随机变量的概率分布与数学期望

合集下载

期望与概率分布

期望与概率分布

期望与概率分布期望与概率分布数学期望的含义试验中每次可能结果的概率乘以其结果的总和,最基本的数学特征之⼀。

他反应随机变量平均取值的⼤⼩,并不⼀定属于结果输出值集合⾥。

可以看做加权平均值,权重是结果的频率。

求⼀个随机变量的期望相当于求它所在分布的中⼼位置的横坐标(概率分布见下⽂)。

数学期望的性质设C为⼀个常数,X和Y是两个随机变量。

E(C)=C期望的期望是期望本⾝(期望是常数)。

E(CX)=CE(X)E(aX+bY)=a∗E(X)+b∗E(Y) 期望是线性函数。

X Y互相独⽴时,E(XY)=E(X)E(Y)举例:两个骰⼦掷出点数的期望:E(X)=∑ω∈ΩX(ω)Pr(ω)E(X)=136∗(2+12)+236∗(3+11)+336∗(4+10)+436∗(5+9)+536∗(6+8)+636∗7=7⼀个骰⼦掷出点数的期望:E(Y)=16∗1+16∗2+⋯+16∗6=3.5E(X)=2E(Y)期望与算数平均值的关系平均数是根据统计结果计算出来的算数平均值,与实验结果本⾝有关。

⽽数学期望是完全由随机变量的概率分布决定的,与实验结果本⾝⽆关。

例如掷骰⼦,平均数和你骰出的点数有关,期望值恒为 3.5。

实验的多少是可以改变平均数的,⽽在你的分布不变的情况下,期望是不变的。

弱⼤数定理:如果我们能进⾏⽆穷次随机实验并计算出其样本的平均数的话,那么这个平均数其实就是期望。

当然实际上根本不可能进⾏⽆穷次实验,但是实验样本的平均数会随着实验样本的增多越来越接近期望,就像频率随着实验样本的增多会越来越接近概率⼀样。

如果说概率是频率随样本趋于⽆穷的极限。

那么期望就是平均数随样本趋于⽆穷的极限。

什么是概率分布弄清这个⾸先需要知道以下芝⼠。

数据有哪些类型数据类型(统计学中称为随机变量)分为两种,离散型以及连续型。

可以想象成整点函数和函数,离散数据数据的取值是不连续的,例如掷骰⼦只有六种数值。

⼜如时间,能够⽆限分割,1.2 分钟,1.215 分钟... 它就是典型的连续数据。

概率论与数理统计第一节随机变量的数学期望

概率论与数理统计第一节随机变量的数学期望
0.95.
2. 连续型随机变量函数的数学期望的求法:
(1)设X的概率密度为f ( x),则Y g( X )的数学期望为:
EY E[g( X )] g( x) f ( x)dx.
(2) 设( X,Y )的概率密度为f ( x,y),则Z g( X,Y )的数学期望为:
EZ E[g( X ,Y )] g( x, y) f ( x, y)dxdy.
0
1 3
.
(3)
E(X 2)
x2 f ( x)dx
1 2x3dx
0
1 2
x4
1 0
1 2
.
2. 连续型随机变量函数的数学期望的求法:
(1)设X的概率密度为f ( x),则Y g( X )的数学期望为:
EY E[g( X )] g( x) f ( x)dx.
(2) 设( X,Y )的概率密度为f ( x,y),则Z g( X,Y )的数学期望为:
0
0
(
xex
)
0
exdx
0
1
e x
0
1
.
(3) 正态分布N(, 2)的数学期望
设X服从正态分布,其概率密度为:
f (x)
1
( x )2
e
2 2
,
x ,
2
则 EX .
证明:E( X )
xf ( x)dx

x
( x )2
e 2 2 dx
2
令t
x
1
(t
)e
t2 2
dt
甲: 环数 8
9 10 乙: 环数 8
9 10
P 0.4 0.2 0.4
P 0.2 0.5 0.3

概率分布以及期望和方差

概率分布以及期望和方差

学辅教育成功就是每天进步一点点!概率分布以及期望和方差上课时间 :上课教师:上课重点 :掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差上课规划:解题技巧和方法一两点分布知识内容⑴两点分布如果随机变量X 的分布列为X1 0P p q其中 0 p 1 , q 1 p ,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为 1,不合格记为 0 ,已知产品的合格率为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布.X100.8 0.2P两点分布又称 0 1 分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.(2)典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在 n 次二点分布试验中,离散型随机变量X 的期望取值为np .典例分析学辅教育成功就是每天进步一点点!,针尖向上;1、在抛掷一枚图钉的随机试验中,令 X1,如果针尖向上的,针尖向下 .概率为 p ,试写出随机变量X 的概率分布.2、从装有 6 只白球和 4 只红球的口袋中任取一只球,用X 表示“取到的白,当取到白球时,球个数”,即X1,求随机变量 X 的概率分布. ,当取到红球时,3、若随机变量 X 的概率分布如下:X1P23 8C9C C试求出 C ,并写出 X 的分布列.3、抛掷一颗骰子两次,定义随机变量0,(当第一次向上一面的点 数不等于第二次向上一 面的点数 )1, (当第一次向上一面的点数等于第二次向上一面的点数 )试写出随机变量 的分布列.4、篮球运动员比赛投篮,命中得1分,不中得 0 分,已知运动员甲投篮命中率的概率为 P .⑴记投篮1次得分X,求方差D ( X )的最大值;⑵当⑴中 D ( X ) 取最大值时,甲投3次篮,求所得总分Y的分布列及Y的期望与方差.二超几何分布知识内容将离散型随机变量X 所有可能的取值x i与该取值对应的概率p i (i 1, 2,, n)列表表示:X x1x2P p1p2⋯⋯x ip i⋯⋯x np n一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取 n 件 ( n ≤ N ) ,这 n 件中所含这类物品件数X 是一个离散型随机变量,它取值为 m 时的概率为P( X m)C M m C n N m M≤ l ,l为 n 和M中较小的一个 ) .C n N(0≤ m我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为 N , M ,n的超几何分布.在超几何分布中,只要知道 N , M 和n,就可以根据公式求出 X 取不同值时的概率P( X m),从而列出 X 的分布列.超几何分布的期望和方差:若离散型随机变量 X 服从参数为N,M,n的超几何分布,则 E(X)nM,n(N n)( N M )M.ND(X)2(N 1)N典例分析例题:一盒子内装有 10 个乒乓球,其中 3 个旧的,7 个新的,从中任意取 4 个,则取到新球的个数的期望值是.练习 1. 某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的 6 题,规定每次考试都从备选题中随机抽出 5 题进行测试,每题分数为20分,求他得分的期望值.练习 2. 以随机方式自 5 男 3 女的小群体中选出 5 人组成一个委员会,求该委员会中女性委员人数的概率分布、期望值与方差.练习 3. 在12个同类型的零件中有2 个次品,抽取 3 次进行检验,每次任取一个,并且取出不再放回,若以和分别表示取出次品和正品的个数.求,的期望值及方差.三二项分布知识内容若将事件 A 发生的次数设为X ,事件 A 不发生的概率为q 1 p ,那么在 n 次独立重复试验中,事件 A 恰好发生k 次的概率是P( X k)C kn pk q n k,其中k0 , 1, 2 , n, .于是得到X的分布列X01⋯k⋯nP C 0n p0q n C1n p1q n 1⋯C n k p k q n k⋯C n n p n q0由于表中的第二行恰好是二项展开式(q p)n C0n p0 q n C1n p1q n 1C k n p k q n k C n n p n q0各对应项的值,所以称这样的散型随机变量X 服从参数为n,p 的二项分布,记作 X ~ B(n , p) .二项分布的均值与方差:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则E ( X ) np , D (x) npq (q1 p) .二项分布:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则 E( X ) np ,D ( x) npq (q 1 p) .典例分析二项分布的概率计算1例题:已知随机变量服从二项分布, ~ B(4 , ) ,则 P(2)等于.练3习 1.甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为2,则甲以 3:1 的比分获胜的3概率为( )A .8B .64C .4D .8278199练习 2.某篮球运动员在三分线投球的命中率是1,他投球 10 次,恰好投2进 3 个球的概率.(用数值表示)练习 3. 某人参加一次考试, 4 道题中解对 3 道则为及格,已知他的解题正确率为 0.4 ,则他能及格的概率为 _________(保留到小数点后两位小数)接种某疫苗后,出现发热反应的概率为0.80,现有 5 人接种了该疫苗,至少有 3 人出现发热反应的概率为.(精确到 0.01)例题 :从一批由 9 件正品, 3 件次品组成的产品中,有放回地抽取 5 次,每次抽一件,求恰好抽到两次次品的概率(结果保留2 位有效数字).练习 1. 一台X型号的自动机床在一小时内不需要人照看的概为0.8000 ,有四台这种型号的自动机床各自独立工作,则在一小时内至多有 2 台机床需要工人照看的概率是()A.0.1536B.0.1808C.0.5632D.0.9728练习 2. 设在 4 次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于65,求事件A在一次试验中发生的概率.81例题:某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都学辅教育成功就是每天进步一点点!是1.若某人获得两个“支持,”则给予 10万元的创业资助;若只获得一个“支2持”,则给予 5 万元的资助;若未获得“支持”,则不予资助.求:⑴ 该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.练习 1. 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是 0.6 ,经销一件该商品,若顾客采用一次性付款,商场获得利润 200 元;若顾客采用分期付款,商场获得利润250 元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.练习 2. 某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为1,若中奖,则家具城返还顾客5现金 200 元.某顾客消费了 3400 元,得到3张奖券.⑴求家具城恰好返还该顾客现金 200元的概率;⑵求家具城至少返还该顾客现金 200元的概率.例题:设飞机 A 有两个发动机,飞机 B 有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p 是t的函数p 1 e t ,其中t为发动机启动后所经历的时间,为正的常数,试讨论飞机 A 与飞机 B 哪一个安全?(这里不考虑其它故障).练习 1. 假设飞机的每一台发动机在飞行中的故障率都是1 P,且各发动机互不影响.如果至少50% 的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的 P 而言,四发动机飞机比二发动机飞机更安全?练习 2. 一名学生每天骑车上学,从他家到学校的途中有 6 个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 .3⑴设为这名学生在途中遇到红灯的次数,求的分布列;⑵设为这名学生在首次停车前经过的路口数,求的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.二项分布的期望与方差例题 :已知X ~ B(10,0.8),求E( X )与D(X ).练习 1. 已知X ~ B(n,p),E ( X )8, D(X ) 1.6 ,则 n 与p的值分别为()A.10和0.8B.20和0.4C.10和 0.2D.100和 0.8练习 2.已知随机变量 X 服从参数为6,0.4的二项分布,则它的期望E(X ),方差 D(X).练习 3. 已知随机变量X服从二项分布,且E ( ) 2.4 ,D( ) 1.44 ,则二项分布的参数 n ,p的值分别为,.练习 4. 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取 4 次,则取到新球的个数的期望值是.例题:甲、乙、丙 3 人投篮,投进的概率分别是1,2,1.352⑴现 3 人各投篮 1 次,求 3 人都没有投进的概率;⑵用表示乙投篮 3 次的进球数,求随机变量的概率分布及数学期望.练习 1. 抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴ 求一次试验中成功的概率;⑵求在4次试验中成功次数X 的分布列及 X 的数学期望与方差.练习 2. 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为 4% .问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?四正态分布知识内容概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量 X ,则这条曲线称为 X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a,b 之间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.yx=μO x1( x)2正态变量概率密度曲线的函数表达式为f (x) e 22,x R ,其中,2π是参数,且0 , .式中的参数 和 分别为正态变量的数学期望和标准差. 期望为 、标准差为 的正态分布通常记作N ( ,2) .正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布: 我们把数学期望为0 ,标准差为 1的正态分布叫做标准正态分布.①正态变量在区间( ,),(2 ,2 ),(3 ,3 )内,取值的概率分别是 68.3% , 95.4% , 99.7% .②正态变量在 (,) 内的取值的概率为 1,在区间 ( 3 ,3 ) 之外的取值的概率是 0.3% ,故正态变量的取值几乎都在距 x三倍标准差之内,这就是正态分布的3 原则.若 ~N(, 2) , f ( x) 为其概率密度函数,则称 F (x)P( ≤ x)xf (t )dt 为概率分布函数,特别的,,2x1t 2dt 为标准正态分布函数.2~ N (0 1 ) ,称 ( x)e2πP(x) (x) .标准正态分布的值可以通过标准正态分布表查得.典例分析(一)正态曲线(正态随机变量的概率密度曲线)1.下列函数是正态分布密度函数的是()1 ( x r ) 22 πe A . f ( x )B . f ( x )e22π2 πx 221 ( x1) 21 x 2ee2C . f ( x )4D . f ( x )22π2π2.若正态分布密度函数 f ( x)1( x 1) 2e 2( x R ) ,下列判断正确的是()2πA .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值3.对于标准正态分布 N 0 ,1 1 x 2的概率密度函数2 ,下列说法不正确f xe2 π的是()A.f x为偶函数B.f x最大值为12πC.f x在x0 时是单调减函数,在x ≤ 0 时是单调增函数D.f x关于x 1对称4.设的概率密度函数为1( x 1) 2e2f ( x)2πA.P(1) P(1)C.f (x)的渐近线是x0,则下列结论错误的是()B.P( 1≤ ≤1) P(11) D.1~ N(0 ,1)(二)求,的取值以及概率例题:设 X ~ N ( ,2 ) ,且总体密度曲线的函数表达式为:f (x)1x2 2 x 1e4,2πx R .⑴求,;⑵求 P(| x 1|2) 及 P(1 2 x 1 2 2) 的值.练习 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 f ( x)1( x 80)2,则下列命题中不正确的是()200e102A.该市这次考试的数学平均成绩为80 分B.分数在 120 分以上的人数与分数在60 分以下的人数相同C.分数在 110 分以上的人数与分数在50 分以下的人数相同D.该市这次考试的数学标准差为10(三)正态分布的性质及概率计算例题 :设随机变量服从正态分布N (0 ,1) ,a0 ,则下列结论正确的个数是____ .⑴ P(||a )P(||a)P(| | a)⑵ P(||a )2P(a)1⑶ P(||a )12P(a)⑷ P(||a )1P(||a)练习 1. 已知随机变量 X 服从正态分布 N (3 ,a 2 ) ,则 P( X 3)()A .1B .1C .1D .15 432练习 2. 在某项测量中,测量结果 X 服从正态分布 N 1, 20 ,若X 在 0,1内取值的概率为 0.4 ,则 X 在 0 ,2 内取值的概率为.练习 3.已知随机变量 X 服从正态分布 N (2 , 2) , P( X ≤ 4) 0.84 ,则 P(X ≤ 0)A . 0.16B . 0.32C . 0.68D . 0.84练习4.已知X~N( 1,2 ),若 P( 3≤ X ≤-1) 0.4,则 P( 3≤ X ≤1) ()A . 0.4B . 0.8C . 0.6D .无法计算加强训练:1 设随机变量 服从正态分布 N (2 ,9) ,若 P( c 2)P( c 2) ,则 c_______.2 设 ~ N(0 1),且 P(| | b) a(0 a 1 b 0) ,则 P(b) 的值是_______(用 a 表,,≥示).3 正态变量 X ~ N (1, 2 ) , c 为常数, c0 ,若 P(c X2c) P(2c X 3c ) 0.4,求P( X ≤ 0.5) 的值.4 某种零件的尺寸服从正态分布N (0 ,4) ,则不属于区间 ( 4 ,4) 这个尺寸范围的零件约占总数的.(四)正态分布的数学期望及方差例题:如果随机变量~ N( , 2),ED1,求 P( 1 1)的值.(五)正态分布的 3 原则例题 :灯泡厂生产的白炽灯寿命(单位: h ),已知 ~ N (1000 ,302 ) ,要使灯泡的平均寿命为1000h 的概率为 99.7% ,则灯泡的最低使用寿命应控制在_____ 小时以上.练习 1.一批电池(一节)用于手电筒的寿命服从均值为35.6 小时、标准差为4.4 小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于 40小时的概率是多少?练习 2. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80 ,标准差为 10,理论上说在 80 分到 90 分的人数是 ______.杂题(拓展相关:概率密度,分布函数及其他)练习 3. 以F x表示标准正态总体在区间, x 内取值的概率,若随机变量服从正态分布N ,2,则概率P等于()A.F F B.F1F1C.F 1D.2F练习 4.甲、乙两人参加一次英语口语考试,已知在备选的10 道题中,甲能答对其中的 6 题,乙能答对其中的 8 题.规定每次考试都从备选题中随机抽出 3 题进行测试,至少答对 2 题才算合格.⑴求甲答对试题数X的分布列、数学期望与方差;⑵ 求甲、乙两人至少有一人考试合格的概率.课后练习1、一个袋子里装有大小相同的 3 个红球和 2 个黄球,从中同时取出 2 个,则其中含红球个数的数学期望是_________.(用数字作答)2.、同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为,则的数学期望是()A.20B.25C.30D.403、某服务部门有n个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是()A.np(1 p)B.np C.n D.p(1 p)4、同时抛掷4枚均匀硬币 80次,设 4 枚硬币正好出现 2枚正面向上, 2 枚反面向上的次数为,则的数学期望是()A、20B.25C.30D.405、一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出 1个球,得到黑球的概率是2;从袋中任意摸出2个球,至少得到1个白5球的概率是7.9⑴若袋中共有 10 个球,从袋中任意摸出 3 个球,求得到白球的个数的数学期望;⑵求证:从袋中任意摸出 2 个球,至少得到 1 个黑球的概率不大于7 .并10指出袋中哪种颜色的球个数最少.5.某厂生产电子元件,其产品的次品率为5% ,现从一批产品中的任意连续取出 2 件,求次品数的概率分布列及至少有一件次品的概率.某单位为绿化环境,移栽了甲、乙两种大树各 2 株.设甲、乙两种大树移栽的成活率分别为5和4,且各株大树是否成活互不影响.求移栽的 4 株65大树中:⑴至少有 1 株成活的概率;⑵两种大树各成活 1 株的概率.6.一个口袋中装有n 个红球(n≥5且n N *)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用 n 表示一次摸奖中奖的概率p ;⑵若 n 5 ,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n取多少时, P 最大?7.袋子 A 和 B 中装有若干个均匀的红球和白球, 从 A 中摸出一个红球的概率是 1,从 B 中摸出一个红球的概率为p .3⑴从 A 中有放回地摸球,每次摸出一个,有 3 次摸到红球即停止.①求恰好摸 5 次停止的概率;②记 5 次之内(含 5 次)摸到红球的次数为,求随机变量 的分布.⑵若 A ,B 两个袋子中的球数之比为 1: 2 ,将 A ,B 中的球装在一起后,从中摸出一个红球的概率是 2,求 p 的值.58、一个质地不均匀的硬币抛掷 5 次,正面向上恰为 1次的可能性不为 0 ,而且与正面向上恰为2 次的概率相同.令既约分数i为硬币在 5 次抛掷中有 3j次正面向上的概率,求ij .9、某气象站天气预报的准确率为80% ,计算(结果保留到小数点后面第 2位)⑴5 次预报中恰有2次准确的概率;⑵ 5 次预报中至少有 2 次准确的概率;⑶5 次预报中恰有2次准确,且其中第3次预报准确的概率;10 、某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠.若该电梯在底层载有 5 位乘客,且每位乘客在这三层的每一层下电梯的概率均为1,求至少有两位乘客在 20 层下的概率.311、10 个球中有一个红球,有放回的抽取,每次取一球,求直到第n 次才取得 k(k ≤ n) 次红球的概率.12 、已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮 3 次甲胜乙的概率.(保留两位有效数字)13 、若甲、乙投篮的命中率都是p 0.5,求投篮n次甲胜乙的概率.( n N,n ≥ 1 )14、省工商局于某年 3 月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的 x 饮料的合格率为80%,现有甲,乙,丙3人聚会,选用 6 瓶x饮料,并限定每人喝 2 瓶,求:⑴甲喝 2 瓶合格的x饮料的概率;⑵甲,乙,丙 3 人中只有 1 人喝 2 瓶不合格的x饮料的概率(精确到0.01).15、在一次考试中出了六道是非题,正确的记“√”号不,正确的记“×”号若.某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于 4 道的概率;⑶至少答对 2 道题的概率.17、某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6 .现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出 3人;⑵双方各出 5 人;⑶双方各出 7 人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?18、某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60% ,参加过计算机培训的有75% ,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选 1 名下岗人员,求该人参加过培训的概率;⑵任选 3 名下岗人员,记为3人中参加过培训的人数,求的分布和期望.19、设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为 0.6 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记表示进入商场的 3 位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布及期望.20、某班级有n人,设一年365天中,恰有班上的m(m≤n)个人过生日的天数为 X ,求 X 的期望值以及至少有两人过生日的天数的期望值.21、购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有 10000人购买了这种保险,且各投保人是否出险相互独立.已知保险。

概率分布与期望值的计算

 概率分布与期望值的计算

概率分布与期望值计算详解一、概率分布概述概率分布是描述随机变量所有可能取值及其对应概率的数学工具。

根据随机变量的性质,概率分布可分为离散概率分布和连续概率分布。

离散概率分布描述的是离散型随机变量,即只能取有限个或可数个值的随机变量的概率分布情况;而连续概率分布则描述的是连续型随机变量,即可以在某个区间内取任意实数值的随机变量的概率分布情况。

二、常见的离散概率分布1. 0-1分布:一个随机试验只有两个可能结果,且这两个结果发生的概率之和为1。

例如,抛掷一枚硬币,正面朝上和反面朝上的概率分别为$p$和$1-p$。

2. 二项分布:在$n$次独立的伯努利试验中,成功次数$X$的概率分布。

例如,在10次抛掷硬币试验中,正好出现5次正面的概率。

3. 泊松分布:描述单位时间(或单位面积)内随机事件发生的次数的概率分布。

常用于描述稀有事件的概率分布情况。

三、常见的连续概率分布1. 正态分布:又称为高斯分布,是一种连续型概率分布。

正态分布具有钟形曲线特征,其均值、中位数和众数均为同一个值。

在自然界和社会科学中,许多随机现象都服从正态分布。

2. 指数分布:描述随机事件发生间隔时间的概率分布。

例如,电子产品的寿命、电话故障间隔时间等。

3. 均匀分布:在连续区间$[a, b]$内取值的随机变量的概率分布。

在这个区间内,随机变量取任何值的概率都相等。

四、期望值的计算期望值(Expected Value)是随机变量所有可能取值与其对应概率的乘积之和,用数学符号表示即为$E(X) = \sum_{i=1}^{n} x_i p(x_i)$。

期望值反映了随机变量的长期平均结果或平均水平。

计算期望值的一般步骤如下:1. 确定随机变量的所有可能取值$x_1, x_2, ..., x_n$。

2. 确定每个取值对应的概率$p(x_1), p(x_2), ..., p(x_n)$。

3. 将每个取值与其对应的概率相乘,得到$x_1 p(x_1), x_2 p(x_2), ..., x_n p(x_n)$。

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差


12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0

x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2

随机变量的数学期望

随机变量的数学期望

P{ X = xiY = y j } = pij ,i , j = 1,2,
则 E( Z ) = E[ g ( X , Y )] = ∑ ∑ g ( x i , y j ) pij .
j i
型随机变量, (2) 若(X,Y)是连续型随机变量,联合概率密度为 , ) 连续型随机变量 f(x,y),则 ( , )
1 k 1 1 k k E 因此, 因此, ( X ) = q + (1 + ) (1 q ) = 1 q + , k k k
N个人需化验的次数的数学期望为 个人需化验的次数的数学期望为 例如, 例如,
0.9910 0.1 = 0.804 , 1 k 就能减少验血次数. 当 q > 时, 就能减少验血次数.
E( X) = ∫ xf ( x)dx

+∞
13
例5
设随机变量X的概率密度函数为 设随机变量 的概率密度函数为
3 x 2 , 0 < x < 1 f ( x) = 其它 0 , 的数学期望. 求X的数学期望. 的数学期望

E( X ) = ∫
+∞ ∞
1 0
xf ( x ) dx
2
=∫
3 x 3 x dx = . 4
+∞
+∞
=∫
+∞ 0
x e dx = 2 .
2
18
x
设随机变量( , ) 例8 设随机变量(X,Y)的联合概率密度为
1 3 3 2 , < y < x, x > 1 y f ( x, y) = 2 x y x 0, else 1 ). 求 E(Y ), E( XY
解 E(Y ) =

概率的分布与期望

概率的分布与期望

概率的分布与期望概率是一种描述事件发生可能性的数学工具,而概率的分布与期望则是概率论中重要的概念之一。

本文将介绍概率分布和期望的概念及其与实际问题的应用。

一、概率分布概率分布是描述一个随机变量所有可能取值及其对应概率的函数。

常见的概率分布包括离散概率分布和连续概率分布。

1.离散概率分布离散概率分布用于描述随机变量取有限或可数多个值的概率情况。

其中最常见的是二项分布和泊松分布。

二项分布是一种重要的离散概率分布,用于描述n次独立重复试验中成功次数的概率分布。

在二项分布中,每次试验有两种可能的结果,成功或失败,成功的概率为p,失败的概率为1-p。

其概率质量函数为P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中X为成功次数,k为取值范围内的一个值,C(n,k)表示组合数。

泊松分布用于描述在一定时间或空间内,事件发生的次数的概率分布。

泊松分布的概率质量函数为P(X=k)=(λ^k * e^-λ)/k!,其中X为事件发生次数,k为取值范围内的一个值,λ为事件发生的平均次数。

2.连续概率分布连续概率分布用于描述随机变量在一定区间内取值的概率情况。

其中最常见的是均匀分布、正态分布和指数分布。

均匀分布是一种简单的连续概率分布,它的概率密度函数在取值范围内是常数。

均匀分布的概率密度函数为f(x)=1/(b-a),其中a为最小值,b为最大值。

正态分布(高斯分布)是一种常见的连续概率分布,广泛应用于自然和社会科学领域。

正态分布的概率密度函数为f(x)=(1/√(2πσ^2))*e^((x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。

指数分布用于描述事件发生的时间间隔的概率分布,如等待时间、生命周期等。

指数分布的概率密度函数为f(x)=λ*e^(-λx),其中λ为每单位时间发生事件的平均次数。

二、期望期望是一个概率分布的数学期望,用于描述随机变量的平均值。

期望可以看作是随机变量在大量重复实验中出现的平均值。

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧概率统计是高中数学的重要内容之一,其应用广泛且重要。

在概率统计中,我们经常遇到需要计算随机变量的期望和方差的问题。

概率分布是解决这些问题的关键工具之一。

在本文中,我们将介绍一些高中数学中常见的概率分布,以及计算期望和方差的技巧。

1. 离散概率分布离散概率分布指的是随机变量只能取有限个或可列个值的概率分布。

其中,最常见的离散概率分布有二项分布、泊松分布和几何分布。

1.1 二项分布二项分布在实际问题中经常出现,特别是在重复试验的情况下。

假设有n个独立的重复试验,每次试验有成功和失败两种可能结果。

如果成功的概率为p,失败的概率为q=1-p,则随机变量X表示n次试验中成功的次数。

二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * q^(n-k)其中,C(n,k)表示组合数。

二项分布的期望和方差的计算公式如下:E(X) = npVar(X) = npq1.2 泊松分布泊松分布适用于描述单位时间或空间内随机事件发生的次数。

例如,某地区每小时的交通事故数、每天接到的电话数等。

泊松分布的概率密度函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ代表单位时间或单位空间内平均发生的次数。

泊松分布的期望和方差的计算公式如下:E(X) = Var(X) = λ1.3 几何分布几何分布用于描述一系列独立重复试验中,首次成功所需的试验次数。

例如,投掷一枚硬币直到首次出现正面的次数等。

几何分布的概率密度函数为:P(X=k) = q^(k-1) * p其中,p表示成功的概率,q=1-p表示失败的概率。

几何分布的期望和方差的计算公式如下:E(X) = 1/pVar(X) = q/(p^2)2. 连续概率分布连续概率分布指的是随机变量可以取某个区间内的任意值的概率分布。

最常见的连续概率分布有均匀分布、正态分布和指数分布。

2.1 均匀分布在均匀分布中,随机变量在某一区间内的取值是等可能的。

高中数学随机变量及其分布数学期望

高中数学随机变量及其分布数学期望

反 思 感
求悟 随机变量X的数学期望的方法和步骤
(1)理解随机变量X的意义,写出X所有可能的取值.
(2)求出X取每个值的概率P(X=k).
(3)写出X的分布列.
(4)利用数学期望的定义求E(X).
例2.篮球运动员在比赛中每次罚球命中得1分,
罚不中得0分.已知某运动员罚球命中的概率为
0.7,他连续罚球3次;(1)求他得到的分数
X的分布列;(2)求X的期望。
解:(1) X~B(3,0.7)
0.3 P(X=0)=
3
P(X=1)=
C
1 3
0.7
0.32
C P(X=2)=
2 3
0.72
0.3
0.7 P(X=3)=
3
X0
1
2
3
P 0.33
C
1 3
0.7
0.32
C
2 3
0.7
2
0.3
0.73
(2)
EX
0 0.331来自C1 30.7
0.32
解 设该车主购买乙种保险的概率为p,由题意知p×(1-0.5)=0.3,解得p=0.6. 设所求概率为P1,则P1=1-(1-0.5)×(1-0.6)=0.8. 故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8.
市一中为了了解疫情期间上网课对学生们上学迟到
的影响情况,每天记录由于上网课迟到的同学人数, 下表是10天中每天迟到人数的情况
人数 0
1
2
3
天数 3
3
2
2
那么学校每天平均有多少人迟到呢?
第二章 随机变量及其分布 2.3.1 离散型随机变量的数学期望
一、复习回顾

随机变量的数学期望

随机变量的数学期望

思考 谁的技术比较好?
甲、 乙两个射手, 他们射击的分布律分别 为
甲射手
击中环数 概率 击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
8 9 10
乙射手
0 .2 0 .5 0 .3
试问哪个射手技术较好?
解 设甲、乙射手击中的环 数分别为 X 1 , X 2 .
E ( X 1 ) 8 0.3 9 0.1 10 0.6 9.3(环), E ( X 2 ) 8 0.2 9 0.5 10 0.3 9.1(环),
因此,在对随机变量的研究中,确定某些数 字特征是重要的 .
在这些数字特征中,最常用的是
数学期望、方差、协方差和相关系数
一、数学期望的概念 定义1 设X是离散型随机变量,它的分布率是: P{X=xk}=pk , k=1,2,… 若级数
xk pk k 1


绝对收敛,则称级数
xk pk k 1
例8 设风速V在(0, a )上服从均匀分布,即具有概率
密度
1 0va f (v ) a 0 其它
2
又设飞机机翼受到的正压力W是V的函数 : W kV ( k 0, 常数), 求W的数学期望.
解:由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0

为随机变量X的数学期望或者均值,记为EX,即
如果积分 望不存在。



x f ( x)dx 发散,则称X的数学期
关于定义的几点说明 (1) E(X)是一个实数,而非变量,它是一种加
权平均,与一般的平均值不同 , 它从本质上体现 了随机变量 X 取可能值的真正的平均值, 也称 均值. (2) 级数的绝对收敛性保证了级数的和不 随级数各项次序的改变而改变 , 之所以这样要 求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变. (3) 随机变量的数学期望与一般变量的算 术平均值不同.

概率统计中的概率分布与期望计算

概率统计中的概率分布与期望计算

概率统计中的概率分布与期望计算概率统计是数学的一个重要分支,它研究的是随机事件的发生规律和概率分布。

在概率统计中,概率分布是描述随机变量可能取值的概率的函数。

而期望则是对随机变量的平均值的度量。

概率分布和期望计算在实际生活和科学研究中有着广泛的应用。

一、概率分布概率分布是描述随机变量可能取值的概率的函数。

常见的概率分布有离散型概率分布和连续型概率分布两种。

离散型概率分布是指随机变量只能取有限个或可列个值的概率分布。

例如,抛硬币的结果可以是正面或反面,这是一个离散型概率分布。

常见的离散型概率分布有伯努利分布、二项分布和泊松分布等。

连续型概率分布是指随机变量可以取任意实数值的概率分布。

例如,测量某物体的长度可以是任意实数值,这是一个连续型概率分布。

常见的连续型概率分布有正态分布、指数分布和均匀分布等。

在实际应用中,我们可以通过观察数据的分布情况来选择合适的概率分布模型。

通过拟合数据,我们可以估计出概率分布的参数,进而进行概率预测和统计推断。

二、期望计算期望是对随机变量的平均值的度量,它表示随机变量的取值在不同取值下的平均值。

期望的计算可以帮助我们了解随机变量的平均水平,从而对随机现象进行预测和分析。

对于离散型随机变量,期望的计算公式为E(X) = ΣxP(X=x),其中x表示随机变量的取值,P(X=x)表示随机变量取值为x的概率。

通过对所有取值的加权平均,我们可以得到随机变量的期望。

对于连续型随机变量,期望的计算公式为E(X) = ∫xf(x)dx,其中f(x)表示随机变量的概率密度函数。

通过对密度函数的积分,我们可以求得连续型随机变量的期望。

期望的计算在实际应用中有着广泛的应用。

例如,在金融领域,我们可以通过计算股票的期望收益来评估投资风险和回报。

在工程领域,我们可以通过计算设备的平均寿命来进行维护和更新计划。

在医学研究中,我们可以通过计算药物的平均疗效来评估治疗效果。

三、应用实例为了更好地理解概率分布和期望计算的应用,我们举一个实际的例子。

概率论中的常见分布和期望与方差——概率论知识要点

概率论中的常见分布和期望与方差——概率论知识要点

概率论中的常见分布和期望与方差——概率论知识要点概率论是数学中的一个重要分支,研究随机现象的规律性。

在概率论中,常见的分布函数和概率密度函数描述了随机变量的分布规律,而期望和方差则是描述随机变量的中心位置和离散程度的重要指标。

本文将介绍概率论中的常见分布以及期望和方差的概念和计算方法。

一、离散型分布在概率论中,离散型分布描述了随机变量取有限个或可列个数值的概率分布。

以下是几个常见的离散型分布:1. 伯努利分布伯努利分布是最简单的离散型分布,描述了只有两个可能结果的随机试验,比如抛硬币的结果。

设随机变量X表示试验的结果,取值为1或0,表示成功或失败的情况。

伯努利分布的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中k=0或1,p为成功的概率。

2. 二项分布二项分布描述了一系列独立的伯努利试验中成功的次数。

设随机变量X表示成功的次数,取值范围为0到n,n为试验的次数,p为每次试验成功的概率。

二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布泊松分布描述了在一定时间或空间内随机事件发生的次数。

设随机变量X表示事件发生的次数,取值范围为0到无穷大。

泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中λ为事件发生的平均次数。

二、连续型分布在概率论中,连续型分布描述了随机变量在某个区间内取值的概率分布。

以下是几个常见的连续型分布:1. 均匀分布均匀分布描述了随机变量在某个区间内取值的概率相等的情况。

设随机变量X 在[a, b]区间内取值,均匀分布的概率密度函数为:f(x) = 1 / (b-a),其中a≤x≤b。

2. 正态分布正态分布是概率论中最重要的分布之一,也被称为高斯分布。

正态分布的概率密度函数为:f(x) = (1 / √(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ为标准差。

概率分布(数学期望,平均值,方差,标准差)2018

概率分布(数学期望,平均值,方差,标准差)2018

概率分布(数学期望,平均值,方差,标准差)2018展开全文我们已经了解概率的基础,概率中通常将试验的结果称为随机变量。

随机变量将每一个可能出现的试验结果赋予了一个数值,包含离散型随机变量和连续型随机变量。

掷硬币就是一个典型的离散型随机变量,离散随机变量可以取无限个但可数的数值。

而连续变量相反,它在某一个区间内能取任意的数值。

时间就是一个典型的连续变量,1.25分钟、1.251分钟,1.2512分钟,它能无限分割。

既然随机变量可以取不同的值,统计学家就用概率分布描述随机变量取不同值的概率。

相对应的,有离散型概率分布和连续型概率分布。

对于离散型随机变量x,定义一个概率函数叫f(x),它给出了随机变量取每一个值的概率。

拿出一个骰子,掷到6的概率是f(6) = 1/6,掷到1和6的概率则是f(1)+f(6) = 1/3。

数学期望(均值)理解一:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。

是最基本的数学特征之一。

它反映随机变量平均取值的大小。

其公式如下:xk :表示观察到随机变量X的样本的值。

pk : 表示xk发生的概率。

数学期望反映的是平均水平。

通过它,我们能够了解一个群体的平均水平(比如说,一个班平均成绩80)。

但另外一个方面,它所包含的信息也是十分有限的,首先是个体信息被压缩了,其次如果单纯看期望的话,是看不出样本的数量。

(平均成绩为80,在1人班和100人班的含义是不一样的)通过这个问题想说明,在刻画群体特征的时候,多个数字特征配合才能达到效果。

(上面的例子:可以是期望 + 数量)理解二:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和严格的定义如下:2.数学期望的含义这个很重要,我们一定要明白概念的含义,联系到实际的应用场景中表达的真正意义,数学期望的存在是为了表达什么?答:反映随机变量平均取值的大小3.数学期望(均值)和算术平均值(平均数)的关系(期望和平均数的关系)谈谈我对于这两个概念的理解(1)平均数是根据实际结果统计得到的随机变量样本计算出来的算术平均值,和实验本身有关,而数学期望是完全由随机变量的概率分布所确定的,和实验本身无关。

概率与统计中的随机变量及其分布知识点总结

概率与统计中的随机变量及其分布知识点总结

概率与统计中的随机变量及其分布知识点总结在概率与统计学中,随机变量是一种具有概率分布的变量,它可以用来描述不确定性的现象和事件。

随机变量的理论是概率论的核心内容之一,掌握随机变量及其分布知识点对于理解概率与统计学的基本原理及应用具有重要意义。

本文将对概率与统计中的随机变量及其分布进行知识点总结。

一、随机变量的概念与分类随机变量(Random Variable)是指对于随机试验结果的数值描述。

随机变量可以分为离散型随机变量和连续型随机变量两类。

1. 离散型随机变量离散型随机变量(Discrete Random Variable)的取值为有限个或可数个。

常见的离散型随机变量有伯努利随机变量、二项分布随机变量、泊松随机变量等。

2. 连续型随机变量连续型随机变量(Continuous Random Variable)的取值可以是任意的实数。

通常用于表示测量结果或特定区间内的变化。

常见的连续型随机变量有均匀分布随机变量、正态分布随机变量等。

二、随机变量的分布函数与概率函数随机变量的分布函数和概率函数是描述随机变量的重要工具。

1. 分布函数分布函数(Distribution Function)是随机变量取值小于或等于某个值的概率,通常记作F(x),其中x为随机变量的取值。

分布函数的性质包括:非递减性、右连续性、左极限性质。

2. 概率函数(密度函数)概率函数(Probability Density Function)用于描述连续型随机变量的概率分布情况,通常记作f(x),其中x为随机变量的取值。

概率函数的性质包括:非负性、归一性。

三、常见的随机变量及其分布在概率与统计学中,有一些常见的随机变量及其分布是被广泛应用的。

1. 伯努利随机变量伯努利随机变量(Bernoulli Random Variable)是最简单的离散型随机变量,它只有两个取值,通常用来描述成功或失败的情况。

2. 二项分布随机变量二项分布随机变量(Binomial Random Variable)描述了n个独立的伯努利试验中成功的次数,其中n为试验次数,p为单次成功的概率。

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结

概率论笔记(四)概率分布的下期望和方差的公式总结一:期望引入:1.1离散型随机变量的期望注:其实是在等概率的基础上引申来的,等概率下的权重都是1/N。

1.2连续型随机变量的期望注意:因为连续随机变量的一个点的概率是没有意义的,所以我们需要借用密度函数,如所示,这实际上是一个期望积累的过程。

1.3期望的性质注:其中第三个性质,可以把所有的X+Y的各种情况展开,最后得出的结果就是这样的。

二:随机变量函数(复合随机)的数学期望1.理解注:其实就是复合随机变量的期望,对于离散型,其主要是每个值增加了多少倍/减少了多少倍,但是概率不变,所以公式见上面;对于连续性随机变量,其实是一样的,每个点的概率没有变,所以就是变量本身的值发货所能了改变。

三:方差引入的意义:求每次相对于均值的波动:求波动的平方和:定义:注:其实就是对X-E(X)方,求均值其实就是方差,注意这里的均值也是加权平均,所以方差其实就是一种特殊的期望。

3.1离散型随机变量的方差3.2连续性随机变量的方差3.3方差的性质注:3)4)5)等性质可以套入定义中就可以得到,这里不多说;对于独立以及协方差见后;8)的证明如下四:协方差4.1定义注:与上一个变量相比,之前是一个变量移位平方,但这里是两个变量移位相乘。

4.2离散型二维随机变量的协方差4.3连续型二维随机变量的协方差4.4二维随机变量的协方差性质注:了解即可…4.5协方差矩阵五:相关系数所以:独立必不相关,但不相关不一定独立,因为这里的不相关指的是线性不相关,可能会有其他非线性关系,具体例子找到再补充-------。

参考链接:。

61随机变量的概率分布、期望与方差

61随机变量的概率分布、期望与方差

如皋市薛窑中学2011届高三理科数学一轮复习61随机变量的概率分布、期望与方差【考点解读】离散型随机变量及其分布列:A ;超几何分布:A ;条件概率及相互独立事件:A ; n 次独立重复试验的模型及二项分布:B ;离散型随机变量的均值与方差:B 【复习目标】1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。

2.了解超几何分布及其导出过程,并能进行简单的应用。

3.了解条件概率和两个事件相互独立的概念(对条件概率的应用题不作要求)。

4.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。

5.了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。

活动一:基础知识 1.随机变量:(1)定义: 。

(2)表示方法: 。

2.随机变量分布列的定义:假定随机变量X 有n 个不同的取值,它们分别是12,,n x x x L 且P (X =x i )=p i ,i =1,2,…n ,① 称①为随机变量X 的概率分布列,简称X 的分布列 3.概率分布表4.分布列的性质: 概率分布列中(1,2)i P i n =L 满足以下两个条件:(1) ; (2) 。

5.两点分布如果随机变量X 只取两个可能值___0__和____1____,则称该随机变量X 服从0-1分布或两点分布,并记为X ~0-1或X ~两点分布. 6(1)假设一批产品共有N 件,其中有M 件不合格品,随机取出n 件产品,则抽取的n 件产品中不合格品X 的概率分布为:(),0,1,2,,r n r M N MnNC C P X r r l C --===L , 其中min{,}l M n =,且,,,,n N M N n M N N *≤≤∈.称分布列为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从参数为(,,)n M N 的超几何分布,记为~(,,)X H n M N ,并将(),0,1,2,,r n r M N MnNC C P X r r l C --===L 记为(;,,)H r n M N (2)说明:①超几何分布的模型是不放回抽样;②超几何分布种的参数是(,,)n M N ;③记号(;,,)H r n M N 中各个字母的含义: 7.n 次独立重复试验定义:一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态即A 与_A ,每次试验中()0P A p =>,我们将这样的试验称为n 次独立重复试验. 思考:n 次独立重复试验必须具备哪些条件? 8.二项分布 定义:(1)在n 次独立重复试验中,事件A 恰好发生k (0k n ≤≤)次的概率为。

高中概率分布与期望值计算

高中概率分布与期望值计算

高中概率分布与期望值计算概率是数学中非常重要的概念,它用来描述某个事件发生的可能性大小。

在高中数学中,学习概率分布和期望值的计算是必不可少的内容。

本文将详细介绍高中阶段概率分布与期望值的计算方法。

一、概率分布概率分布是指随机变量取各个值时,这些值发生的概率分别是多少。

在概率分布中,主要有离散概率分布和连续概率分布两种情况。

1. 离散概率分布离散概率分布是指随机变量只能取有限个或可数个数值的概率分布。

常见的离散概率分布有二项分布、泊松分布和几何分布等。

以二项分布为例,假设一人投篮命中率为p,投篮n次,命中k次的概率可以用二项分布来表示。

二项分布的概率公式为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,C(n,k)表示从n个中取出k个的组合数。

2. 连续概率分布连续概率分布是指随机变量可以取任意实数的概率分布。

常见的连续概率分布有正态分布、均匀分布和指数分布等。

以正态分布为例,正态分布的概率密度函数为:f(x) = (1/√(2πσ^2)) * e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差。

二、期望值的计算期望值是指随机变量在多次试验中的平均取值。

期望值的计算方法根据概率分布的不同而不同。

下面以离散概率分布和连续概率分布为例进行说明。

1. 离散概率分布的期望值计算对于离散概率分布,期望值的计算公式为:E(X) = ∑(x*P(X=x))其中,x表示随机变量的取值,P(X=x)表示随机变量取值为x的概率。

以二项分布为例,假设投篮n次,命中k次,命中率为p,则命中次数的期望值为:E(X) = ∑(k*C(n,k)*p^k*(1-p)^(n-k))2. 连续概率分布的期望值计算对于连续概率分布,期望值的计算公式为:E(X) = ∫(x*f(x))dx其中,f(x)为概率密度函数。

以正态分布为例,假设随机变量服从正态分布,其期望值为μ,标准差为σ,则期望值为:E(X) = ∫(x*(1/√(2πσ^2))*e^(-(x-μ)^2/(2σ^2)))dx三、总结高中阶段学习概率分布与期望值的计算是数学中的重要内容。

概率分布的期望与方差

概率分布的期望与方差

概率分布的期望与方差在概率论与统计学中,期望与方差是概率分布的两个重要的统计度量。

期望代表了随机变量的平均值,方差则衡量了其离散程度。

本文将详细探讨概率分布的期望与方差以及其在实际应用中的意义。

一、期望的定义与计算方法期望是对随机变量的平均值的度量。

对于离散随机变量X,其期望E(X)的计算方法为:E(X) = Σ( xi * P(xi) ),其中xi代表随机变量X的取值,P(xi)代表X取值为xi的概率。

也可以用数学期望符号表示为:E(X) = Σ( xi ) * P(xi),即随机变量取值乘以对应的概率之后的总和。

以掷骰子为例,假设一枚骰子的取值范围为{1, 2, 3, 4, 5, 6},每个值出现的概率都为1/6。

根据期望的计算公式,可以得到期望E(X) = (1*1/6) + (2*1/6) + (3*1/6) + (4*1/6) + (5*1/6) + (6*1/6) = 3.5。

因此,掷骰子的期望值为3.5。

二、方差的定义与计算方法方差是对随机变量离散程度的度量。

对于离散随机变量X,其方差Var(X)的计算方法为:Var(X) = Σ( (xi-E(X))^2 * P(xi) ),其中xi代表随机变量X的取值,E(X)代表X的期望。

也可以用数学符号表示为:Var(X) = Σ( xi^2 ) * P(xi) - (E(X))^2。

仍以掷骰子为例,已知掷骰子的期望值E(X)为3.5。

根据方差的计算公式,可以得到方差Var(X) = (1-3.5)^2 * 1/6 + (2-3.5)^2 * 1/6 + (3-3.5)^2 * 1/6 + (4-3.5)^2 * 1/6 + (5-3.5)^2 * 1/6 + (6-3.5)^2 * 1/6 = 35/12 ≈ 2.917。

因此,掷骰子的方差为2.917。

三、期望与方差的意义与应用期望和方差是概率分布的重要度量指标,对于理解和分析随机变量的分布特征十分关键。

解析高中数学中的概率密度函数与数学期望

解析高中数学中的概率密度函数与数学期望

解析高中数学中的概率密度函数与数学期望高中数学中的概率密度函数与数学期望概率密度函数和数学期望是高中数学中的重要概念,它们在统计学和概率论中扮演着重要的角色。

本文将对这两个概念进行解析,帮助读者更好地理解它们的含义和应用。

一、概率密度函数概率密度函数是概率论中用于描述连续型随机变量的概率分布的函数。

它与离散型随机变量的概率质量函数相对应。

概率密度函数通常用f(x)表示,其中x为随机变量的取值。

概率密度函数具有以下特点:1. f(x) ≥ 0,即概率密度函数的取值必须大于等于0。

2. ∫f(x)dx = 1,即概率密度函数在整个定义域上的积分等于1。

概率密度函数的图像通常为曲线,被称为概率密度曲线。

概率密度曲线下的面积表示该随机变量在某个区间上取值的概率。

二、数学期望数学期望是概率论中用于描述随机变量平均取值的指标。

对于离散型随机变量,数学期望可以通过随机变量取值与其概率的乘积的累加求得。

而对于连续型随机变量,数学期望可以通过概率密度函数与随机变量的乘积的积分求得。

数学期望的计算公式为:E(X) = ∫xf(x)dx其中,E(X)表示随机变量X的数学期望,x表示随机变量的取值,f(x)表示概率密度函数。

数学期望具有以下特点:1. 数学期望是随机变量的线性函数,即E(aX + b) = aE(X) + b,其中a和b为常数。

2. 对于两个相互独立的随机变量X和Y,有E(X + Y) = E(X) + E(Y)。

数学期望在实际问题中有着广泛的应用。

例如,在赌博游戏中,计算每次下注的期望收益可以帮助玩家做出更明智的决策。

此外,在工程和经济学中,数学期望也常被用于评估风险和收益。

三、概率密度函数与数学期望的关系概率密度函数和数学期望之间存在着密切的关系。

事实上,数学期望可以看作是概率密度函数的加权平均值。

对于连续型随机变量X,其数学期望可以通过概率密度函数f(x)在整个定义域上的加权平均值来计算。

具体而言,数学期望等于随机变量取值与概率密度函数的乘积的积分。

第7讲 分布列与数学期望(解析版)

第7讲 分布列与数学期望(解析版)

第7讲分布列与数学期望(解析版)第7讲分布列与数学期望(解析版)在统计学中,分布列与数学期望是常用的分析工具。

它们能够帮助我们理解随机变量的分布和特征。

本文将对分布列与数学期望进行解析,并探讨它们在实际问题中的应用。

一、分布列分布列是用来描述离散型随机变量的概率分布的一种方式。

对于一个具体的随机变量X,其可能取到的数值通常是有限个或可数个。

我们可以列出每个数值对应的概率,形成一张分布列。

分布列通常以表格的形式呈现,其中包括随机变量的取值和对应的概率。

举个例子,假设随机变量X表示投掷一个骰子后的点数。

在这种情况下,X可以取到1、2、3、4、5、6这六个数值。

我们可以计算出每个数值对应的概率,得到如下的分布列:| X | 1 | 2 | 3 | 4 | 5 | 6 ||-------|-------|-------|-------|-------|-------|-------|| P(X) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |通过分布列,我们可以清晰地看到每个点数出现的概率是相等的。

除了离散型随机变量外,连续型随机变量也可以通过分布列进行描述。

连续型随机变量的分布列变成了概率密度函数,其中表示为概率的数值变为密度。

二、数学期望数学期望是随机变量的平均值,在概率论中有着重要的意义。

数学期望反映了随机变量取值的中心位置。

对于离散型随机变量X,其数学期望E(X)定义为:E(X) = ∑(x·P(X=x))其中,x表示随机变量X的取值,P(X=x)表示该取值的概率。

以前述的投骰子问题为例,我们可以计算出随机变量X的数学期望:E(X) = (1/6)·1 + (1/6)·2 + (1/6)·3 + (1/6)·4 + (1/6)·5 + (1/6)·6= 3.5可以看出,投骰子问题中,骰子点数的数学期望是3.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生 ,那 么不 同 的选 派方案 有
种 .
4.(口+2b)(2a+6) 的展 开式 中 ,各项 系数 和 为

5.8人 排成 前后 两排 ,每排 4人 ,其 中甲 、乙在前排 ,丙 在后 排 ,共有
种排法 .


6.若随机变量 X ̄B(n, ),且 E(x)一昔, (x)一昔,则P(x=1)一
(2)求 X 的分 布列及 数学期 望.
回 赫
回0} l J
,_ 、

、· ,
每 周 一 习
勘}
班级
姓 名
得 分
U}持
是》
两 个 基 本 计 数 原 理 ’’自测 题 A 卷
一 、 填 空题 (每题 6分 ,共 9题 ,共 54分 ) 1.5位 同学报名参 加两 个 课外 活动 小 组 ,每位 同学 限报 其 中一 个 小组 ,则不 同 的报名
这 两个节 目插入 原节 目单 中 ,那 么不 同 的插 法 的种数 为



4.某单位职工举行义务献血活动,在体检合格 的人 中,O型血共有 l8人 ,A型血共有
1O人 ,B型 血共 有 8人 ,AB型 血共 有 3人 .从 四种血 型 的人 中各选 1人去 献血 ,不 同 的选 法

种 .
种 .


9.某校高三年级 5个班进行拔河比赛 ,每两个班都要 比赛一场.到现在为止,1班 已经
比了 4场 ,2班 已经 比了 3场 ,3班 已经 比了 2场 ,4班 已经 比了 l场 ,则 5班 已经 比了


场 .
二 、解 答 题 (共 46分)
10.(本题 满分 12分)用 1,2,3可 以确定 多少 个不 同的三位 数 (数 字允 许重 复 )?
不超过 1件 的概 率是




3.甲、乙、丙三人参加了一家公 司的招聘 面试 ,甲面试合格 的概率是鲁 ,乙、丙面试合


格的概率都是÷,且面试是否合格互不影响,则至少有 1人面试合格的概率是


4.某 人玩 掷骰 子放 球游戏 ,若掷 出 1点 或 6点 ,往 甲盒放 一 球.若 掷 出 2点 、3点 、4点
方法 共有


种.
2.椭 圆 + 一1的焦 点在 Y轴上 ,且 E {1,2,3,4,5),hE-{1,2,3,4,5,6,7),则 满
●f‘
71
足题 意 的椭 圆有 : 个 . 3.某班 元 旦晚会原 定 的 5个节 目已排 成 节 目单 ,开 演前 又增 加 了 2个 新 节 目,如 果将
专题 突 破
画0}
随 机 变 量 的 概 率 分 布 与 数 学 期 望 吕》
1.已知 随机 变量 X 的概 率分 布如 下 :

一 1
~ 0.5

1.8


0.1
O.2
0.1
0.3

则 P(X≥0)一

2.设 10件同类型的零件中有 2件是不合格品,从 中任取 3件,则所取零件 中不合格品


7.甲,乙,丙 ,丁四名 同学做传递手帕游戏(每位同学传递到另一位同学记传递 1次),
手帕从 甲手中开始传递 ,经过 5次传递后手帕回到甲手 中,则共有
种 不 同 的传递
方 法 .
8.从 5男 3女 共 8名学 生 中选 出队长 1人 ,副 队长 1人 ,普 通 队 员 2人 组 成 4人 志愿


5.我 们 把个位 数 比十位 数小 的两 位 数称 为 “和 谐 两 位数 ”,则 1,2,3,4四个数 组 成 的
两 位数 中 ,“和谐两位 数”有
个.


6.从 1,2,3,4,7,9六 个 数 中 ,任 取两 个数 作 为对 数 的底 数和真 数 ,则 所有 不 同 的对数
值 的个 数为

勘} lI
, 一 、 、.一,
o18. 酣 品
· 22 ·
· 3 ·
回0}
综笥 △I=i检1 测U

10叵
选 修 2—3 综 合 测 试 卷


OO
(时 :120分钟 ;满 分 :l60分 )

,-’、

、_ ,
孙 l I 10叵

者 服 务队 ,要 求 服务 队 中至少有 1名 女 生 ,共有
种 不 同
的选法.
9.元宵 节灯 展 后 ,如 图悬 挂有 9盏 不 同 的花灯 需要 取 下 ,每
次取 1盏 ,共 有
种不 同取 法 .
10.若 从一 副 52张 的扑 克 牌 中 随 机抽 取 2张 ,则 在 放 回抽
的概率 为

6.一个 盒 子 中装 有 4个球 ,这些球 大 小 、形状 完全相 同 ,并 分 别标 有 数字 1,2,3,4.现
从 中有放 回地 随机抽 取 2个球 ,每次抽 1个 ,抽 取的球 的标号 分别 为 , ,记 X— lz 一1 l+
lz 一2I.
(1)求 X取得最大值的概率 ;
个 .


7.6名 同学争夺 3项 冠军 ,获 得冠军 的可能性 有
种 .


8.某 校 选 定 甲、乙 、丙 、丁 、戊 共 5名教 师去 3个 边 远 学校 支教 ,每 个 学校 至 少 1人 ,其
中 甲和 乙必 须在 同一 学校 ,甲和丙 一定 在不 同学 校 ,则 不 同 的选 派方 案共有
取 的情形 下 ,两张 牌都 是“K”的概率 为

11.如 图 ,一 个地 区分 为 5个 行政 区域 ,现 给 地 图着色 ,要求 相
邻地 区不 得使 用 同一颜 色 ,现 有 4种 颜 色可 供 选 择 ,则 不 同 的着 色
或 5点 ,往乙盒放一球.掷 3次后 ,甲盒内有 2个球 、乙盒 内有 1个球的概率是

5.袋 子 A 中装有 若干 个除颜 色外 均 相 同的红球 和 白球 ,从 A 中摸 出一个 红球 的概 率

为去.现从A 中有放回地摸球,每次摸出一个,有3次摸到红球就停止.则恰好摸 5次停止
.]



一 、 填 空题 (每题 5分 ,共 l4题 ,共 70分)
1.Aj一

2.5位 同学 报名 参加 两个课 外 活 动小 组 ,每位 同学 限报 其 中一个 小组 ,则 不 同 的报 名
方法 共有
种.
3.某 班级 要从 4名 男生 、2名女 生 中选 派 4人 参加 社 区服 务 ,如 果要 求 至少 有 1名 女
相关文档
最新文档