求解电场强度13种方法附例题

合集下载

电场强度的八种求解方法(无答案)

电场强度的八种求解方法(无答案)

3kq A. 3l2
3kq B. l2
3kq C. l2
2 3kq D. l2
3.2.4 对称法
利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.
3 例如:如上图所示,均匀带电的4球壳在 O 点产生的场强,等效为弧 BC 产生的场强,弧 BC 产生的场强方向,又等效 为弧的中点 M 在 O 点产生的场强方向. 题6 如图所示,一半径为 R 的圆盘上均匀分布着电荷量为 Q 的电荷,在垂直于圆盘且过圆心 c 的轴线上有 a、b、d 三个点, a 和 b、b 和 c、c 和 d 间的距离均为 R,在 a 点有一电荷量为 q(q>0)的固定点电荷.已知 b 点处的场强为零,则 d 点处 场强的大小为(k 为静电力常量)( )
A.平行于 AC 边
B.平行于 AB 边
C.垂直于 AB 边指向 C
D.垂直于 AB 边指向 AB
2. 如图所示,真空中 O 点有一点电荷,在它产生的电场中有 a、b 两点,a 点的场强大小为 Ea,方向与 ab 连线成 60°⻆,
b 点的场强大小为 Eb,方向与 ab 连线成 30°⻆.关于 a、b 两点场强大小 Ea、Eb 的关系,以下结论正确的是( )
比较项目
等量异种点电荷
等量同种点电荷
电场线的分布图
连线中点 O 处的场强 连线上的场强大小 (从左到右)
沿中垂线由 O 点向外 场强大小
关于 O 点对称的 A 与 A′,B 与 B′的场强
连线上 O 点场强最小,指向负电荷一方 沿连线先变小,再变大 O 点最大,向外逐渐变小 等大同向
为零 沿连线先变小,再变大 O 点最小,向外先变大后变小
4q A.k h2

求解电场强度13种方法

求解电场强度13种方法

求解电场强度方法分类赏析一•必会的基本方法:1运用电场强度定义式求解例1.质量为m电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧从A点运动到B点,,其速度方向改变的角度为0 (弧度),AB弧长为s,求AB弧中点的场强E。

【解析】:质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点电荷产生电场力提供。

由牛顿第二定律可得电场力 2v SF = F向=m 。

由几何关系有r =r2所以F= mJ,根据电场强度的定义有s2E = — = mV—。

方向沿半径方向,指向由q qs场源电荷的电性来决定。

2 •运用电场强度与电场差关系和等分法求解电场,其中坐标原点O处的电势为 0V,点A处的电势为6V,点B处的电势为3V,则电场强度的大小为AA. 200V/m B • 200.3V/mC. 100V/m D • 100.3V/m例2 (2012安徽卷)•如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强A 11 CITI)(1)在匀强电场中两点间的电势差U= Ed, d为两点沿电场强度方向的距离。

在一些非强电场中可以通过取微元或等效的方法来进行求解。

(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。

3 •运用“电场叠加原理”求解例3(2010海南).如右图2, M、N和P是以MN为直径的半圈弧上的三点,O点为半圆弧的圆心,MOP 60 •电荷量相等、符号相反的两个点电荷分别置于M N两点,这时O点电场强度的大小为E1;若将N点处的点电荷移至 P则O点的场场强大小变为E2 , E1与E2之比为BN图2A. 1:2B.2:1•必备的特殊方法:4 •运用平衡转化法求解例4. 一金属球原来不带电,现沿球的直径的延长线放置一均匀带电的细杆MN 如图3所示。

金属球上感应电荷产生的电场在球内直径上 a 、b 、c三点的场强大小分别为 吕、已、巳,三者相比()A. E a 最大B. E 最大C. E 最大D. E = E )= E :【解析】:导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应 电荷所产生的电场强度应与带电细杆 MN 在该点产生的电场强度大小相等,方向相反。

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种求法一. 公式法1.qFE =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用 2.2rk QE =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。

3.dUE =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。

二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。

例:如图,带电量为+q 的点电荷与均匀带电。

例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大?例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。

已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为rqk=ϕ。

假设左侧部分在M 点的电场强度为E 1,电势为1ϕ;右侧部分在M 点的电场强度为E 2,电势为2ϕ;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1ϕ>2ϕ B .若左右两部分的表面积相等,有E 1<E 2,1ϕ<2ϕC .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4D .不论左右两部分的表面积是否相等,总有E 1>E 2,E 3=E 4 答案:D例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。

求电场强度的六种特殊方法

求电场强度的六种特殊方法

求电场强度的六种特殊方法1.手工计算:手工计算电场强度是最基本的方法之一、这种方法需要使用库仑定律,根据两个点电荷之间的距离和电荷量,计算电场强度的大小和方向。

这种方法适用于简单的电荷分布,比如两个点电荷之间的情况。

2.球形电荷和均匀平面电荷密度:当电荷分布具有球对称性或平面对称性时,可以使用球面上的电场和平面上的电场计算电场强度。

对于球形电荷,可以根据球对称的性质,使用库仑定律计算球面上的电场强度。

对于均匀平面电荷密度,可以使用高斯定理来计算电场强度。

3.超级叠加原理:超级叠加原理适用于任何电荷分布。

根据超级叠加原理,电场强度是由各个点电荷的电场强度求和得到的。

这种方法在处理复杂电荷分布时非常有用,它将问题分解为多个简单的点电荷问题,并将它们的电场强度进行叠加。

4.电偶极子:电偶极子是指具有正负电荷的两个点电荷之间的连线。

电偶极子的电场强度可以通过电偶极子与观察点之间的距离以及电偶极矩来计算。

电偶极子模型广泛应用于理解分子间相互作用、天体物理学中的磁场以及其他许多领域。

5.高斯定理:高斯定理是根据电场的散度定律得出的。

它允许我们通过计算电场通过一些封闭曲面的通量来确定曲面内电场的强度。

高斯定理对于具有一定几何形状的电荷分布非常有用,比如球形电荷和均匀平面电荷密度。

6.带电体中的方法:最后,我们来讨论带电体中的电场强度计算方法。

带电体中的电场强度可以通过将带电体分解为无数个微小的点电荷,然后将它们的电场强度进行积分来计算。

这种方法适用于任何电荷分布情况,但对于复杂的带电体形状,积分可能会很困难。

总之,求电场强度有许多不同的特殊方法。

无论是手工计算、球形电荷和均匀平面电荷密度的方法,还是超级叠加原理、电偶极子、高斯定理和带电体中的方法,都可以根据问题的要求进行选择。

这些方法对于解决问题中的不同电荷分布情况都非常有用。

专题02 电场强度大小求解(解析版)

专题02 电场强度大小求解(解析版)

高二物理期末综合复习(特训专题+提升模拟)专题02 电场强度大小求解一、电场的基本概念1.硒鼓是激光打印机的核心部件,主要由感光鼓、充电辊、显影装置、粉仓和清洁装置构成,工作中充电辊表面的导电橡胶给感光鼓表面均匀的布上一层负电荷。

我们可以用下面的模型模拟上述过程:电荷量均为q -的点电荷,对称均匀地分布在半径为R 的圆周上,若某时刻圆周上P 点的一个点电荷的电量突变成q +,则圆心O 点处的电场强度为( )A .22kqR ,方向沿半径指向P 点 B .22kqR ,方向沿半径背离P 点 C .23kqR ,方向沿半径指向P 点 D .23kqR ,方向沿半径背离P 点 【答案】B【详解】当P 点的电荷量为q -时,根据电场的对称性,可得在O 点的电场强度为0,当P 点的电荷为q +时,可由q -和2q +两个电荷等效替代,故O 点电场可以看做均匀带电圆环和2q +产生的两个电场的叠加,故O 点的电场强度为220qE kR =+电场方向为2q +在O 点的电场方向,即方向沿半径背离P 点,故B 正确,ACD 错误。

故选B 。

2.如图所示,用粗细均匀的绝缘线制成直径为L 的圆环,OE 为圆环的半径,圆环上均匀地分布着正电荷,现在圆环上E 处取下足够短的带电量为q 的一小段,将其沿OE 连线向下移动L 的距离到F 点处,设圆环的其他部分的带电量与电荷分布保持不变,已知静电力常量为k ,若此时在O 点放一个带电量为Q 的带正电的试探电荷,则该试探电荷受到的电场力大小为( )A .23kQqL B .249kQqL C .2329kQqL D .223kQqL 【答案】C【详解】线框上的电荷在O 点产生的场强等效为q 电荷在O 点产生的电场强度1224()2kq kqE L L ==方向竖直向下,在F 点电荷量为q 的电荷在O 点产生的电场强度为22249()2kq kqE L L L ==+方向竖直向上,此时O 点的场强为122329kq E E E L =-=方向竖直向下,则带电量为Q 的带正电的试探电荷,则该试探电荷受到的电场力大小2329kQqF EQ L ==故C 正确,ABD 错误。

求电场强度的六种特殊方法(解析版)

求电场强度的六种特殊方法(解析版)

求电场强度的六种特殊方法、镜像法(对称法)镜像法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。

例1 . (2005年上海卷4题)如图1,带电量为+ q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心.若图中a点处的电场强度为零,根据对称性,带电薄板在图中b点处产生的电场强度大小和方向如何?(静电力恒量为k)、微元法微元法就是将研究对象分割成若干微小的的单元,或从研究对象上选取某一“微元”加以分析,从而可以化曲为直,使变量、难以确定的量转化为常量、容易确定的量。

例2 •如图2所示,均匀带电圆环所带电荷量为Q,半径为R,圆心为O, P为垂直于圆环平面的称轴上的一点,OP = L,试求P点的场强。

三、等效替代法“等效替代”方法,是指在效果相同的前提下,从A事实出发,用另外的B事实来代替,必要时再由B而C直至实现所给问题的条件,从而建立与之相对应联系,得以用有关规律解之。

如以模型代实物,以合力(合运动)替代数个分力(分运动);等效电阻、等效电源等。

例3 .如图3所示,一带正Q电量的点电荷A,与一块接地的长金属板MN组成一系统,点电荷A与板MN间的垂直距离为为d,试求A与板MN的连线中点C处的电场强度.四、补偿法求解物理问题,要根据问题给出的条件建立起物理模型。

但有时由题给条件建立模型不是一个完整的模型,这时需要给原来的问题补充一些条件,组成一个完整的新模型。

这样,求解原模型的问题就变为求解新模型与补充条件的差值问题。

例4.如图5所示,用长为L的金属丝弯成半径为r的圆弧,但在A、B之间留有宽度为d的间隙,且d远远小于r,将电量为Q的正电荷均为分布于金属丝上,求圆心处的电场强度。

五、等分法利用等分法找等势点,再连等势线,最后利用电场强度与电势的关系,求出电场强度。

专题4 电场强度的几种求解方法-2021年高考物理静电场

专题4  电场强度的几种求解方法-2021年高考物理静电场

静电场考点突破微专题4 电场强度的几种计算方法一 知能掌握1.基本公式法:定义式法、点电荷电场强度公式法、匀强电场公式法.场强有三个公式:E =F q 、E =k Q r 2、E =U d,在一般情况下可由上述公式直接计算场强, 2.矢量叠加法:电场强度是矢量,叠加时应遵从平行四边形定则,分析电场的叠加问题的一般步骤是:(1)确定分析计算场强的空间位置;(2)分析该处有几个分电场,先计算出各个分电场在该点的电场强度的大小和方向;(3)依次利用平行四边形定则求出矢量和.在求解带电圆环、带电平面、带电球面等一些特殊带电体产生的场强时,上述公式无法直接应用.这时,如果转换思维角度,灵活运用补偿法、对称法、微元法、极限法、等效法等巧妙方法,可以化难为易.3.对称法:对称法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。

利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.(1)场源分段对称例如:如图1,均匀带电的34球壳在O 点产生的场强,等效为弧BC 产生的场强,弧BC 产生的场强方向,又等效为弧的中点M 在O 点产生的场强方向.图1(2)电场空间对称例如等量同种、等量异种电场强度的对称性4.微元法:微元法就是将研究对象分割成若干微小的的单元,或从研究对象上选取某一“微元”加以分析,从而可以化曲为直,使变量、难以确定的量转化为常量、容易确定的量。

将带电圆环、带电平面等带电体分成许多微元电荷,每个微元电荷看成点电荷,先根据库仑定律求出每个微元电荷的场强,再结合对称性和场强叠加原理求出合场强.5.等效法:“等效替代”方法,是指在效果相同的前提下,从A事实出发,用另外的B事实来代替,必要时再由B而C……直至实现所给问题的条件,从而建立与之相对应联系,得以用有关规律解之。

电场强度计算的六种方法

电场强度计算的六种方法

电场强度计算的六种方法方法1利用合成法求电场强度空间中的电场通常会是多个场源产生的电场的叠加,电场强度可以应用平行四边形定则进行矢量计算,这是高考常考的考点。

虽然电场强度的定义式为E=Fq,但公式E=kQr2反映了某点场强与场源电荷的特性及该点到场源电荷的距离的关系,体现了电场的来源与本质,高考常围绕此公式出题。

【典例1】如图所示,M、N为真空中两根完全相同的均匀带正电绝缘棒,所带电荷量相同,且平行正对放置,两棒中点分别为O1、O2,a、b、c、d、e为O1O2连线上的六等分点,a点处有一带正电的固定点电荷.已知c处和d处的场强大小均为E0,方向相反,则b处的场强大小为()A. E0B.C.D.【跟踪短训】1.如图在半径为R的圆周上均匀分布着六个不同的点电荷,则圆心O处的场强大小和方向为A. ;由O指向FB. ;由O指向FC. ;由O指向CD. ;由O指向C2.在真空中有两个点电荷Q1=+3.0×10-8 C和Q2=-3.0×10-8 C,它们相距0.1 m,A点与两个点电荷的距离均为0.1 m。

试求A点的场强。

方法2利用补偿法求电场强度【典例1】均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场。

如图所示,在半球面AB上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R。

已知M点的场强大小为E,则N点的场强大小为()A.kq2R2-E B.kq4R2C.kq4R2-E D.kq4R2+E【跟踪短训】1.均匀带电的球体在球外空间产生的电场等效于电荷集中于球心处产生的电场。

如图所示,在半球体上均匀分布正电荷,总电荷量为q,球半径为R,MN为通过半球顶点与球心O的轴线,在轴线上有A、B 两点,A、B关于O点对称,AB=4R。

已知A点的场强大小为E,则B点的场强大小为A. B.C. D.2.已知均匀带电圆盘在圆外平面内产生的电场与一个位于圆心的、等电量的同种点电荷产生的电场相同。

高中物理电场强度题解题技巧

高中物理电场强度题解题技巧

高中物理电场强度题解题技巧在高中物理学习中,电场强度是一个重要的概念。

掌握电场强度的计算方法和解题技巧对于解决与电场强度相关的物理题目非常关键。

本文将介绍几种常见的电场强度题型,并提供解题技巧和实例,帮助高中学生更好地理解和应用电场强度概念。

一、点电荷电场强度计算点电荷电场强度的计算是电场强度题目中最基础的部分。

对于一个带电粒子,其电场强度的大小与距离的平方成反比。

具体计算公式为:E = k * q / r^2其中,E表示电场强度,k为电场常数,q为点电荷的电荷量,r为距离。

在计算时,需注意单位的转换和数值的代入。

例如,已知一个电荷量为2μC的点电荷,距离它0.5m处的电场强度为多少?解题思路:根据公式E = k * q / r^2,代入数据得到 E = 9 * 10^9 * 2 * 10^-6 /(0.5)^2 = 72 N/C。

因此,距离0.5m处的电场强度为72 N/C。

二、均匀带电球壳电场强度计算均匀带电球壳的电场强度计算是电场强度题目中的一个典型例子。

对于一个均匀带电球壳,其电场强度在球壳外部与距离成正比,在球壳内部电场强度为零。

具体计算公式为:E = k * Q / r^2其中,E表示电场强度,k为电场常数,Q为球壳的总电荷量,r为距离。

例如,已知一个带电球壳的总电荷量为4μC,距离球壳0.2m处的电场强度为多少?解题思路:根据公式E = k * Q / r^2,代入数据得到 E = 9 * 10^9 * 4 * 10^-6 /(0.2)^2 = 90 N/C。

因此,距离球壳0.2m处的电场强度为90 N/C。

三、电偶极子电场强度计算电偶极子是由两个相等大小、异号电荷组成的系统。

电偶极子的电场强度在远离电偶极子轴线的地方近似为:E ≈ k * p / r^3其中,E表示电场强度,k为电场常数,p为电偶极矩,r为距离。

例如,已知一个电偶极子的电偶极矩为2 × 10^-9 C·m,距离电偶极子轴线1m处的电场强度为多少?解题思路:根据公式E ≈ k * p / r^3,代入数据得到E ≈ 9 × 10^9 * 2 × 10^-9 / (1)^3 = 18 N/C。

求电场强度的六种特殊方法(解析版)

求电场强度的六种特殊方法(解析版)

求电场强度的六种特殊方法一、镜像法(对称法)镜像法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效。

例1.(2005年上海卷4题)如图1,带电量为+q的点电荷与均匀带电薄板相距为2d,点电荷到带电薄板的垂线通过板的几何中心.若图中a点处的电场强度为零,根据对称性,带电薄板在图中b点处产生的电场强度大小和方向如何?(静电力恒量为k)二、微元法微元法就是将研究对象分割成若干微小的的单元,或从研究对象上选取某一“微元”加以分析,从而可以化曲为直,使变量、难以确定的量转化为常量、容易确定的量。

例2.如图2所示,均匀带电圆环所带电荷量为Q,半径为R,圆心为O,P为垂直于圆环平面的称轴上的一点,OP=L,试求P点的场强。

三、等效替代法“等效替代”方法,是指在效果相同的前提下,从A事实出发,用另外的B事实来代替,必要时再由B而C……直至实现所给问题的条件,从而建立与之相对应联系,得以用有关规律解之。

如以模型代实物,以合力(合运动)替代数个分力(分运动);等效电阻、等效电源等。

例3.如图3所示,一带正Q电量的点电荷A,与一块接地的长金属板MN组成一系统,点电荷A与板MN间的垂直距离为为d,试求A与板MN的连线中点C处的电场强度.四、补偿法求解物理问题,要根据问题给出的条件建立起物理模型。

但有时由题给条件建立模型不是一个完整的模型,这时需要给原来的问题补充一些条件,组成一个完整的新模型。

这样,求解原模型的问题就变为求解新模型与补充条件的差值问题。

例4.如图5所示,用长为L的金属丝弯成半径为r的圆弧,但在A、B之间留有宽度为d的间隙,且d远远小于r,将电量为Q的正电荷均为分布于金属丝上,求圆心处的电场强度。

五、等分法利用等分法找等势点,再连等势线,最后利用电场强度与电势的关系,求出电场强度。

例5. 如图6所示,a 、b 、c 是匀强电场中的三点,这三点边线构成等边三角形,每边长L ,将一带电量6q=210C --⨯的点电荷从a 点移到b 点,电场力做功51W 1.210J --⨯=;若将同一点电荷从a 点移到c 点,电场力做功62W 610J -⨯=,试求匀强电场强度E 。

电场强度计算方法

电场强度计算方法

电场强度计算方法电场强度是描述电场强弱的物理量,是衡量电场对电荷的作用力大小的指标。

计算电场强度是电场研究中的重要内容,有多种方法可以进行电场强度的计算。

本文将介绍几种常用的计算电场强度的方法,并以具体示例加以说明。

一、库仑定律库仑定律是计算点电荷电场强度的基本方法之一。

根据库仑定律,点电荷所产生的电场强度与距离的平方成反比。

具体计算公式为:E = k * Q / r^2其中,E表示电场强度,k表示电场常量(k = 8.99 × 10^9 N·m^2/C^2),Q表示点电荷的电量,r表示点电荷与观察位置的距离。

以一个具体的例子来说明:假设有一个电荷为5μC的点电荷,在距离该电荷0.5m处观察电场强度,根据库仑定律计算得到的电场强度为:E = (8.99 × 10^9 N·m^2/C^2) * (5 × 10^-6 C) / (0.5^2 m) = 359.6 N/C二、连续电荷分布的电场强度计算当电荷不是一个点电荷,而是分布在空间中时,可以通过积分的方式计算电场强度。

具体步骤是将电荷分布划分为微小的元电荷,计算元电荷对观察位置的电场强度,然后对所有元电荷的贡献进行积分求和。

例如,考虑一个带电直线的情况,线密度为λ,观察位置离直线距离为r,计算公式为:E = k * λ * ∫(dl/r^2)其中,dl表示线段的微小长度。

假设直线长度为L,通过积分可得到:E = k * λ * ln(L/r)以一个具体的例子来说明:假设有一个长度为1m,线密度为2μC/m的带电直线,观察位置离直线的距离为0.1m,根据以上公式计算得到的电场强度为:E = (8.99 × 10^9 N·m^2/C^2) * (2 × 10^-6 C/m) * ln(1/0.1) = 5598.4 N/C三、电荷分布的连续体积情况对于三维空间中的电荷分布,可以通过计算电荷体积密度ρ的积分来求得电场强度。

求解电场强度13种方法(附例题)

求解电场强度13种方法(附例题)

求解电场强度方法分类赏析一.必会的基本方法:1.运用电场强度定义式求解例1.质量为m 、电荷量为q 的质点,在静电力作用下以恒定速率v 沿圆弧从A 点运动到B 点,,其速度方向改变的角度为θ(弧度),AB 弧长为s ,求AB 弧中点的场强E 。

【解析】:质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点电荷产生电场力提供。

由牛顿第二定律可得电场力F = F 向 = m r v 2。

由几何关系有r = θs ,所以F = m sv θ2,根据电场强度的定义有 E = q F = qs mv θ2。

方向沿半径方向,指向由场源电荷的电性来决定。

2.运用电场强度与电场差关系和等分法求解例2(2012安徽卷).如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O 处的电势为0V ,点A 处的电势为6V ,点B 处的电势为3V ,则电场强度的大小为AA .200/V m B./mC . 100/V m D./m(1)在匀强电场中两点间的电势差U = Ed ,d 为两点沿电场强度方向的距离。

在一些非强电场中可以通过取微元或等效的方法来进行求解。

(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。

3.运用“电场叠加原理”求解例3(2010海南).如右图2, M 、N 和P 是以MN 为直径的半圈弧上的三点,O 点为半圆弧的圆心,60MOP ∠=︒.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为1E ;若将N 点处的点电荷移至P则O 点的场场强大小变为2E ,1E 与2E 之比为BA .1:2B .2:1 C.2 D.4:二.必备的特殊方法:4.运用平衡转化法求解例4.一金属球原来不带电,现沿球的直径的延长线放置N图2一均匀带电的细杆MN ,如图3所示。

金属球上感应电荷产生的电场在球内直径上a 、b 、c 三点的场强大小分别为E a 、E b 、E c ,三者相比( )A .E a 最大B .E b 最大C .E c 最大D .E a = E b = E c【解析】:导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应电荷所产生的电场强度应与带电细杆MN 在该点产生的电场强度大小相等,方向相反。

计算电场强度的方法

计算电场强度的方法

计算电场强度的方法
以下是 9 条关于计算电场强度的方法:
1. 用库仑定律啊!就像两个电荷之间有着独特的“吸引力法则”,比如两个点电荷相隔一定距离,那它们之间的电场强度就可以用库仑定律算出啦!这多有意思呀,你想想看呀!
2. 定义式法也不错哟!好比是找到电场强度的最直接“路径”呢。

比如说已知电场力和电荷量,那就能通过定义式轻松算出电场强度啦,这不是一目了然嘛!
3. 还有高斯定理呀!它就像一把神奇的“钥匙”,能打开计算电场强度的大门呢!就像给一个封闭曲面,能通过它来算出内部的电场情况,厉害不厉害呀!
4. 叠加原理也很管用呢!这就好像各种味道混合在一起,你要找出每种味道的“份量”。

比如多个电场源存在时,就可以用叠加原理算出总的电场强度啦,是不是超神奇呀!
5. 微元法也值得一试呀!把一个复杂的电场分解成一个个小的部分,就像咀嚼食物一样,慢慢地去分析每个“小块”的电场强度,然后再整合起来,哇塞,真是太棒啦!
6. 对称法也很有趣哦!当电场具有对称性的时候,哇,那可就轻松多啦!比如匀强电场,通过对称法能很快明白电场强度的分布,这不是很酷嘛!
7. 图像法呀!就如同看一张地图来找路一样。

通过电场线等图像来分析电场强度的大小和方向,是不是很直观呀,保准你会喜欢上的!
8. 等效替代法也别小瞧呀!它就像是找个替身来帮忙。

把复杂的电场用简单的模型来替换,从而更容易计算出电场强度呢,这简直绝了呀!
9. 物理模型法也超有用的哟!把实际情况转化成物理模型,就像给电场穿上了一件合适的“衣服”。

然后根据模型来计算电场强度,哇,这真的很实用呀!
我的观点结论就是:计算电场强度的方法多种多样,每一种都有独特的魅力和用途,大家一定要熟练掌握呀!。

求解电场强度13种方法

求解电场强度13种方法

足的关系是 r = R 2 。 d
根据库仑定律可知感应电荷与电荷 q 间的相互作用力 F = kqQ = kdRq2 。根 (d r)2 (d 2 R2 )2
据电场强度定义可知感应电荷在 P 点所产生的电场强度 E = F = kdRq 。 q (d 2 R2 )2
6.运用“等效法”求解 例 6.(2013 安徽卷).如图 5 所示,xOy 平面是无穷大导体的表面,该导体充满 z 0 的
所示的两个等量异号电荷组成的静电场等效替代原电场。根据电场叠加原理,容易求得
z
h 2
点的场强, E
k
q ( h )2 2
k
q ( 3h )2
k
40q 9h2
,故选项 D 正确。
2
点评:(1)等效法的实质在效果相同的情况下,利用问题中某些相似或相同效果进行知
识迁移的解决问题方法,往往是用较简单的因素代替较复杂的因素。
三点的场强大小分别为 Ea、Eb、Ec,三者相比(

A.Ea 最大 B.Eb 最大
C.Ec 最大 D.Ea= Eb= Ec
【解析】:导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应
电荷所产生的电场强度应与带电细杆 MN 在该点产生的电场强度大小相等,方向相反。均匀
带电细杆 MN 可看成是由无数点电荷组成的。a、b、c 三点中,c 点到各个点电荷的距离最近,
求解电场强度方法分类赏析
一.必会的基本方法: 1.运用电场强度定义式求解 例 1.质量为 m、电荷量为 q 的质点,在静电力作用下以恒定速率 v 沿圆弧从 A 点运动 到 B 点,,其速度方向改变的角度为 θ(弧度),AB 弧长为 s,求 AB 弧中点的场强 E。

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种计算方法电场强度是描述电场力量和方向的物理量,可以通过多种方法计算。

以下是几种常见的电场强度计算方法:1.应用库仑定律库仑定律描述了带电粒子之间的电力相互作用。

根据库仑定律,两个点电荷之间的电场强度E与它们之间的距离r和电荷大小q1和q2有关。

计算公式为:E=k*(q1*q2)/r^2其中,k是库仑常数,其值为8.99×10^9N·m^2/C^22.线电荷产生的电场强度对于线电荷,其电场强度的计算稍有不同。

线电荷在垂直方向上的电场强度E可以通过以下公式计算:E=k*λ/r其中,λ是线电荷密度(即单位长度上的电荷量),r是距离线电荷的垂直距离。

3.板电荷产生的电场强度对于平面均匀带电板,其电场强度E的计算又有所不同。

平行于平板表面的电场强度E可以通过以下公式计算:E=σ/(2ε0)其中,σ是板电荷密度(即单位面积上的电荷量),ε0是真空介电常数,其值为8.85×10^-12C^2/(N·m^2)。

4.电偶极子产生的电场强度电偶极子是由两个等大异号电荷组成的系统。

通过计算电偶极子产生的电场强度可以得到其在空间中的分布。

电偶极子在距其一侧的点的电场强度E可以通过以下公式计算:E=k*p/r^3其中,p是电偶极子矩,定义为p=q*d,其中q为电荷大小,d为电荷间的距离。

5.在多个电荷的叠加下计算如果存在多个电荷,则应该将各个电荷的电场强度进行矢量叠加。

对于三个点电荷来说,结果为:E=E1+E2+E3其中,E1、E2、E3分别是三个点电荷产生的电场强度。

需要注意的是,在实际中,电场强度计算可能因具体问题而异。

除了上述方法外,还可以使用电场势能、电势梯度等方法计算电场强度。

此外,计算电场强度时还应考虑距离的单位与矢量方向的数学解析。

高中物理:求解电场强度的几种方法

高中物理:求解电场强度的几种方法

1. 公式法(1)用场强的定义式求电场强度例1:质量为m,电量为q的质点,在静电力作用下以恒定速率v沿圆弧从A点运动到B点其速度方向改变角度为θ(弧度),AB弧长为s,如图1所示,则AB两点间的电势差________,AB弧中点的场强大小________(不计重力)。

图1解析:对带电粒子应用动能定理,所以因带电粒子在静电力作用下做匀速圆周运动,则有,故场强(2)用点电荷的场强公式求电场强度例2:真空中有两个等量异种点电荷,电量大小均为Q,相距r,求连线中点M处场强的大小和方向。

解析:设+Q的场强为,-Q的场强为,则,方向背离;方向指向-Q,所以,方向由+Q指向-Q。

(3)用匀强电场场强公式求电场强度例3:如图2所示,A、B、C三点都在匀强电场中,已知AC⊥BC,∠ABC=60°,BC=20cm,把一个电量的正电荷从A移到B,电场力做功为零,从B移到C,电场力做功,求该匀强电场的电场强度大小和方向。

解析:由于把电荷q从A移到B电场力做功为零,因此,A、B为等势面上的两点,B、C两点间电势差为,由知B点的电势比C点的电势低173V。

根据电场线和等势面的关系知,场强方向垂直于AB连线斜向下。

2. 虚补法例4:如图3所示,在无限大接地金属板上方距板d处有一个+Q点电荷,求金属板表面P点的场强大小。

(已知QP垂直于板面)图3解析:这是一个电荷结构不对称模型,因中学阶段未介绍点电荷与面电荷场强的叠加,似乎无法解决。

若在金属板下方距板d处虚补一个点电荷-Q,则变成了等量异种电荷的对称结构模型,且点电荷+Q、-Q在P点场强的叠加,与点电荷+Q和金属板表面感应负电荷在P点的场强叠加是等效的,很快可得P点的合场强。

说明:当题给模型不对称时,我们可以虚补结构,变不对称为对称。

3. 微元法例5:如图4所示,均匀带电圆环带电量为Q,半径为R,圆心为O,P为垂直于圆环平面的对称轴上的一点,,试求P点的场强。

图4解析:这是一个连续分布的非点电荷电场问题,同学们没有学微积分知识,求解困难。

求电场强度的六种特殊方法(解析版)

求电场强度的六种特殊方法(解析版)

求电场强度的六种特殊方法一、镜像法(对称法)镜像法实际上就是根据某些物理现象、物理规律、物理过程或几何图形的对称性进行解题的一种方法,利用此 法分析解决问题可以避免复杂的数学演算和推导,直接抓住问题的实质,有出奇制胜之效例1. (2005年上海卷4题)如图1,带电量为+q 的点电荷与均匀带电薄板相距为 2d , 点电荷到带电薄板的垂线通过板的几何中心.若图中a 点处的电场强度为零,根据对称性,带电薄板在图中b 点处产生的电场强度大小和方向如何?(静电力恒量为k )ffli二、微元法微元法就是将研究对象分割成若干微小的的单元,或从研究对象上选取某一 “微元”加以分析,从而可以化曲 为直,使变量、难以确定的量转化为常量、容易确定的量。

例2.如图2所示,均匀带电圆环所带电荷量为Q,半径为R 圆心为0, P 为垂直于圆环平面的称轴上的一点, 01 L ,试求P 点的场强。

三、等效替代法“等效替代”方法,是指在效果相同的前提下, 直至实现所给问题的条件,从而建立与之相对应联系, 替代数个分力(分运动);等效电阻、等效电源等。

例3.如图3所示,一带正Q 电量的点电荷 垂直距离为为d,试求A 与板MN 的连线中点C 处的电场强度.4 ---- © C A四、补偿法求解物理问题,要根据问题给出的条件建立起物理模型。

但有时由题给条件建立模型不是一个完整的模型,这 时需要给原来的问题补充一些条件,组成一个完整的新模型。

这样,求解原模型的问题就变为求解新模型与补充条 件的差值问题。

从A 事实出发,用另外的B 事实来代替,必要时再由B 而C 得以用有关规律解之。

如以模型代实物,以合力(合运动)A,与一块接地的长金属板 MN 组成一系统,点电荷 A 与板MN 间的 M例4.如图5所示,用长为L的金属丝弯成半径为r的圆弧,但在 A B之间留有宽度为于r,将电量为Q的正电荷均为分布于金属丝上,求圆心处的电场强度。

针对训练2:如图所示,一半径为R 的圆盘上均匀分布着电荷量为 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为 固定点电荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解电场强度方法分类赏析一.必会的基本方法:1.运用电场强度定义式求解例1.质量为m、电荷量为q的质点,在静电力作用下以恒定速率v沿圆弧从A点运动到B点,,其速度方向改变的角度为θ(弧度),AB弧长为s,求AB弧中点的场强E。

【解析】:质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点电荷产生电场力提供。

由牛顿第二定律可得电场力F= F向= mrv2。

由几何关系有r=θs,所以F= msvθ2,根据电场强度的定义有E=qF=qsmvθ2。

方向沿半径方向,指向由场源电荷的电性来决定。

2.运用电场强度与电场差关系和等分法求解例2(2012安徽卷).如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O处的电势为0V,点A处的电势为6V,点B处的电势为3V,则电场强度的大小为AA.200/V m B.2003/V mC.100/V m D.1003/V m(1)在匀强电场中两点间的电势差U= Ed,d为两点沿电场强度方向的距离。

在一些非强电场中可以通过取微元或等效的方法来进行求解。

(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。

3.运用“电场叠加原理”求解例3(2010海南).如右图2, M、N和P是以MN为直径的半圈弧上的三点,O点为半圆弧的圆心,60MOP∠=︒.电荷量相等、符号相反的两个点电荷分别置于M、N两点,这时O点电场强度的大小为1E;若将N点处的点电荷移至P则O点的场场强大小变为2E,1E与2E之比为BA.1:2 B.2:1ﻩﻩC.2:3 D.4:3二.必备的特殊方法:4.运用平衡转化法求解例4.一金属球原来不带电,现沿球的直径的延长线放置一60°PNOM图2均匀带电的细杆MN ,如图3所示。

金属球上感应电荷产生的电场在球内直径上a 、b 、c三点的场强大小分别为E a、E b、E c ,三者相比( )A.Ea 最大 B.E b 最大C.Ec 最大 D .Ea = E b= E c【解析】:导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应电荷所产生的电场强度应与带电细杆MN 在该点产生的电场强度大小相等,方向相反。

均匀带电细杆M N 可看成是由无数点电荷组成的。

a 、b、c三点中,c 点到各个点电荷的距离最近,即细杆在c 点产生的场强最大,因此,球上感应电荷产生电场的场强c 点最大。

故正确选项为C 。

点评:求解感应电荷产生的电场在导体内部的场强,转化为求解场电荷在导体内部的场强问题,即E感 = -E外 (负号表示方向相反)。

5.运用“对称法”(又称“镜像法”)求解例5.(2013新课标I )如图4,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、 b 、d 三个点,a 和b、b 和c、 c 和d 间的距离均为R,在a 点处有一电荷量为q (q>O)的固定点电荷.已知b 点处的场强为零,则d点处场强的大小为(k 为静电力常量)A.kﻩﻩ B. k C. k D. k 【解析】:点电荷+q在b 点场强为E 1、薄板在b点场强为E2,b点场强为零是E1与E2叠加引起的,且两者在此处产生的电场强度大小相等,方向相反,大小E 1 = E 2 = 2R k q 。

根据对称性可知,均匀薄板在d处所形成的电场强度大小也为E 2,方向水平向左;点电荷在d 点场强E 3 = 2)3(R kq ,方向水平向左。

根据叠加原理可知,d点场 E d= E2 + E 3 = 2910Rkq 。

点评:对称法是利用带电体电荷分布具有对称性,或带电体产生的电场具有对称性的特点来求合电场强度的方法。

通常有中心对称、轴对称等。

例7 如图6所示,在一个接地均匀导体球的右侧P点距球心的距离为d ,球半径为R .。

在P 点放置一个电荷量为 +q 的点电荷。

试求导体球感应电荷在P点的电场强度大小。

析与解:如图6所示,感应电荷在球上分布不均匀,靠近P 一侧较密,关于OP 对称,因此感应电荷的等效分布点在OP 连线上一点P ′。

设P′ 距离O 为r,导体球接地,故球心O 处电势为零。

根据电势叠加原理可知,导体表面感应电荷总电荷量Q在O 点引起的电势与点电荷q 在O 点引导起的电势之和为零,即d kq +R kQ = 0,即感应电荷量Q = q dR 。

同理,Q 与q 在球面上任意图4图6点引起的电势叠加之后也为零,即22cos 2r Rr R kQ +-α=22cos 2d Rd R kq +-α,其中α为球面上任意一点与O连线和OP 的夹角,具有任意性。

将Q 代入上式并进行数学变换后得 d 2r 2 – R4 = (2Rrd 2 – 2R 3d )cos α,由于对于任意α角,该式都成立,因此,r满足的关系是r = dR 2。

根据库仑定律可知感应电荷与电荷q 间的相互作用力F = 2)(r d kqQ -=2222)(R d kdRq -。

根据电场强度定义可知感应电荷在P 点所产生的电场强度E =q F =222)(R d kdRq -。

6.运用“等效法”求解例6.(2013安徽卷).如图5所示,xOy 平面是无穷大导体的表面,该导体充满0z <的空间,0z >的空间为真空。

将电荷为q 的点电荷置于z 轴上z=h 处,则在xOy 平面上会产生感应电荷。

空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。

已知静电平衡时导体内部场强处处为零,则在z 轴上2h z =处的场强大小为(k 为静电力常量)A .24q k h B.249q k h C.2329q k h D.2409q k h【解析】:求金属板和点电荷产生的合场强,显然用现在的公式直接求解比较困难。

能否用中学所学的知识灵活地迁移而解决呢?当然可以。

由于xOy 平面是无穷大导体的表面,电势为0,而一对等量异号的电荷在其连线的中垂线上电势也为0,因而可以联想成图6中所示的两个等量异号电荷组成的静电场等效替代原电场。

根据电场叠加原理,容易求得2h z =点的场强,22()224039()2qh q q E k k k h h =+=,故选项D 正确。

点评:(1)等效法的实质在效果相同的情况下,利用问题中某些相似或相同效果进行知识迁移的解决问题方法,往往是用较简单的因素代替较复杂的因素。

(2)本题也可以用排除法求解.仅点电荷q 在2h z =处产生的场强就是24q k h ,而合场强一定大于24q k h ,符合的选项只有D 正确。

例6如图5(a)所示,距无限大金属板正前方l 处,有正点电荷q ,金属板接地。

求距金属板d 处a点的场强E (点电荷q 与a 连线垂直于金属板)。

析与解:a点场强E 是点电荷q 与带电金属板产生的场强的矢量和。

画出点电荷与平行金属板间的电场线并分析其的疏密程度及弯曲特征,会发现其形状与等量异种点电荷电场中的电场线分布相似,金属板位于连线中垂线上,其电势为零,设想金属板左侧与 +q对称处放点电荷 -q ,其效果与+q 及金属板间的电场效果相同。

因此,在+q左侧对称地用 –q 等效替代金属板,如图5(b)所示。

所以,a 点电场强度Ea = kq [22)(1)(1d l d l ++-]。

7运用“微元法”求解例7.(2006•甘肃).ab 是长为l 的均匀带电细杆,P 1、P 2是位于ab 所在直线上的两点,位置如图7所示.ab 上电荷产生的静电场在P 1处的场强大小为E1,在P2处的场强大小为E 2.则以下说法正确的是( )A 两处的电场方向相同,E1>E2 B 两处的电场方向相反,E 1>E2C 两处的电场方向相同,E 1<E 2D 两处的电场方向相反,E1<E 2. .【解析】: 将均匀带电细杆等分为很多段,每段可看作点电荷,由于细杆均匀带电,我们取a 关于P 1的对称点a′,则a 与a′关于P1点的电场互相抵消,整个杆对于P 1点的电场,仅仅相对于a′b部分对于P 1的产生电场.而对于P 2,却是整个杆都对其有作用,所以,P 2点的场强大.设细杆带正电,根据场的叠加,这些点电荷在P1的合场强方向向左,在P 2的合场强方向向右,且E 1<E 2.故选D.ﻫ点评:(1)因为只学过点电荷的电场或者匀强电场,而对于杆产生的电场却没有学过,因而需要将杆看成是由若干个点构成,再进行矢量合成.(2)微元法就是将研究对象分割成许多微小的单位,或从研究对象上选取某一“微元”加以分析,找出每一个微元的性质与规律,然后通过累积求和的方式求出整体的性质与规律。

严格的说,微分法是利用微积分的思想处理物理问题的一种思想方法例8 如图7(a )所示,一个半径为R 的均匀带图7 (a ) +q d a l 图5 +q - q a (b )电细圆环,总量为Q 。

求圆环在其轴线上与环心O 距离为r处的P 产生的场强。

析与解:圆环上的每一部分电荷在P 点都产生电场,整个圆环在P所建立电场的场强等于各部分电荷所产生场强的叠加。

如图7(b)在圆环上取微元Δl ,其所带电荷量Δq = R Q π2Δl ,在P 点产生的场强: ΔE =22Rr q k +∆=)(222R r R l kQ +∆π 整个圆环在P点产生的电场强度为所有微元产生的场强矢量和。

根据对称性原理可,所有微元在P 点产生场强沿垂直于轴线方向的分量相互抵消,所以整个圆环在P 点产生场中各微元产生的场强沿轴线方向分量之和,即E P = ΣΔE c osθ = Σ2222)(2R r r R r R l kQ +⋅+∆π=322)(R r kQr + 8.运用“割补法”求解例8. 如图8所示,用长为L 的金属丝弯成半径为r 的圆弧,但在A 、B 之间留有宽度为d 的间隙,且d 远远小于r ,将电量为Q 的正电荷均为分布于金属丝上,求圆心处的电场强度。

【解析】:假设将这个圆环缺口补上,并且已补缺部分的电荷密度与原有缺口的环体上的电荷密度一样,这样就形成一个电荷均匀分布的完整带电环,环上处于同一直径两端的微小部分所带电荷可视为两个相应点的点电荷,它们在圆心O 处产生的电场叠加后合场强为零。

根据对称性可知,带电小段,由题给条件可视为点电荷,它在圆心O 处的场强E1, 是可求的。

若题中待求场强为E 2,则E 1+ E 2=0。

设原缺口环所带电荷的线密度为ρ,Q ρπ=/(2r-d),则补上的那一小段金属丝带电量Q'=d ρ,在0处的场强E1=K Q'/r 2,由E 1+ E2=0可得:E 2=- E 1,负号表示E 2与E 1反向,背向圆心向左。

相关文档
最新文档