神经网络控制完整版
神经网络PID控制
![神经网络PID控制](https://img.taocdn.com/s3/m/6e0f352e24c52cc58bd63186bceb19e8b8f6eceb.png)
NNI
十
十
x₁(k)=e(k)x₂(k)=△e(k)=e(k)-e(k-1)x₃(k)=△²e(k)=e(k)-2e (k-1)+e(k-2)e(k)=r(k)-y(k)NNC 的输出为:△u(k)=k₁x₁(k)+k₂x₂(k)+k₃x₃(k)式中,}i=1,2,3 为权系数,△u(k) 为输入信号的加权和。由此可见,NNC 具有增量D 控制的结构
i=1,2,…,Q-1
BP网络的输入层节点的输为
网络的隐含层输入、输为
·神经网络PID控制 20
o(k)=1
(13)
(14)
式中o 为输出层权系数 阈值,
网络的输出层的输入输出为
·神经网络PID控制 21
图二 神经网络PID控制系统结构图
·神经网络PID控制 17
二、方案二
被控对象
u
个
经典PID控制算式为u(k)=u(k-1)+Kp[e(k)-e(k-1)]+K,e(k)+K,[e(k)-2e(k-1) + e(k-2)1
7.由(20)式,计算修正输出层敝系数。(k);8.由(21)式,计算修正隐含层敝系数。)(k);9.置k=k+1, 返回到“3”,直到性能指标J 满足要求。
·神经网络PID控制 26
系数a(k)是慢时变的,a(k)=1.2(1-0.8e -01k),神经网络结构为4—5—3,输入层的个神经元分别为模型翰入r(k)、 输 出(k)、误 差(k)和常量。学习速率=0.25,动量系数=0.05,加权系数初始值取随[=0.50.5]上的随机数。当输入信号为幅值是的正弦信号(t)sin(2πt)时,取采样时间为.001s,仿真结果如图所示。·神经网络PID控制 27
4神经网络控制
![4神经网络控制](https://img.taocdn.com/s3/m/ba78c6db50e2524de5187e62.png)
4)具有很强的信息综合能力。能够同时处理大量不同类型的输入。利 用此功能可以有效地进行信息融合。 5)硬件实现愈趋方便。大规模集成电路技术的发展为神经网络的硬 件实现提供了技术手段。
二、神经网络控制器分类
一般可分为两类: 神经控制,是以神经网络为基础而形成的独立智能控制系统; 混合神经网络控制,代表利用神经网络学习和优化能力来改善传统控制 的现代控制方法。如自适应神经控制等。 目前分类还存在较大争议,没有统一的分类法。综合各国专家的分类 法,将典型的神经网络的控制结构和学习方式归结为以下几类。
y
19
三、非线性动态系统的神经网络辨识
为了减小神经网络模型的复杂程度,神经网络也应有其最佳的辨识 模型结构。归纳起来,非线性离散时间动态系统一般有以下几种类型。
1 y (l 1) ai y(l i ) g[u(l ), u(l 1),, u(l m 1)]
i 0
第一特征抽取器 1 0 1 0 1 0 1 2 0 3 0 1 0 0 0 1 0
12
1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1
第二特征抽取器
4、2 神经网络辨识 一、神经网络的辨识基础
辨识是在输入和输出数据的基础上,从一组给定的模型中,确定 一个与所测系统等价的模型。 辨识具有三个基本要素: 1)输入/输出数据(指能够量测到的系统的输入/输出) 。 2)模型类(指所考虑的系统的结构)。 3)等价准则(指辨识的优化目标)。 从实用的观点看,辨识就是从一组模型中选择一个模型,按照某 种准则,使之能最好地拟合所关心的实际系统的动态或静态特性。
8
三、神经网络的逼近能力
1987年 结论 1988年 结论 前向传播神经网络若含有两个隐含层,且神经元激励函 对于在紧凑集中的任何平方可积函数可以通过有限个隐 数为单调的s型函数,则此神经网络能够得到合适的逼近精度。 含神经元组成的二层前向传播神经网络来逼近(神经元激励函数不一定是 单调s型),并能达到任意的逼近精度。 考虑具有单个隐含层的前向网络其输出属于集合
神经网络控制(RBF)
![神经网络控制(RBF)](https://img.taocdn.com/s3/m/3dfbac6c2bf90242a8956bec0975f46526d3a766.png)
神经网络控制(RBF)神经网络控制(RBF)是一种基于径向基函数(RBF)的神经网络,用于控制系统,其主要功能是通过对输入信号进行处理来实现对系统输出的控制。
通过神经网络控制,控制器可以学习系统的动态行为和非线性模型,从而使得控制器能够自适应地进行调整和优化,实现对系统的精确控制。
RBF 网络通常由三层组成:输入层、隐藏层和输出层。
输入层接受系统的输入信号,并将其传递到隐藏层,隐藏层对输入数据进行处理并输出中间层的值,其中每个中间层神经元都使用一个基函数来转换输入数据。
最后,输出层根据隐藏层输出以及学习过程中的权重调整,计算并输出最终的控制信号。
RBF 网络的核心是数据集,该数据集由训练数据和测试数据组成。
在训练过程中,通过输入训练数据来调整网络参数和权重。
训练过程分为两个阶段,第一阶段是特征选择,该阶段通过数据挖掘技术来确定最优的基函数数量和位置,并为每个基函数分配一个合适的权重。
第二阶段是更新参数,该阶段通过反向传播算法来更新网络参数和权重,以优化网络的性能和控制精度。
RBF 网络控制的优点在于其对非线性控制问题具有优秀的适应性和泛化性能。
另外,RBF 网络还具有强大的学习和自适应调整能力,能够学习并预测系统的动态行为,同时还可以自动调整参数以提高控制性能。
此外,RBF 网络控制器的结构简单、易于实现,并且具有快速的响应速度,可以满足实时控制应用的要求。
然而,RBF 网络控制也存在一些局限性。
首先,RBF 网络需要大量的训练数据来确定最佳的基函数数量和位置。
此外,由于网络参数和权重的计算量较大,实时性较低,可能存在延迟等问题。
同时,选择合适的基函数以及与其相应的权重也是一项挑战,这需要在控制问题中进行深入的技术和经验探索。
总体而言,RBF 网络控制是一种非常有效的控制方法,可以在广泛的控制问题中使用。
其结构简单,性能稳定,具有很强的适应性和泛化性能,可以实现实时控制,为复杂工业控制问题的解决提供了一个重要的解决方案。
人工智能控制技术课件:神经网络控制
![人工智能控制技术课件:神经网络控制](https://img.taocdn.com/s3/m/8cb135b46394dd88d0d233d4b14e852458fb3993.png)
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之
,
,
⋯
,
)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2
W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统
神经网络PID控制 43页PPT文档
![神经网络PID控制 43页PPT文档](https://img.taocdn.com/s3/m/4ba4aa4cff00bed5b9f31dd0.png)
2 e (k ) e (k ) 2 e (k 1 ) e (k 2 )
10
4. 由 NNC 产生 u ( k ), 将 u ( k )同时送到对象及 NNI 。 5 . 用下列各式前向计算 NNI 的输出 yˆ ( k 1 )。
式 中 , y ( k ), u ( k )为 系 统输 出 和 输 入;
n
、
y
n
u
为
y
和
u
的阶次; F 为非线性函数。上式可 改写为
y ( k 1 ) F
y(k
),
y(k
1),
,
y(k
n
+
y
1
),
u(k
),
u(k
1),
,
u(k
n
+
u
1
)
(3)
4
NNI 采用三层BP网络,网络的输入层有 nI ny nu 1 个神经元。其构成为
(
k
)
j0
Oi(2) (k )
f
net
( i
2
)
(
k
)
i 1,2,, Q 1
OQ(2) (k ) 1
(4)
(5)
5
图二 辨识器网络NNI 结构图
6
(
5
)式中
(2 ij
)为
隐含
层加权系数,
(2) i(ny
n
u
)
为
现代控制工程第13章神经网络控制
![现代控制工程第13章神经网络控制](https://img.taocdn.com/s3/m/f2cc12610166f5335a8102d276a20029bd646332.png)
13.3.2 BP学习算法
▪ 两个问题:
(1)是否存在一个BP神经网络能够逼近给定的样本或者函数。
( 2)如何调整BP神经网络的连接权,使网络的输入与输出与 给定的样本相同。
1986年,鲁梅尔哈特(D. Rumelhart)等提出BP学习算法。
13.3.2 BP学习算法
1. 基本思想
目标函数:
x1
y1m
x2
y2m
x p1
y
m pm
13.3.2 BP学习算法
2. 学习算法
d y wikj1
k i
k 1 j
d y y u m ( i
m
i
)
si
fm
(
m)
i
——输出层连接权调整公式
d u d k i
fk (
k)
i
w k 1 k
l
li
l
——隐层连接权调整公式
13.3.2 BP学习算法
2. 学习算法
13.2 神经元与神经网络
13.2.1 生物神经元的结构
人脑由一千多亿(1011亿- 1014 亿)个神经细胞(神经元)交织 在一起的网状结构组成,其中大 脑皮层约140亿个神经元,小脑皮 层约1000亿个神经元。
神经元约有1000种类型,每个神经元大约与103- 104个其他 神经元相连接,形成极为错综复杂而又灵活多变的神经网络。 人的智能行为就是由如此高度复杂的组织产生的。浩瀚的宇 宙中,也许只有包含数千忆颗星球的银河系的复杂性能够与大 脑相比。
13.2.1 生物神经元的结构
神经网络(neural networks,NN)
▪ 生物神经网络( natural neural network, NNN): 由中枢神经系 统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所 构成的错综复杂的神经网络,其中最重要的是脑神经系统。 ▪人工神经网络(artificial neural networks, ANN): 模拟人脑神经 系统的结构和功能,运用大量简单处理单元经广泛连接而组成 的人工网络系统。
(完整word版)基于BP神经网络的自整定PID控制仿真
![(完整word版)基于BP神经网络的自整定PID控制仿真](https://img.taocdn.com/s3/m/429bd1bcf605cc1755270722192e453610665bdf.png)
基于BP神经网络的自整定PID控制仿真一、实验目的1.熟悉神经网络的特征、结构及学习算法。
2.通过实验掌握神经网络自整定PID的工作原理。
3.了解神经网络的结构对控制效果的影响。
4. 掌握用Matlab实现神经网络控制系统仿真的方法。
二、实验设备及条件1.计算机系统2.Matlab仿真软件三、实验原理在工业控制中,PID控制是工业控制中最常用的方法。
这是因为PID控制器结构简单,实现简单,控制效果良好,已得到广泛应用。
但是,PID具有一定的局限性:被控制对象参数随时间变化时,控制器的参数难以自动调整以适应外界环境的变化。
为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。
利用神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。
基于BP神经网络的PID控制器结构如图4所示。
控制器由两部分组成:一是常规PID控制器,用以直接对对象进行闭环控制,且3个参数在线整定;二是神经网络NN,根据系统的运行状态,学习调整权系数,从而调整PID参数,达到某种性能指标的最优化。
图4中神经网络采用结构为4-5-3型的BP网络。
BP网络是一种单向传播的多层前向网络。
输入节点对应系统的运行状态量,如系统的偏差与偏差变化率,必要时要进行归一化处理。
输入变量的个数取决于被控系统的复杂程度,输出节点对应的是PID的3个可调参数。
由于输出不能为负,所以输出层活化函数取2()(1)()(1)1(1)a k y k y k u k y k -=+-+-非负的Sigmoid 函数,隐含层取正负对称的Sigmoid 函数。
本系统选取的BP 网络结构如图5所示。
网络的学习过程由正向和反向传播两部分组成。
如果输出层不能得到期望输出,那么转入反向传播过程,通过修改各层神经元的权值,使得误差信号最小。
输出层节点分别对应3个可调参数K p 、K i 、K d 。
神经网络控制器课件
![神经网络控制器课件](https://img.taocdn.com/s3/m/dcc1a5c2bb4cf7ec4afed0fd.png)
小车倒立摆系统的控制
1. 示意图 2. 数学model:
m Lϕ 2 sin ϕ − 3 / 8g sin( 2ϕ) − fx′ + u ′ x′ = M + m(1 − 3 / 4 cos2 ϕ)
[
]
3 ′ ϕ ′′ = ( g sin ϕ − x′ cosϕ ) 4L
令
NN在控制器设计中的几条路 存在的几个问题 本章简介
神经网络原理
王永骥
2
NN控制器几条路 NN控制器几条路
1. 与已有控制结构的结合,如:NN自适 应控制(NN MRAC 、NN STR:直接、 2. 间接)、NN-PID、NN-IMC(PC) 3. 与已有控制方法的结合,如:NN-Fuzzy 控制、NN-expert控制 4. NN特有的控制器设计方法,如:监督 学习控制(SNC)、评价学习控制器 (ACE)、无模型的控制器设计方法 (单个元的或网络的,即按误差调整的)
一般控制系统可包含前馈和反馈控制器两种 (前馈:由期望输出产生控制信号,反馈:由 期望与实际之差产生控制信号) MRAC思路是给定期望响应的动态模型, 利用期望与实际输出之差去改变调节器参数, 使对象+控制器形成的闭环系统对给定信号的 响应与参考模型一致。当给定模型稳定时,闭 环系统稳定并改善了动态响应。 调节机构设计:可利用Lyapunov或Popov方法 以保证闭环的稳定
参考模型
神经网络原理
王永骥
23
NN MRAC 图
神经网络原理
王永骥
24
NN控制框图 NN控制框图
神经网络原理
王永骥
25
MRAC训练数据 MRAC训练数据
神经网络原理
神经网络控制
![神经网络控制](https://img.taocdn.com/s3/m/4f76cf09ef06eff9aef8941ea76e58fafab045bf.png)
从而使神经网络控制器逐渐在控制作用中占据主
导地位,最终取消反馈控制器的作用;
✓
一旦系统出现干扰,反馈控制器重新起作用。
✓
可确保控制系统的稳定性和鲁棒性,有效提高系
统的精度和自适应能力。
神经网络
控制器
期望输出
()
−1
()
+
-
()
传统控
网络实现;可进行离线辨识,也可进行在线辨识。
+
-
逆向建模
一般而言,建立逆模型对神经网络控制意义重大。
直接逆建模简化结构图:
可用于离线辨识,也可
用于在线辨识。
对 象
+
神经网络
逆模型
缺点:不是目标导向的,系统输入也不可能预先定义。
实际常采用正-逆建模结构。
正-逆建模
神经网络
逆模型
对 象
第3章 神经网络控制
第2部分 控制基础
3.5 神经网络控制基础
3.5.1 神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过
程或系统。
神经网络采用并行分布式信息处理,具有很强的容
错性。
神经网络是本质非线性系统,可实现任意非线性映
射。
神经网络具有很强的信息综合能力,能同时处理大
期望输出
()
稳定的参
考模型
参考模
型输入
()
+
()
()
+
-
神经网络
控制器
()
对象
()
神经网络控制
![神经网络控制](https://img.taocdn.com/s3/m/f75c1c45336c1eb91a375d32.png)
M—P模型的提出兴起了对神经网络的研究。
(2) 1949年心理学家D.O.Hebb提出神经元之间突触联系强度可变 的假设。他认为学习过程是在突触上发生的,突触的联系强度随其前 后神经元的活动而变化。根据这一假设提出的学习率为神经网络的学 习算法奠定了基础。
(3) 1958年,Rosenblatt提出感知机,第一次把神经网络的研究付 诸工程实践。这是一种学习和自组织的心理学模型,它基本上符合 神经生理学的知识,模型的学习环境是有噪声的,网络构造中存在 随机连接,这符合动物学习的自然环境。这种类型的机器显然有可 能应用于模式识别、联想记忆等方面。
3.兴盛阶段
再次兴起的原因:
(1)计算机不具备学习能力。在处理能明确定义的问题或运用能明 确定义的概念作为知识时,计算机比较容易对它们进行处理,但是对 一些知识背景不清楚、推理规则不明确、环境信息十分复杂的知识处 理或是算法难以提取的信息处理任务往往感到很困难。 (2)日本第五代机计划远未达到预想水平,也倾向使人觉得有必要 进一步弄清人们习以为常的认知功能是如何进行的.这些认知功能包 括视、听觉感知,学习记忆,运动控制等.从而使人们认识到不能拘 泥一格而必须开拓新的思路,探索新的人类智能实现途径。这时原来 已出现过的,与人脑的生理组织更为接近的神经网络模型就自然成为 理想的候选模型。
兴盛阶段的标志:
(1)近些年来.许多科学家提出了许多种具备不同信息处理能力的神 经网络模型,至今为止。约已开发出了三十多种。神经网络也 被应用到了许多信息处理领域,如模式别、自动控制、信号处理、辅助 决策、人工智能等等。 (2)神经计算机的研究也为神经网络的理论研究和应用研究促供了 强有力的支持,各大学、科研团体和公司开发了许多神经网络模拟软 件包、各种型号的电子神经计算机以及许多神经网络芯片。 (3)1987年6月在美国加州举行了第一届神经网络国际会议,并成立 了国际神经网络学会,以后每年召开两次国际联合神经网络大会 (IJCNN)。 1990年12月在北京召开了我国首届神经网络学术大会,在南 京召开的1991中国神经网络学术大会上成上了中国神经网络学会。当前 发行了两种专门介绍神经网络研究的刊物,《IEEE Transaction on Neural Network》和《Neural Network》
第五章:神经网络控制论
![第五章:神经网络控制论](https://img.taocdn.com/s3/m/f6ad9cc44028915f804dc298.png)
1
x1
2
1 −2
1
y1
−2
−2
3
0
1
x2
1
0
−1
y2
3
−1
图4-24 习题4图
图a 直接逆建模 期望输出
正向模型作用:辨识作用
待辨识
动态系统 (F)
yd
NN
+
u e
y e'
优点:学习过程是有目 标导向的(即e(k)受yd 影响)。
-
正向模型
yN
图b 正-逆建模
+
e1
yd
NN1 e2 V
-
u
动态系统 + NN2 e2
y
图c 直接逆控制(双网结构)
NN1:前馈控制器(NNC);NN2:神经网络辨识器(NNI) 要求:NN1、NN2结构相同(输入层、隐含层、输出层节点 数目相同)
增强式学习: 通过某一评价函数来对网络的 权值进行更新 (无导师指导)
监督式学习算法: 一、离线学习法 步骤: 1、建逆模型:学习过程不 是目标导向的。 2、进行在线控制:学习结束 后,把这个网络作为此系统的 控制器直接连接在非线性系统 的输入端从而构成一个逆动力 学模型的控制系统。
第6章神经网络控制PPT课件
![第6章神经网络控制PPT课件](https://img.taocdn.com/s3/m/a23faca0fe4733687f21aa0a.png)
第18页/共52页
4.竞争式学习 • 竞争式学习属于无教师学习方式。此种学习方式利用不同层间的神经元发生兴
奋性联接,以及同一层内距离很近的神经元间发生同样的兴奋性联接,而距离 较远的神经元产生抑制性联接。在这种联接机制中引人竟争机制的学习方式称 为竟争式学习。它的本质在于神经网络中高层次的神经元对低层次神经元的输 入模式进行竞争识别。
• 2). 网络能通过学习带正确答案的实例集自动提取“合理的”求 解规则,即具有自学习能力;
30
第30页/共52页
2.多层前向BP网络的问题:
1). BP算法的学习速度很慢 2). 网络训练失败的可能性较大 3). 难以解决应用问题的实例规模和网络规模间 的矛盾 4). 网络结构的选择尚无一种统一而完整的理论 指导,一般只能由经验选定 5). 新加入的样本要影响已学习成功的网络,而 且刻画每个输入样本的特征的数目也必须相同 6). 网络的预测能力第(31页也/共称52页泛化能力、推广能力) 31
33
第33页/共52页
神经网络训练的具体步骤如下
1.获取训练样本集
获取训练样本集合是训练神经网络的第一步,也是十 分重要和关键的一步。它包括训练数据的收集、分析、 选择和预处理等
2.选择网络类型与结构
神经网络的类型很多,需要根据任务的性质和要求来 选择合适的网络类型。
3.训练与测试
最后一步是利用获取的训练样本对网络进行反复训练, 直至得到合适的映射结果。
3.BP网络学习算法的改进
• 1). 增加“惯性项 • 2). 采用动态步长 • 3). 与其他全局搜索算法相结合 • 4). 模拟退火算法
• 目前在神经网络的学习中,基于梯度的算法都不能从理论上保证收敛结果是 全局最优的。
bP神经网络控制
![bP神经网络控制](https://img.taocdn.com/s3/m/dd2f01abdd3383c4bb4cd256.png)
doublew_hide_input[numHiddenLayer][numInputLayer]; //隐含结点权值
doublew_output_hide[numOutputLayer][numHiddenLayer]; //输出结点权值
}
//输入层与隐层之间的权值
for(i=0;i<numHiddenLayer;i++)
{
for(intj=0;j<numInputLayer;j++)
{
w_hide_input[i][j]=(2.0*(double)rand()/RAND_MAX)-1;
}
}
//输出层与隐层之间的权值
for(i=0;i<numOutputLayer;i++)
Y[i][0]=sin(X[i][0]);
X[iபைடு நூலகம்[0]=preminmax2(0,2*pi,X[i][0]);//输入[0,2π]归一化到[-1,1]
Y[i][0]=preminmax(-1,1,Y[i][0]);//输出[-1,1]归一化到[0,1]
return 0;
}
void initial()
智能控制实验报告
-BP神经网络
一.实验内容
设计BP网络,映射函数为:
1.y=sin(x) x (0,2 )
2.y=x1^2+x2^2+x1*x2 x1,x2 (0,1)
给出训练后的权值矩阵,并考察训练拟合的效果。
二.实验原理
1.BP网络原理
BP网络模型处理信息的基本原理是:输入信号Xi通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Yk,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度Tjk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
《神经网络控制》课件
![《神经网络控制》课件](https://img.taocdn.com/s3/m/9e2ed053f08583d049649b6648d7c1c708a10b0a.png)
神经网络控制需要大量的数据和计算资源,对模型的训练和调整要求较高。
2 神经网络控制的挑战
在复杂系统的实时控制和稳定性问题上,神经网络控制仍然面临挑战。
3 神经网络控制未来发展的方向
未来,神经网络控制将更加注重与其他控制技术的结合,如模糊控制、强化学习等。
总结
神经网络控制的优势 和局限性
《神经网络控制》PPT课 件
# 神经网络控制PPT课件
介绍神经网络控制
定义神经网络控制
神经网络控制是利用神经网络模型来设计控制器,实现对系统的控制和优化。
神经网络控制的作用和优势
神经网络控制具有非线性建模能力和适应性,可以处理复杂系统和非线性控制问题。
神经网络控制的发展历程
神经网络控制起源于20世纪80年代,经历了多个阶段的发展,如BP神经网络、RBF神经网络 等。
神经网络控制具有非线性建模 能力和适应性,但对数据和计 算资源要求较高。
神经网络控制的发展 前景
神经网络控制在自动化控制领 域有着广阔的应用前景,将与 其他技术相结合。
未来研究方向
进一步研究神经网络控制与其 他控制技术的融合,提高控制 系统的稳定性和性能。
神经网络的基本单元是神经元,其模型
前馈神经网络和反馈神经网络
2
和激活函数决定了神经网络的行为和表 达能力。
前馈神经网络是一种信息传递方向单一
的网络结构,而反馈神经网络具有循环
连接,在动态系统的控制中应用广泛。
3
训练神经网络的方法
常见的神经网络训练方法包括反向传播 算法、遗传算法、粒子群优化等,用于 调整网络参数以实现优化和学习。
神经网络控制实例
倒立摆控制
自适应神经网络PID
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络控制HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】人工神经网络控制摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。
本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。
关键词: 神经网络控制;控制系统;人工神经网络人工神经网络的发展过程神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。
它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。
是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。
它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。
在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。
神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。
神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。
如神经预测控制、神经逆系统控制等。
生物神经元模型神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。
每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。
图1生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两种类型,兴奋性突触和抑制性突触。
前者产生正突触后电位,后者产生负突触后电位。
人工神经网络的定义人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。
为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。
人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。
人工神经网络的定义不是统一的,对人工神经网络的定义:“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
”人工神经网络的基本原理人工神经网络(articles neural network,ANN)结构和工作机理基本上以人脑的组织结构(大脑神经元网络)和活动规律为背景的,它反映了人脑的某些基本特征,但并不是要对人脑部分的真实再现,可以说它是某种抽象、简化或模仿。
神经网络在2个方面与人脑相似:(1) 人工神经网络获取的知识是从外界环境中学习得来的。
(2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。
他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。
神经网络理论是巨量信息并行处理和大规模并行计算的基础。
人工神经网络的基本特征1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。
这特别适于实时控制和动态控制。
各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。
2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。
只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。
因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。
3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。
作为神经元间连接键的突触,既是信号转换站,又是信息存储器。
每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。
信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。
4、具有联想存储功能:人的大脑是具有联想功能的。
比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。
用人工神经网络的反馈网络就可以实现这种联想。
神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。
在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。
5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。
6、软件硬件的实现:人工神经网络不仅能够通过软件而且可借助软件实现并行处理。
近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。
许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。
人工神经网络的基本数学模型神经元是神经网络操作的基本信息处理单位(图2)。
神经元模型的三要素为:(1) 突触或联接,一般用w ij,表尔神经元和神经元之间的联接强度,常称之为权值。
(2) 反映生物神经元时空整合功能的输入信号累加器。
图2 一个人工神经元(感知器)和一个生物神经元示意图(3) 一个激活函数用于限制神经元输出(图3),可以是阶梯函数、线性或者是指数形式的函数(Sigmoid函数)等。
图3 激活函数:(a)阀值单元 (b)线性单元 (c)(d)非线性单元:Sigmoid函数图3是神经元的基本模型,图5是多层人工神经网络模型的示意图,其中12,,,n x x x 为输入信号,对应于生物神经元的树突输入,其他神经元的轴突输出;i u 为神经元的内部状态;i θ为阀值;ij w 为神经元i 和神经元j 的连接权值,其正负分别表示兴奋和抑制;()f •为激活函数,也称变换函数或传递函数;i y 为输出。
这个模型可以描述为:图4 神经元的基本模型图5 多层人工神经网络示意图常见神经元响应函数(4)非线性单元:Sigmoid 函数(a )s e s -+=11)(σ (b ))tanh()(s s βσ=神经网络基本学习算法有教师学习(监督学习)无教师学习(无监督学习)强化学习(再励学习)人工神经网络应用人工神经网络经过多年的发展,应用研究也取得了突破性进展,范围正在不断扩大,其应用领域几乎包括各个方面。
半个世纪以来,这门学科的理论和技术基础已达到了一定规模,就应用的技术领域而言有计算机视觉,语言的识别、理解与合成,优化计算,智能控制及复杂系统分析,模式识别,神经计算机研制,知识推理专家系统与人工智能。
涉及的学科有神经生理学、认识科学、数理科学、心理学、信息科学、计算机科学、微电子学、光学、动力学、生物电子学等。
美国、日本等国在神经网络计算机软硬件实现的开发方面也取得了显着的成绩,并逐步形成产品。
人工神经网络在数据挖掘中主要应用于数据的分类和预测,在分类方法中,与传统的统计方法相比,神经网络具有很强的学习能力,极大地提高了分类的精度和预测的准测度。
人工神经网络与支持向量机、遗传算法、随机森林等其他先进算法的结合,产生更为精确地算法,在R 的galgo 包(主要应用于生物信息学)中已经体现出来。
a期望输出神经网络应用于系统辨识与控制的优点:无须数学建模,只需在线或离线学习训练,同时适用于线性和非线性系统,具有很强的适应性和鲁棒性,容易和其他控制方式结合。
1数字识别每一网格的明暗度经光电器件转换成电信号神经网络(NN)的输入与网格阵列一一对应输出电平高低的组合对应要识别的数字用数字样本和标准输出对NN进行训练2系统辨识3专家控制人工神经网络发展方向1、人工神经网络模型的研究利用神经生理与认知科学研究人类思维以及智能机理和利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能。
如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。
2、人工神经计算和进化计算要把基于链接主义的神经网络理论、基于符号主义的人工智能专家系统理论和基于进化论的人工生命这3大研究领域,自发而有机的结合起来。
建立神经计算和进化计算的数学理论基础。
“并行分布处理(PDP)”具有自学习、自适应和自组织的特点,这是一种提高计算性能的有效途径,是神经网络迫切需要增强的主要功能,必须加以重视,同时,还应寻找其他有效方法,建立具有计算复杂性、网络容错性和坚韧性的计算理论。
进一步研究调节多层感知器的算法,使建立的模型和学习算法成为适应性神经网络的有力工具,构建多层感知器与自组织特征图级联想的复合网络,是增强网络解决实际问题能力的一个有效途径,重视链接的可编程性和通用性问题的研究,从而促进智能科学的发展。
3、神经网络计算机的实现神经网络结构和神经元芯片的作用将不断扩大。
神经网络结构的研究是神经网络的实现以及成功地实现应用的前提,又是优越的物理前提,他体现了算法和结构的统一是硬件和软件的混合体,未来的研究主要是针对信息处理功能体,将系统、结构、电路、器件和材料等方面的知识有机地结合起来,建构有关的新概念和新技术,在硬件实现上,研究材料的结构和组织,使他具有自然地进行信息处理的能力。
关于自己对人工神经网络的认知(1)人工神经网络的发展很大程度依靠算法的改进和计算硬件速度的发展;概率神经网络、模糊神经网络及与其他新技术的结合是很重要的发展方向。
(2)人工神经网络虽然已得到广泛的应用,但认为各种识别工作都可以利用神经网络来实现的观点是不成熟的。
(3)神经网络搭建的成功与否,很大程度取决于隐层单元个数的选择,而目前仍然没有该选择的理论依据;另外,输入层、输出层的确立往往依不同的设计人员而有不同的选择方式,因此,针对一个问题而建立的不同神经网络可能有多种,从而使得网络的识别能力存在差异。
(4)网络的训练和仿真对训练样本和测试样本有很大的依赖性。
如果两种样本的数量、类别不完备,网络的训练将存在缺陷,甚至达不到设计目的。
因此,使用神经网络技术,前提是有良好的数据样本基础。
总之,人工神经网络特有的非线性适应性的信息处理能力,克服了传统人工智能方法对于直觉信息处理方面的缺陷(如模式、语音识别、非结构化信息等),使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。