可以帮助我们分析和解决与化学相关的问题。
以下是一次函数在化学中的一些应用:1. 反应速率与时间关系:一次函数可以用来描述化学反应速率与时间之间的关系。
在化学反应中,速率是指单位时间内反应物消耗或生成的量。
我们可以使用一次函数来计算不同时间段内的反应速率,并预测未来的速率变化。
这有助于我们理解反应速率、反应机理和反应条件的选择。
2. 物质浓度与溶液体积关系:一次函数可以用来描述物质浓度与溶液体积之间的关系。
在溶液制备中,浓度是指单位体积内溶质的含量。
我们可以使用一次函数来计算不同溶液体积下的浓度,并预测不同浓度下的溶液配制要求。
这有助于我们理解溶液制备、溶液配制和溶解度的控制。
3. 热量变化与温度关系:一次函数可以用来描述热量变化与温度之间的关系。
在热化学中,热量变化是指化学反应或物质的温度变化。
我们可以使用一次函数来计算不同温度下的热量变化,并预测不同热量变化下的反应热要求。
这有助于我们理解热化学、热力学和热平衡的控制。
4. 气体压力与体积关系:一次函数可以用来描述气体压力与体积之间的关系。
在气体化学中,压力是指气体分子对容器壁的撞击力。
我们可以使用一次函数来计算不同体积下的气体压力,并预测不同压力下的气体容器要求。
这有助于我们理解气体化学、理想气体定律和气体反应的控制。
5. 化学反应的平衡浓度:一次函数可以用来描述化学反应的平衡浓度。
在化学平衡中,浓度是指反应物和生成物在平衡状态下的相对含量。
我们可以使用一次函数来计算不同浓度下的反应平衡常数,并预测不同条件下的平衡浓度。
这有助于我们理解化学平衡、平衡常数和平衡条件的调控。
以上是一次函数在化学中的一些应用。
一次函数的线性关系使得它在化学分析中具有广泛的应用,帮助我们理解和解决与化学相关的问题。
希望以上内容能够帮助你了解一次函数在化学中的应用。
一次函数实际应用题解题技巧
![一次函数实际应用题解题技巧](https://img.taocdn.com/s3/m/997fb3d9112de2bd960590c69ec3d5bbfd0adad1.png)
一次函数实际应用题解题技巧
1、先明确一次函数的定义:一次函数的定义是:一次函数是指具有单调性和可导性的函数,它可以通过一次变换把一个简单函数变换成一个新的函数。
2、明确参数:在解一次函数实际应用题时,首先要明确题目中参数的具体含义,以及函数的定义范围。
3、确定函数的性质:根据题目中给出的函数,可以确定函数的单调性、可导性和凹凸性,以及确定它是一次函数。
4、题目的读懂:需要读懂题目,理解题目的意思,确定题目的类型,以及题目所要求的具体内容。
5、利用数学公式:利用初中数学中学习的一次函数公式及其变形,把题目中的参数值带入数学公式,求解出满足条件的一次函数。
6、绘制函数图像:在确定了函数的性质和具体内容后,可以通过函数图像来进一步地分析一次函数。
7、检验结果:经过计算后,把最后得出的函数的值与题目中给出的值进行比较,以确定结果的准确性。
初中数学 一次函数在艺术中的应用有哪些
![初中数学 一次函数在艺术中的应用有哪些](https://img.taocdn.com/s3/m/0396c0e66e1aff00bed5b9f3f90f76c661374c90.png)
初中数学一次函数在艺术中的应用有哪些一次函数在艺术中有许多应用,它们可以帮助我们分析和解决与艺术相关的问题。
以下是一次函数在艺术中的一些应用:1. 绘画中的透视关系:一次函数可以用来描述绘画中的透视关系。
在绘画中,透视是指将三维物体表现在二维画面上的技巧。
我们可以使用一次函数来计算不同透视点下的绘画比例,并预测未来的透视效果。
这有助于我们理解绘画技巧、构图原理和空间感知。
2. 摄影中的光学畸变:一次函数可以用来描述摄影中的光学畸变。
在摄影中,光学畸变是指由于光路不同而导致的图像失真现象。
我们可以使用一次函数来计算不同光路下的图像畸变,并预测未来的光学补偿。
这有助于我们理解摄影技术、光学原理和图像处理。
3. 音乐中的节奏变化:一次函数可以用来描述音乐中的节奏变化。
在音乐中,节奏是指音符之间的时间关系。
我们可以使用一次函数来计算不同音符之间的时间间隔,并预测未来的节奏变化。
这有助于我们理解音乐理论、编曲技巧和音乐创作。
4. 影视中的镜头运动:一次函数可以用来描述影视中的镜头运动。
在影视制作中,镜头运动是指摄影机在拍摄时的移动方式。
我们可以使用一次函数来计算不同镜头位置下的拍摄比例,并预测未来的运动轨迹。
这有助于我们理解影视制作、镜头运用和视觉效果。
5. 舞蹈中的动作变化:一次函数可以用来描述舞蹈中的动作变化。
在舞蹈中,动作是指身体在特定节奏下的运动方式。
我们可以使用一次函数来计算不同动作之间的时间间隔,并预测未来的舞蹈效果。
这有助于我们理解舞蹈技巧、身体表达和舞蹈创作。
以上是一次函数在艺术中的一些应用。
一次函数的线性关系使得它在艺术分析中具有广泛的应用,帮助我们理解和解决与艺术相关的问题。
希望以上内容能够帮助你了解一次函数在艺术中的应用。
初中数学《一次函数的应用-行程问题》典型例题及答案解析
![初中数学《一次函数的应用-行程问题》典型例题及答案解析](https://img.taocdn.com/s3/m/05d5da73852458fb770b563b.png)
综上可知①②③④皆成立.
【详解】
线段 代表乙车在途中的货站装货耗时半小时,
(小时),即①成立;
分钟 小时,
甲车的速度为 (千米/时),即②成立;
设乙车刚出发时的速度为 千米/时,则装满货后的速度为 千米/时,
根据题意可知: ,
7.如图,一辆汽车和一辆摩托车分别从A,B两地去同一城市,l1,l2分别表示汽车、摩托车离A地的距离s(km)随时间t(h)变化的图象,则下列结论:①摩托车比汽车晚到1 h;②A,B两地的距离为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1 h后与摩托车相遇,此时距离B地40 km;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )
【答案】B
【解析】
【分析】
设同向行驶的相邻两车的距离及车、小林的速度为未知数,等量关系为:5×车速-5×小林的速度=同向行驶的相邻两车的距离;3×车速+3×小林的速度=同向行驶的相邻两车的距离;把相关数值代入可得同向行驶的相邻两车的距离及车的速度关系式,相除可得所求时间.
【详解】
设101路公交车的速度是x米/分,小林行走的速度是y米/分,同向行驶的相邻两车的间距为s米.
解得: ,
乙车发车时,甲车行驶的路程为 (千米),
乙车追上甲车的时间为 (小时),
小时 分钟,即③成立;
乙车刚到达货站时,甲车行驶的时间为 小时,
此时甲车离 地的距离为 (千米),即④成立;
综上可知正确的有:①②③④.
故选: .
【点睛】
本题考查了一次函数的应用,解题的关键是知道各数量间的关系结显繁琐,解决该类题型的方法是掌握各数量间的关系结合行程得出结论.
初中数学 一次函数在生物学中的应用有哪些
![初中数学 一次函数在生物学中的应用有哪些](https://img.taocdn.com/s3/m/4a8fc3ef77a20029bd64783e0912a21614797f1a.png)
初中数学一次函数在生物学中的应用有哪些一次函数在生物学中有许多应用,它们可以帮助我们分析和解决与生物相关的问题。
以下是一次函数在生物学中的一些应用:1. 生物体大小与时间的关系:一次函数可以用来描述生物体大小与时间之间的关系。
在生物体的生长过程中,大小通常呈线性增长。
我们可以使用一次函数来计算不同时间点的生物体大小,并预测未来的生长趋势。
这有助于我们理解生物发育、生命周期和种群动态。
2. 物种数量与环境变化的关系:一次函数可以用来描述物种数量与环境变化之间的关系。
在生态系统中,物种数量通常与环境因素(如温度、湿度和光照等)呈线性变化。
我们可以使用一次函数来计算不同环境条件下的物种数量,并预测不同数量下的环境变化。
这有助于我们理解生物多样性、生态平衡和生态保护。
3. 遗传性状与基因型的关系:一次函数可以用来描述遗传性状与基因型之间的关系。
在遗传学中,某些性状的表现受到基因型的影响,呈现出线性的关系。
我们可以使用一次函数来计算不同基因型下的性状表现,并预测不同表现下的基因型组合。
这有助于我们理解遗传规律、基因变异和遗传疾病。
4. 生物体质量与食物摄入的关系:一次函数可以用来描述生物体质量与食物摄入之间的关系。
在营养学中,生物体的质量通常与其摄入的食物量呈线性关系。
我们可以使用一次函数来计算不同食物摄入量下的生物体质量,并预测不同质量下的食物需求。
这有助于我们理解营养需求、能量平衡和生物生理学。
5. 反应速率与底物浓度的关系:一次函数可以用来描述化学反应中反应速率与底物浓度之间的关系。
在酶催化的生化反应中,反应速率通常与底物浓度呈线性关系。
我们可以使用一次函数来计算不同底物浓度下的反应速率,并预测不同速率下的浓度变化。
这有助于我们理解酶的活性、代谢过程和药物动力学。
以上是一次函数在生物学中的一些应用。
一次函数的线性关系使得它在生物分析中具有广泛的应用,帮助我们理解和解决与生物相关的问题。
希望以上内容能够帮助你了解一次函数在生物学中的应用。
湘教版初中八下数学精品授课课件 第4章 一次函数 一次函数的应用 第1课时 利用一次函数解决实际问题
![湘教版初中八下数学精品授课课件 第4章 一次函数 一次函数的应用 第1课时 利用一次函数解决实际问题](https://img.taocdn.com/s3/m/7e38d2a6f71fb7360b4c2e3f5727a5e9846a2702.png)
解:(1)设函数表达式为y=kx+b. 由题意知,当x=60时,y=8000 ;当x=61时,y=7500,
60k + b = 8000,
k = -500,
得 61k + b = 7500,解得 b = 38000,
所以这种商品的需求量y(件)与单价x(元)之间的函数关系式 为y=-500x+38000(x≥60).
(2)当x=70时,y=-500x+38000=-500×70+38000=3000. 所以当价格为 70元是,这种商品的需求量是3000件.
(3)当y=0时,0=-500x+38000,解得x=76.所以当价格提高到76元时,这 种商品就卖不出去了.
解 : (1) 设 日 销 售 量 y ( 件 ) 与 上 市 时 间t(天)之间的函数表达式为y=kt. 将 点 (30 , 600) 的 坐 标 代 入 , 得 600=k×30,解得k=20.所以日销售量 y(件)与上市时间t(天)之间的函 数表达式为y=20t (0≤t≤30).
(2)当购买4500 kg时, 甲方案付款:y=9x=9×4500=40500(元), 乙方案付款:y=8x+5000=8×4500+5000=41000(元), 所以购买量为4500 kg是选择甲方案付款少. 当购买5100 kg时, 甲方案付款:y=9x=9×5100=45900(元), 乙方案付款:y=8x+5000=8×5100+5000=45800(元), 所以购买量为5100 kg时,选择乙方案付款少.
(2)从图(b)中可知,从第20天起,产品销售利润为60元/件,故第30天的 日销售利润最大,即y最大=60×(20×30)=36000(元)=3.6万元.
初中数学一次函数应用(含答案)
![初中数学一次函数应用(含答案)](https://img.taocdn.com/s3/m/9da0ee939b89680203d825a8.png)
17题一次函数应用1.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.2.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A 地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是(填写所有正确结论的序号).3.快、慢两车分别从相距480km的甲,乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图象,则当两车第一次相遇时,快车距离甲地的路程是千米.4.甲,乙两车分别从A,B两地同时相向匀速行驶,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车到达B地后修整了1个小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数图象如图所示,则A,C两地相距千米.5.小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距米.6.周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发小时后与小明相遇.7.5月13日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y与x的函数图象如图所示,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是米.8.甲、乙两人相约从A地到B地,甲骑自行车先行,乙开汽车,两人均在同一路线上匀速行驶,乙到B地后即停车等甲,甲、乙两人之间的距离y(千米)与甲行驶的时间x(小时)之间的函数关系如图所示,则乙从A地到B地所用的时间为小时.9.小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要分钟才能到家.10.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,当快车到达乙地后停留了一段时间,立即从原路以另一速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y(千米)与慢车行驶的时间t(小时)之间的函数图象如图所示,则甲乙两地的距离是千米.11.甲、乙两车分别从A、B两地同时出发匀速相向而行,大楼C位于AB之间,甲与乙相遇在AC中点处,然后两车立即掉头,以原速原路返回,直到各自回到出发点.设甲、乙两车距大楼C的距离之和为y(千米),甲车离开A地的时间为t(小时),y与t的函数图象所示,则第21小时时,甲乙两车之间的距离为千米.12.某天早晨,小刚从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,小刚跑到体育场后发现要下雨,立即以另一速度按原路返回,遇到妈妈后,妈妈立即以小刚返回的速度和小刚一起回家(妈妈与小刚行进的路线相同).如图是两人离家的距离y(米)与小刚出发的时间x(分)之间的函数图象,则小刚第一次和妈妈相遇时,妈妈离家的距离为米.13.甲、乙两辆汽车从A地出发前往相距250千米的B地,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到B地,如图是甲、乙两车之间的距离s(km2),乙车出发时间t(h)之间的函数关系图象,则甲车比乙车早到分钟.14.某周末,小明到彩云湖公园画画写生,小明家到彩云湖公园的路程为3.5千米,步行20分钟后,在家的小明妈妈发现小明画画的某工具没拿,立即通知小明等着自己把工具送过去,小明妈追上小明把工具给了小明后立即返回,同时小明以原来1.5倍的速度前往目的地,如图是小明与小明妈距家的路程(千米)与小明所用时间(分钟)之间的函数图象,则小明到达目的地比小明妈返回家晚分钟.15.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地,中途与甲车相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时).y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为千米.16.已知A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,则当甲车到达B市时乙车已返回A市的时间为小时.17.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以v1的速度匀速跑至点B,原地休息半小时后,再以v2的速度匀速跑至终点C;乙以v3的速度匀速跑至终点C,甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象如图所示,则AB长为千米,v1﹣v2=.18.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.当两车之间的距离首次为300千米时,经过小时后,它们之间的距离再次为300千米.19.“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了分钟.20.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图所示.在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图中的虚线所示,在行驶的过程中,经过小时时邮政车与客车和货车的距离相等.21.欢欢和乐乐骑自行车从滨江路上相距10600米的A、B两地同时出发,先相向而行,行驶一段时间后欢欢的自行车坏了,她立刻停车并马上打电话通知乐乐,乐乐接到电话后立刻提速至原来的倍,碰到欢欢后用了5分钟修好了欢欢的自行车,修好车后乐乐立刻骑车以提速后的速度继续向终点A地前行,欢欢则留在原地整理工具,2分钟以后欢欢再以原速返回A地,在整个行驶过程中,欢欢和乐乐均保持匀速行驶(乐乐停车和打电话的时间忽略不计),两人相距的路程s (米)与欢欢出发的时间t(分钟)之间的关系如图所示,则乐乐到达A地时,欢欢与A地的距离为米.22.甲、乙两人同时从各自家里出发,沿同一条笔直的公路向公园进行跑步训练.乙的家比甲的家离公园近100米,5分钟后甲追上乙,此时乙将速度提高到原来的2倍,又经过15分钟,乙先到达公园并立即返回,但因体力不支,乙返回时的速度又降低到原来的速度.甲跑到公园后也立即掉头回家,整个过程中,甲的速度始终保持不变,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的部分函数关系如图所示,则当乙回到自己家时,甲离自己的家还有米.23.如图,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中.如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图.则小明的家和小亮的家相距米.24.如图所示的图象反映的过程是:甲乙两人同时从A地出发,以各自的速度匀速向B地行驶,甲先到B地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇.乙的速度为60km/h,y(km)表示甲乙两人相距的距离,x(h)表示乙行驶的时间.现有以下4个结论:①A、B两地相距305km;②点D的坐标为(2.5,155);③甲去时的速度为152.5km/h;④甲返回的速度是95km/h.以上4个结论中正确的是.25.甲、乙两车在依次连通A、B、C三地的公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车人B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶.在两车行驶的过程中,甲、乙两车与B地的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,所用时间为小时.26.已知A,B两港航程为60km,甲船从A港出发顺流匀速驶向B港,同时乙船从B港出发逆流匀速驶向A港,行至某刻,甲船发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.这样甲乙两船同时到达各自目的地,若甲、乙两船在静水中的速度相同,两船之间的距离y(km)与行驶时间x(h)之间的函数图象如图所示,则水流速度为km/h.27.“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.28.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.乙电动车的速度始终不变.设甲与学校相距y甲(千米),乙与学校相离y乙(千米),甲离开学校的时间为t(分钟).y甲、y与x之间的函数图象如图所示,则乙返回到学校时,甲与学校相距千米.乙29.某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止,特快巴士到达乙地停留45分钟后,按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示.求普通巴士到达乙地时,特快巴士与甲地之间的距离为千米.30.快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/时,两车之间的距离y(千米)与两车行驶时间x(小时)之间的函数图象如图所示,则快车从乙地返回时的速度为千米/时.31.不览夜景,未到重庆.山城夜景,早在清乾隆时期就已有名气,被时任巴县知县王尔鉴,列为巴渝十二景之一.在朝天门码头坐船游两江(即长江、嘉陵江),是游重庆赏夜景的一个经典项目.一艘轮船从朝天门码头出发匀速行驶,1小时后一艘快艇也从朝天门码头出发沿同一线路匀速行驶,当快艇先到达目的地后立刻按原速返回并在途中与轮船第二次相遇.设轮船行驶的时间为t(h),快艇和轮船之间的距离为y(km),y与t的函数关系式如图所示.问快艇与轮船第二次相遇时到朝天门码头的距离为千米.32.初三某班学生去中央公园踏青,班级信息员骑自行车先从学校出发,5分钟后其余同学以60米/分的速度从学校向公园行进,信息员先到达公园后用5分钟找到聚集地点,再立即按原路以另一速度返回到队伍汇报聚集地点,最后与同学们一起步行到公园,信息员离其余同学的距离y(米)与信息员出发的时间x(分)之间的关系如图所示,则信息员开始返回之后,再经过分钟与其余同学相距720米.33.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过小时恰好装满第1箱.34.国家“5A”级景区某日迎来客流高峰,从索道开始运行前3小时开始,每小时都有a名游客源源不断地涌入候客大厅排队.索道每小时运送b名游客上山,索道运行2小时后,景区调来若干辆汽车和索道一起送游客上山,其中每小时有b 名游客乘坐汽车上山.5小时后,在候客大厅排队的游客人数降至1000人,候客大厅排队的游客人数y(人)与游客开始排队后的时间x(小时)之间的关系如图所示.则a=.35.甲、乙两人骑车从学校出发,先上坡到距学校6千米的A地,再下坡到距学校16千米的B地,甲、乙两人行驶的路程y(千米)与时间x(小时)之间的函数关系如图所示,若甲、乙两人同时从B地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变,则在返回途中二人相遇时离A地的距离是千米.36.甲、乙二人同时从A地出发以相同速度匀速步行去B地,甲途中发现忘带物品匀速跑步回A地取,之后立刻返程以相同速度跑步追赶乙,期间乙继续步行去往B地,会合时乙发现仍然有物品没带,时间紧迫,故乘车返回A地取,期间甲继续以先前的速度步行至B地后等待乙,乙取到物品后乘车也到了终点B 地(假定来回车速匀速不变,且甲、乙二人取物品的时间忽略不计).如图所示是甲乙二人之间的距离y(米)与他们从A地出发所用的时间x的(分钟)的函数图象,则当曱到达B地时,乙与A地相距米.37.在一次集训中,一支队伍出发10分钟后,通讯员骑自行车追上队尾传达命令,然后按原速到队首传达命令后继续按原速原路返回.在此过程中队伍一直保持匀速行进,如图所示是通讯员与队首的距离S(米)和通讯员所用时间t(分钟)之间的函数图象.若传达命令所花时间都为2分钟,则当通讯员再次回到队尾时,他一共走了米.38.在我校刚刚结束的缤纷体育节上,初三年级参加了60m迎面接力比赛.假设每名同学在跑步过程中是匀速的,且交接棒的时间忽略不计,如图是A、B两班的路程差y(米)与比赛开始至A班先结束第二棒的时间x(秒)之间的函数图象.则B班第二棒的速度为米/秒.39.已知重庆和成都相距340千米,甲车早上八点从重庆出发往成都运送物资,行驶1小时后,汽车突然出现故障,立即通知技术人员乘乙车从重庆赶来维修(通知时间不计),乙车达到后经30分钟修好甲车,然后以原速返回重庆,同时甲车以原来速度的1.5倍继续前往成都.两车分别距离成都的路程y(千米)与甲车所用时间x(小时)之间的函数图象如图所示,下列四个结论:①甲车提速后的速度是90千米/时;②乙车的速度是70千米/时;③甲车修好的时间为10点15分;④甲车达到成都的时间为13点15分,其中,正确的结论是(填序号)40.甲、乙两车在连通A、B、C三地的公路上行驶,B地在A地、C地之间,甲车从A地出发匀速向C地行驶,同时乙车从C地出发匀速向B地行驶,到达B 地并在B地停留1h后,按原路原速返回到C地.在两车行驶的过程中,甲、乙两车距B地的路程y(km)与行驶时间x(h)之间的函数图象如图所示.当甲车出发h后,甲、乙两车与B地距离相等.17题一次函数应用参考答案与试题解析一.填空题(共40小题)1.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.2.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A 地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是②③④(填写所有正确结论的序号).【分析】①观察函数图象可知,当t=2时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2h时,两车相遇,结论③正确;④结合函数图象可知当甲到C地时,乙车离开C地0.5小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.【解答】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;③∵(240+200﹣60)÷(60+80)=2(h),∴乙车出发2h时,两车相遇,结论③正确;④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.【点评】本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.3.快、慢两车分别从相距480km的甲,乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图象,则当两车第一次相遇时,快车距离甲地的路程是320千米.【分析】根据行程问题的数量关系:速度=路程÷时间及路程=速度×时间就可以得出:乙的速度和a的值,所以可求出点D的坐标,再由题意可以求出快车的速度就可以求出点B的坐标,由待定系数法求出AB的解析式及OD的解析式就可以求出结论.【解答】解:由题意,得慢车的速度为:480÷(9﹣1)=60千米/时,∴a=60×(7﹣1)=360.则5×60=300,∴D(5,300),设y OD=k1x,由题意,得300=5k1,∴k1=60,∴y OD=60x.∵快车的速度为:(480+360)÷7=120千米/时.∴480÷120=4小时.∴B(4,0),C(8,480).设y AB=k2x+b,由题意,得,解得:,∴y AB=﹣120x+480∴,解得:.∴480﹣160=320千米.答:快车与慢车第一次相遇时,距离甲地的路程是320千米;故答案为:320.【点评】本题考查了行程问题的数量关系路程=速度×时间的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的关系的运用,解答时求出一次函数的解析式是关键.4.甲,乙两车分别从A,B两地同时相向匀速行驶,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车到达B地后修整了1个小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数图象如图所示,则A,C两地相距420千米.。
初中数学 一次函数在经济学中的应用有哪些
![初中数学 一次函数在经济学中的应用有哪些](https://img.taocdn.com/s3/m/a2b000fa09a1284ac850ad02de80d4d8d15a01f4.png)
初中数学一次函数在经济学中的应用有哪些一次函数在经济学中有许多应用,它们可以帮助我们分析和解决与经济相关的问题。
以下是一次函数在经济学中的一些应用:1. 成本与产量的关系:一次函数可以用来描述成本与产量之间的关系。
在生产过程中,成本通常与产量呈线性关系。
我们可以使用一次函数来计算不同产量下的成本,并确定最佳的产量水平。
这有助于企业在决策中考虑成本因素,控制成本,并优化生产效率。
2. 收入与销量的关系:一次函数可以用来描述收入与销量之间的关系。
在市场经济中,销量通常与收入呈线性关系。
我们可以使用一次函数来计算不同销量下的总收入,并确定最佳的销售策略。
这有助于企业预测收入、制定定价策略和优化市场营销。
3. 价格与需求的关系:一次函数可以用来描述价格与需求之间的关系。
在市场经济中,价格通常与需求呈反比例关系。
我们可以使用一次函数来分析价格变化对需求的影响,并确定最佳的定价策略。
这有助于企业理解市场需求、预测市场变化,并制定灵活的定价策略。
4. 投资回报率:一次函数可以用来描述投资回报率与投资金额之间的关系。
在投资决策中,投资回报率通常与投资金额呈线性关系。
我们可以使用一次函数来计算不同投资金额下的投资回报率,并评估投资项目的可行性。
这有助于投资者理解投资回报的风险和潜力,并作出明智的投资决策。
5. 市场份额与广告支出的关系:一次函数可以用来描述市场份额与广告支出之间的关系。
在市场竞争中,广告支出通常与市场份额呈线性关系。
我们可以使用一次函数来分析广告投入对市场份额的影响,并确定最佳的广告预算。
这有助于企业理解广告效果、评估市场竞争力,并优化广告投资策略。
以上是一次函数在经济学中的一些应用。
一次函数的线性关系使得它在经济分析中具有广泛的应用,帮助我们理解和解决与经济相关的问题。
希望以上内容能够帮助你了解一次函数在经济学中的应用。
初中数学几何模型与最值问题10专题-一次函数在实际应用中的最值问题(含答案)
![初中数学几何模型与最值问题10专题-一次函数在实际应用中的最值问题(含答案)](https://img.taocdn.com/s3/m/027237ef8ad63186bceb19e8b8f67c1cfad6eeb0.png)
初中数学几何模型与最值问题专题10 一次函数在实际应用中的最值问题【专题说明】1、通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和【分析】,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.【注】函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.2、一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行【分析】,其图象可能是射线、线段或折线等等.1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m.(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中速度.3、有A B、两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A B、两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买文化衫件数t(件)函数关系式(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;①当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.专题10 一次函数在实际应用中的最值问题答案【专题说明】1、通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和【分析】,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.【注】函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.2、一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.【注】函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b(k≠0)的图象就不再是一条直线.要根据实际情况进行【分析】,其图象可能是射线、线段或折线等等.1、甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了_______ m.(2)请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?【分析】(1)由图象可以直接看出乙队开挖到30 m时,用了2 h.开挖6 h时甲队比乙队多挖了10 m;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式为y=k1x(k1≠0),由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y=10x.设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b(k2≠0),由图可知,函数图象过点(2,30),(6,50),代入y=k2x+b,求出k2=5,b=20,∴y=5x+20.(3)由题意,得10x=5x +20,解得x=4(h).【解析】(1)210(2)①y=10x.②y=5x+20.(3)由题意,得10x=5x+20,解得x=4(h).故当x为4 h时,甲、乙两队所挖的河渠长度相等.2、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?【分析】本题从给出的两个函数图象中可获取以下信息:都是一次函数,一个是正比例函数;两条直线交点的横坐标为1 500;表明当x=1 500时,两个函数值相等;根据图象可知:x>1 500时,y2>y1;0<x<1 500时,y2<y1.【解析】观察图象,得:(1)每月行驶的路程小于1 500 km时,租国有出租车公司的车合算;(2)每月行驶的路程为1 500 km时,租两家车的费用相同;(3)如果每月行驶的路程为2 600 km,那么这个单位租个体车主的车合算.析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处函数值相等3、某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y(L)与行驶时间t(h)的关系如下表,与行驶路程x(km)的关系如下图.请你根据这些信息求A型车在实验中速度.【分析】考查综合利用一次函数的相关知识解决问题的能力.解法一:∵余油量y与行驶路程x的关系图象是一条直线,∴可设关系式为y=kx+b(k≠0).由图象可知y=kx+b经过两点(0,100)和(500,20),则有b=100,20=500k+b.把b=100代入20=500k+b,得20=500k+100,解得k=-425.∴直线的解析式为y=-425x+100.当y=100时,x=0;当y=84时,x=100.由图表可知,油箱中的余油量从100 L到84 L,行驶时间是1 h,行驶路程是100 km. ∴A型汽车的速度为100 km/h.解法二:由图表可知:A型汽车每行驶1 h的路程耗油16L.由图象可知:A型汽车耗油80 L所行驶的路程为500 km.可设汽车耗油16 L所行驶的路程为x km,则500∶80=x∶16,解得x=100.∴A型汽车1 h行驶的路程为100 km.∴它的速度为100 km/h.【小结】有时,我们利用一次函数的图象求一元一次方程的近似解.3、有A B 、两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发多少度电?(2)A B 、两个发电厂共焚烧90吨垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾的两倍,求A 厂和B 厂总发电量的最大值.【解析】(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,则4030201800a b b a -=⎧⎨-=⎩,解得:300260a b =⎧⎨=⎩ 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度.(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧()90x -吨,总发电量为y 度,则 300260(90)4023400y x x x =+-=+①2(90)x x ≤-①60x ≤①y 随x 的增大而增大①当60x =时,y 取最大值25800度.4、学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元, 根据题意,得3212054210x y x y +=⎧⎨+=⎩,3015x y =⎧∴⎨=⎩,∴A 的单价30元,B 的单价15元; (2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-,152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;5、某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【解析】(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y元,根据题意得:5 23110 x yx y-=⎧⎨+=⎩,解这个方程组得:2520xy=⎧⎨=⎩,故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m袋,购进乙种口罩(500﹣m)袋,根据题意得4(500)522.418(500)10000 m mm m⎧>-⎪⎨⎪+-≤⎩,解这个不等式组得:222.2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,w最大=0.6×227+1000=1136.2(元),故该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.6、某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买文化衫件数t(件)函数关系式(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.【解析】(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:,解得:30≤t≤32,①有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.①W=8t+900中W随x的增大而增大,①当t=30时,W取最小值,此时用于拍照的费用最多,①为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.7、江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【解析】(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:,解得:.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.①2小时完成8公顷小麦的收割任务,且总费用不超过5400元,①,解得:5≤m≤7,①有三种不同方案.①w=200m+4000中,200>0,①w值随m值的增大而增大,①当m=5时,总费用最小,最小值为5000元答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.8、为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【解析】(1)设购进篮球m个,排球n个,根据题意得:6080504200m nm n+=⎧⎨+=⎩,解得:4020mn=⎧⎨=⎩.答:购进篮球40个,排球20个.(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=(105﹣80)x+(70﹣50)(60﹣x)=5x+1200,①y与x之间的函数关系式为:y=5x+1200.(3)设购进篮球x个,则购进排球(60﹣x)个,根据题意得:512001400 8050(60)4300 xx x+≥⎧⎨+-≤⎩,解得:40≤x≤1303.①x取整数,①x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.①在y=5x+1200中,k=5>0,①y随x的增大而增大,①当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.9、为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x≤10时,y与x的关系式为:;①当x>10时,y与x的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?【解析】(1)①由题意得:y=300x﹣600;①由题意得:y=[300﹣12(x﹣10)]x﹣600,即y=﹣12x2+420x﹣600;(2)依题意有:﹣12x2+420x﹣600=3000,解得x1=15,x2=20.故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;(3)、当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元);当x>10时,y=﹣12x2+420x﹣600=﹣12(x2﹣35x)﹣600=﹣12(x﹣17.5)2+3075,①当x=17.5时,y有最大值.但x只能取整数,①x取17或18.显然x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.10、攀枝花芒果由于品质高、口感好而闻名全国,通过优质快捷的网络销售渠道,小明的妈妈先购买了2箱A品种芒果和3箱B品种芒果,共花费450元;后又购买了l箱A品种芒果和2箱B品种芒果,共花费275元(每次两种芒果的售价都不变).(1)问A品种芒果和B品种芒果的售价分别是每箱多少元?(2)现要购买两种芒果共18箱,要求B品种芒果的数量不少于A品种芒果数量的2倍,但不超过A品种芒果数量的4倍,请你设计购买方案,并写出所需费用最低的购买方案.【解析】(1)设A品种芒果箱x元,B品种芒果为箱y元,根据题意得:23450{2275x yx y+=+=,解得:75{100xy==.答:A品种芒果售价为每箱75元,B品种芒果售价为每箱100元.(2)设A品种芒果n箱,总费用为m元,则B品种芒果18﹣n箱,①18﹣n≥2n且18﹣n≤4n,① 185≤n≤6,①n非负整数,①n=4,5,6,相应的18﹣n=14,13,12;①购买方案有:A品种芒果4箱,B品种芒果14箱;A品种芒果5箱,B品种芒果13箱;A品种芒果6箱,B品种芒果12箱;∴所需费用m分别为:4×75+14×100=1700元;5×75+13×100=1675元;6×75+12×100=1650元,∴购进A 品种芒果6箱,B品种芒果12箱总费用最少.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学
北师大版九年级下数学总复习第12讲一次函数的实际应用
2.分析与目标:
①能根据实际问题中的数量信息或者图形信息,建立一次函数模型;
②利用一次函数结合一元一次方程、一元一次不等式等内容解决实际问题;
③培养数学建模能力、发展数形转化思想
3.知识准备:
学习经历案(简要把教学过程呈现就行)
1. 知识地位:
2.考点分析:
3、知识架构
【一、由形求式】
1.基础扫描
2.例1分析
(2019济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家
去年用水量为150m3,若今年用水量
与去年相同,水费将比去年多210
元.
【分析】根据函数图象中的数据可以求得x>120时,l2对应的函数解析式,从而可以求得x=150时对应的函数值,由l1的的图象可以求得x=150时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.
【点评】本题考查一次函数的应用,关键是根据图形明确数量关系,建立函数模型,利用一次函数的性质和数形结合的思想解答.体现数学应用价值。
3、整理完成例1
【二、方案设计】
1.基础扫描
2.例2分析
例2.某健身中心推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题
(1)分别求出选择这两种卡消费时,y
关于x的函数表达式;
(2)请根据健身次数确定选择哪种卡消费比较合算.
【分析】(1)运用待定系数法,即可求出y与x之间的函数表达式;
(2)解方程或不等式即可解决问题,分三种情形回答即可.【点评】此题主要考查了一次函数的应用、利用方程组、不等式解决问题。
体现了函数思想、数形结合思想。
体现了数学的应用价值。
液后,那么这一次注射的药液经过多长时间后控制病情开始有效这个有效时间有多长?
【分析】(1)观察函数的图象可知,本
题的函数是个分段函数,应该按自变量
的取值范围进行分别计算.
当0﹣1小时的时候,函数图象是个正比例函数,可根据1小时的含药量用待定系数法进行求解;
当1﹣10小时时,函数的图形是个一次函数,可根据1小时和10小时两个时间点的含药量用待定系数法求函数的关系式.(2)在0﹣1小时的时间段内,当含药量上升到4微克时,控制病情开始有效,那么让这个区间的函数值=4求出这个时间点.同理,可在1﹣10小时的时间段内求出另一个时间点,他们的差就是药的有效时间.
【点评】本题主要考查了一次函数的应用,要注意的是不同的自变量的取值范围内,建立不同的一次函数模型。
体现了数形结合思想和数学应用价值。
例4(3)假若某病人一天中第一次注射药液是早晨6点钟,问怎样安排此人从6:00~20:00注射药液的时间,才能使病人的治疗效果最好?
1.(2018 济南)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.
答案:
1.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x
(平方米)的关系如图所示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;
绿化面积超过1000平方米时,超过的部分每月每平方米加收4元.
(1)求如图所示的y与x的函数表达式;
(2)如果某学校目前的绿化面积是1200平方米,那么选择哪家公司的
服务比较划算.
2.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y关于x的函数关系式;
(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?
3.冬季为了身体健康,防止传染病的飞沫传播,大家纷纷戴上口罩出行。
某商家有一批口罩在销售,根据所记录的销售数据绘制了15天的函数图象,其中销售单价m(元/个)与销售时间x(天)之间的函数关系如图,日销售量y(个)与销售时间x(天)之间的函数关系如图乙所示.
(1)请描述图甲中A表示的实际意义,并求出第7天的销售金额.
(2)求出日销售量y关于销售时间x的函数关系式,并写出销售时间x的取值范围.
五、总结反思(学生填写)。