《实数》教学设计
实数全章教学设计北师大版

2.拓展建议:
(1)让学生阅读数学绘本,通过故事的形式了解实数的概念和应用,提高学生的学习兴趣。
(2)让学生阅读科普文章,了解实数在现实世界中的重要性,提高学生的数学应用意识。
(3)利用网络资源,让学生自主学习实数相关的知识,通过练习题进行巩固。
(5)教师可组织课后讨论或展示活动,让学生分享自己的拓展学习成果,促进学生之间的相互学习和交流。
(6)教师应鼓励学生积极参与拓展学习,培养学生的自主学习能力和批判性思维能力。
(7)教师应关注学生的学习态度和表现,及时调整拓展学习的内容和难度,以适应学生的个性化学习需求。
八、课堂小结,当堂检测
1. 课堂小结:
七、课后拓展
1.拓展内容:
(1)阅读材料:推荐学生阅读与实数相关的数学故事、科普文章、数学历史等,如《数学家的故事》、《数学与生活》等,增强学生对实数的理解和兴趣。
(2)视频资源:推荐学生观看与实数相关的数学教学视频、纪录片等,如《数学的力量》、《数学之美》等,帮助学生更直观地理解实数的概念和应用。
(3)在线学习平台:鼓励学生登录在线学习平台,如“中国大学MOOC”、“Coursera”等,选择实数相关的课程进行自主学习,提高学生的数学素养。
(4)数学竞赛与活动:鼓励学生参加数学竞赛、数学建模活动等,锻炼学生的数学思维和实际应用能力。
(5)实地考察与实验:组织学生进行实地考察或实验,如测量长度、计算面积等,让学生亲身体验实数的应用。
2.拓展要求:
(1)学生自主选择拓展内容,根据自己的兴趣和学习进度进行学习和探索。
(2)学生可以进行小组讨论或与他人交流,分享自己的学习心得和发现。
人教版七年级数学下册实数《实数(第3课时)》示范教学设计

实数(第3课时)教学目标1.能够灵活应用本章知识解决实数中相关问题.2.能够借助数轴利用数形结合解决实数中相关问题.教学重点灵活应用本节知识解决实数中相关问题.教学难点能够借助数轴利用数形结合解决实数中相关问题.教学过程知识回顾新知探究一、探究学习【重点】1.实数的分类(1)实数在分类时应将原数化简,然后进行分类;(2)有理数包括整数和分数;(3)无限不循环小数是无理数.2.实数的性质相反数、绝对值、倒数的运算及运算律同有理数一样.【师生活动】在知识回顾中,对有理数的相反数和绝对值定义进行了复习,教师在此可以引导学生仿照有理数的规定方法,对实数的相反数和绝对值进行猜测,完成填空,教师提问,并根据学生的答案进行总结:有理数关于相反数和绝对值的意义同样适合于实数.【问题】1.下列说法正确的是( ).A .2π是有理数B 是有理数C D【师生活动】教师引导学生对每个选项中的数进行分析:2π虽然都含有分母,但分子π2π也是无理数,所以选项A ,B 10,10是有理数,所以选项C 34-,34-是分数,所以选项D 正确. 【答案】D【归纳】掌握无理数的概念是进行判断的关键,要注意带根号的数不一定都是无理数,含分母的数也不一定都是有理数.【提醒】常见的三种无理数(1)经过化简后,仍然含有π的数;(2)含有根号,且被开方数开方开不尽的数;(3)无限不循环小数.【问题】2.在实数0 3.140.909 009 000 9--,(每两个9之间的0的个数依次增加1)中,无理数有____个,有理数有____个,负数有_____个. 【师生活动】教师给出学生分析方向:根据无理数是无限不循环小数,有理数是有限小数或无限循环小数以及小于零的数是负数得到答案.学生自己对所给出的几个数字进行分析0.909 009 000 9…(每两个9之间的0的个数依次增加1)3个;0,-3.14是有理数,共3个;-3.14,-0.909 009 000 9…(每两个9之间的0的个数依次增加1)3个. 【答案】3 3 3【归纳】掌握好实数的分类以及无理数、有理数包括的几种类型,是解决此类题的关键.在分类时要明确分类标准,保证不重不漏.【问题】3.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求210a b m cd m++-的值.【师生活动】结合前面学过的知识,学生对该题进行分析:遇到两数互为相反数,就要想到两数之和为0;遇到两数互为倒数,就要想到两数之积为1;遇到绝对值是一个正数,就要想到原数可能有两个.根据互为相反数、互为倒数和绝对值的意义,求出a +b ,cd 及m 的取值.【答案】解:由a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,得a +b =0,cd =1,m =±2.所以210a b m cd m++-=0+4-|1=41=5 【总结】(1)此类问题中a ,b ,c ,d 的值不确定,需要运用整体思想求a +b ,cd 的值.(2)在化简|m |时,需要注意m 的符号.【设计意图】设置这三道题目,主要让学生熟练掌握实数的分类,及考查学生能否类似有理数的绝对值等概念对实数进行计算.【重点】3.实数与数轴——数轴的三大作用(1)根据点在数轴上的位置判断其所表示的实数的符号,在原点的左侧为负数,在原点的右侧为正数;(2)根据点在数轴上的位置判断其所表示的实数的绝对值的大小,离原点远的绝对值大,离原点近的绝对值小;(3)根据点在数轴上的位置比较其所表示的实数的大小,数轴上右边的点表示的实数总大于左边的点表示的实数.【问题】4.如图,M ,N 两点在数轴上表示的数分别是m ,n ,则化简式子|m +n |-m 的结果是__________.【师生活动】学生独立对数轴进行分析,得出如下结论:由数轴可知,m <0,n >0,|m |<|n |,所以m +n >0,所以|m +n |-m =m +n -m =n .【答案】n【归纳】实数与数轴上的点是一一对应的,它体现了数形结合的思想.利用实数在数轴上所对应的点的位置可以判断出实数或相关式子的值的正负,进而去掉绝对值符号或二次根号,使实数大小的比较更具有直观性.【问题】5.若将三个数表示在数轴上,则其中能被如图所示的墨迹覆盖的数是__________.【师生活动】教师引导学生结合数轴,对实数的大小比较进行复习:可以看到覆盖的数大致范围在1和3之间,很明显即<,,2334【归纳】利用数轴比较实数大小的方法:先由表示实数a的点在数轴上的位置判断出a的取值范围,再根据各数的特征或采用特殊值法比较出几个数的大小.【问题】6.如图,在正方形ODBC中,OB OA=OB,则数轴上点A表示的数是__________.【师生活动】学生以小组为单位,对图形进行分析,得出结论如下:因为OA=OB,所以OA=OB A在数轴上原点的左边,所以点A【设计意图】这几道题目主要考查实数和数轴结合的相关问题,巩固学生对数形结合解决该类问题的掌握程度.【重点】4.实数的运算有理数的运算法则和运算律同样适用于实数,包括运算顺序.实数有加、减、乘、除、乘方、开方等运算,混合运算的顺序是先乘方、开方,再乘除,最后加减,同级运算按照从左到右的顺序进行,有括号要先算括号里的.【问题】7.已知表示实数a,b,c的点在数轴上的位置如图.化简:|a+b|-|b+c|+|b-c|-|b|.【师生活动】教师引导学生找到解决该类问题的关键点在于根据数轴判断实数a,b,c 的取值范围及其绝对值的大小关系,然后据此判断绝对值中的多项式的符号.由表示实数a,b,c的点在数轴上的位置可知,a+b<0,b+c>0,b-c<0,b<0,据此化简即可.【答案】解:根据表示实数a,b,c的点在数轴上的位置,得a<b<0<c,且|a|>|c|>|b|,所以a+b<0,b+c>0,b-c<0.所以|a+b|-|b+c|+|b-c|-|b|=-(a+b)-(b+c)-(b-c)+b=-a-b-b-c -b+c+b=-a-2b.【提醒】如果绝对值符号里面是个多项式,那么去绝对值符号后一般要加上括号,否则在变号时容易出错.【问题】8.现有一面积为150 m2的正方形鱼池,为了增加养鱼量,如果把鱼池的边长增加6 m,那么扩建后鱼池的面积为多少平方米(精确到0.1 m2)?【师生活动】学生独立分析题意,解决问题,教师巡视纠错.【答案】解:因为原正方形鱼池的面积为150 m212.25(m).由题意可得,扩建后的正方形鱼池的边长约为12.25+6=18.25(m),所以扩建后鱼池的面积约为18.252≈333.1(m2).答:扩建后鱼池的面积约为333.1 m2.【提醒】实际问题中的实数运算,可以利用计算器进行,当问题中要求近似值时,在计算过程中要注意对结果精确度的要求.【问题】9.计算下列各式的值:(1);(2)13(3 3.34π+(精确到0.01).【师生活动】学生以组为单位解决该题,并派出学生代表回答.【答案】解:(1)原式336322 =-++=-;(2)原式133|235+=+(3)原式11.732 3.142 3.340.866 3.142 3.34 1.064 1.062≈⨯-+=-+=≈.【归纳】在进行实数的混合运算时,首先要观察算式的特点,选择合适的方法进行计算.注意运算顺序和运算符号.【设计意图】对实数的运算进行巩固,确保学生能够熟练准确解决该类问题.课堂小结板书设计一、实数的相关概念二、实数与数轴三、实数的运算课后任务完成教材第57页习题6.3第1~5题.。
北师大版八年级数学上册:2.6《实数》教学设计1

北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。
通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。
同时,实数的分类和性质也需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。
2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。
3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。
四. 教学重难点1.实数的概念和分类。
2.实数的性质。
五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。
通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。
六. 教学准备3.练习题。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。
呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。
2.引导学生通过观察和思考,总结实数的性质。
操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。
2.每组选一名代表进行汇报,其他组进行评价和补充。
巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。
2.教师选取部分学生的作业进行点评,指出错误并进行讲解。
拓展(10分钟)1.让学生思考:实数和数轴之间的关系。
2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。
小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。
2.学生分享学习收获和感受。
家庭作业(5分钟)1.完成课后练习题。
人教版数学七年级下册教学设计6.3《 实数》

人教版数学七年级下册教学设计6.3《实数》一. 教材分析人教版数学七年级下册第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统认识的一节内容。
本节内容主要包括实数的定义、实数与数轴的关系以及实数的分类。
通过本节课的学习,使学生了解实数的丰富性和广泛性,培养学生对实数的认识和理解。
二. 学情分析七年级的学生已经掌握了有理数和无理数的基本概念,对数轴也有了一定的认识。
但学生在实数的分类方面可能会存在一定的困难,因此,在教学过程中,需要教师耐心引导,让学生充分理解实数的内涵和外延。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.能够对实数进行分类,了解实数的丰富性和广泛性。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和实数与数轴的关系。
2.实数的分类和各类实数的特征。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣;通过案例分析,使学生直观地理解实数的概念;通过小组合作学习,培养学生的团队协作能力和表达能力。
六. 教学准备1.准备与实数相关的案例和图片,以便在教学中进行展示和分析。
2.准备实数的分类表格,方便学生理解和记忆。
3.准备数轴的道具或图片,帮助学生直观地理解实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数和无理数的概念,为新课的学习做好铺垫。
例如:“同学们,我们已经学习了有理数和无理数,那么你们能总结一下有理数和无理数的特征吗?”2.呈现(10分钟)教师通过PPT或板书,呈现实数的定义和实数与数轴的关系。
同时,结合案例和图片,使学生直观地理解实数的概念。
例如:“同学们,今天我们要学习的是实数。
实数包括有理数和无理数,它们都可以用数轴上的点来表示。
请大家观察这个数轴,找出一些特殊的点,并试着解释它们的含义。
”3.操练(10分钟)学生分组讨论,根据实数的定义和实数与数轴的关系,对给定的实数进行分类。
实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。
苏科版数学八年级上册4.3《实数》教学设计1

苏科版数学八年级上册4.3《实数》教学设计1一. 教材分析苏科版数学八年级上册 4.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统性的认识和理解。
本节课主要内容包括实数的分类、实数与数轴的关系、实数的运算等。
通过本节课的学习,学生能够更好地理解实数的内涵和外延,为后续的数学学习打下坚实的基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数和无理数有一定的了解。
但是,学生对实数的认识还比较片面,对于实数与数轴的关系、实数的运算等知识点的理解还不够深入。
因此,在教学过程中,需要教师引导学生从实际问题出发,通过观察、思考、操作、交流等活动,深化对实数概念的理解。
三. 教学目标1.理解实数的定义,掌握实数的分类。
2.理解实数与数轴的关系,能正确地在数轴上表示实数。
3.掌握实数的运算方法,能熟练地进行实数的运算。
4.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的分类2.实数与数轴的关系3.实数的运算五. 教学方法1.情境教学法:通过实际问题引导学生思考,激发学生的学习兴趣。
2.数形结合法:利用数轴直观地表示实数,帮助学生理解实数与数轴的关系。
3.合作学习法:引导学生分组讨论,培养学生的团队协作能力。
4.练习法:通过适量练习,巩固所学知识,提高学生的实际操作能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.数轴教具:准备数轴教具,方便学生直观地理解实数与数轴的关系。
3.练习题:准备适量练习题,用于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考实数的概念,例如:“小明家距离学校2.5公里,小红家距离学校3公里,小明和小红家分别位于学校的哪个方向?他们两家之间的距离是多少?”2.呈现(10分钟)教师利用课件呈现实数的定义和分类,实数与数轴的关系,实数的运算等知识点,引导学生初步认识实数。
3.操练(10分钟)教师引导学生分组讨论,利用数轴表示实数,并进行实数的运算。
华东师大版数学八年级上册《11.2 实数》教学设计

华东师大版数学八年级上册《11.2 实数》教学设计一. 教材分析华东师大版数学八年级上册《11.2 实数》这一节的内容是在学生已经掌握了有理数和无理数的基础上,进一步深化对实数的理解。
实数包括有理数和无理数,是数学中非常重要的概念。
本节课的内容包括实数的定义、实数与数轴的关系、实数的分类等。
通过本节课的学习,使学生能够理解实数的意义,掌握实数的分类,并能运用实数的概念解决一些实际问题。
二. 学情分析八年级的学生已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。
但是,学生对实数的理解可能还停留在表面的层次,需要通过本节课的学习,使学生能够深入理解实数的内涵。
此外,学生可能对实数的分类感到困惑,需要通过具体的例子和练习,帮助学生理解和掌握。
三. 教学目标1.理解实数的定义,掌握实数的分类。
2.理解实数与数轴的关系,能够运用实数的概念解决一些实际问题。
3.培养学生的逻辑思维能力和数学思维习惯。
四. 教学重难点1.实数的定义和分类。
2.实数与数轴的关系。
五. 教学方法采用讲解法、提问法、讨论法、练习法等教学方法。
通过讲解法,使学生理解实数的定义和分类;通过提问法,激发学生的思考,帮助学生理解实数与数轴的关系;通过讨论法,使学生对实数的理解更加深入;通过练习法,巩固学生对实数的理解和掌握。
六. 教学准备1.PPT课件。
2.数轴图示。
3.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引出实数的概念。
提问:有理数和无理数能否包含所有的数?从而引出实数的概念。
2.呈现(10分钟)讲解实数的定义,通过PPT课件和数轴图示,使学生直观地理解实数的内涵。
讲解实数的分类,包括正实数、负实数和零。
3.操练(10分钟)让学生通过数轴,对给定的实数进行分类。
例如,给出实数-5,0,3/2,√9,让学生在数轴上表示出这些实数,并判断它们的分类。
4.巩固(10分钟)让学生回答以下问题:(1)实数与数轴的关系是什么?(2)实数如何分类?(3)如何判断一个实数是有理数还是无理数?5.拓展(10分钟)让学生通过讨论,思考以下问题:(1)实数是否可以进行比较?为什么?(2)实数是否可以进行运算?为什么?6.小结(5分钟)对本节课的内容进行小结,强调实数的定义、分类和实数与数轴的关系。
北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。
本节课的主要内容是实数的定义、性质以及实数与数轴的关系。
教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。
但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。
因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数的概念解决实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数与数轴的关系。
五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。
六. 教学准备1.教材、教案、PPT。
2.练习题。
3.数轴教具。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。
2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。
3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。
4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。
5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。
6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。
7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。
8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。
6.3_实数_教学设计_教案[修改版]
![6.3_实数_教学设计_教案[修改版]](https://img.taocdn.com/s3/m/6972049c011ca300a7c39031.png)
第一篇:6.3_实数_教学设计_教案教学准备1. 教学目标1.1 知识与技能:1、了解无理数和实数的概念2、会对实数按照一定的标准进行分类,培养分类能力。
3、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的义。
1.2过程与方法:1、通过无理数的引入,使学生对数的认识由有理数扩充到实数2、经历对实数进行分类,发展学生的分类意识3、经历观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的。
1.3 情感态度与价值观:1、了解到人类对数的认识是不断发展的,体会数系扩充对人类发展的作用.2、学生在对实数的分类中感受数学的严谨性。
3、培养学生的合作交流能力与学习数学的兴趣,培养学生敢于面对数学活动中的困难,并能有意识地运用已有知识解决新的知识。
2. 教学重点/难点2.1 教学重点知道无理数是客观存在的,了解无理数和实数的概念,会判断一个数是有理数还是无理数.2.2 教学难点判断个别特殊的数是有理数还是无理数,体会数轴上的点与实数是一一对应的关系。
3. 教学用具4. 标签教学过程1、认识无理数问题1:请大家把下列各数3,表示成小数,它们是有限小数还是无限小数,是循环小数还是不循环小数?大家可以每个小组计算一个数,这样可以节省时间。
3=3.0,=0.8,=,,生:3,是有限小数,是无限循环小数。
师:上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示。
反过来,任何有限小数或无限循环小数都是有理数。
上面研究过的是无限不循环小数。
无理数定义:无限不循环小数叫无理数师:除上面的,等,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数。
问题2:是无理数吗?2是无理数吗? 0.01001000100001…是无理数吗? 问题3:你能再举出一些你见到过的无理数吗? 问题4:让学生在独立思考的基础上,进行讨论交流:有理数存在哪几种形式?在学生回答的基础上让学生总结出无理数常见的三种形式:①开方开不尽的数都是无理数(如、、),②圆周率π类(简记为带π的)③有规律但不循环的无限小数(简记为人造无理数)。
数学七年级下学期《实数》教学设计

数学七年级下学期《实数》教学设计一. 教材分析《实数》是七年级下学期数学的重要内容,主要包括实数的定义、分类、运算和性质。
通过本章的学习,使学生掌握实数的基本概念,理解实数的运算规则,培养学生的逻辑思维能力和数学运算能力。
二. 学情分析学生在七年级上学期已经学习了有理数,对数的认识有一定的基础。
但实数的概念和性质较为抽象,运算规则也更为复杂,需要学生在已有的知识基础上,通过实例理解实数的内涵,掌握实数的运算方法。
三. 教学目标1.了解实数的定义和分类,掌握实数的性质和运算规则。
2.培养学生的逻辑思维能力和数学运算能力。
3.能够运用实数解决实际问题,提高学生的应用能力。
四. 教学重难点1.实数的定义和分类。
2.实数的运算规则。
3.实数的性质的理解和应用。
五. 教学方法采用问题驱动法、实例解析法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握实数的基本概念和运算规则。
六. 教学准备1.教学课件。
2.实例和练习题。
3.小组讨论的准备。
七. 教学过程1.导入(5分钟)通过复习有理数的概念,引出实数的概念,让学生思考实数与有理数的关系,激发学生的学习兴趣。
2.呈现(10分钟)介绍实数的定义、分类和性质,通过实例解析,让学生理解实数的内涵,掌握实数的运算规则。
3.操练(10分钟)进行实数的运算练习,让学生通过实际操作,巩固实数的运算规则,提高运算能力。
4.巩固(5分钟)通过练习题,巩固学生对实数的理解和运算能力。
5.拓展(5分钟)引导学生思考实数在实际问题中的应用,提高学生的应用能力。
6.小结(5分钟)总结本节课的重点内容,让学生明确学习的目标。
7.家庭作业(5分钟)布置适量的作业,巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和运算规则。
教学过程每个环节所用时间:导入5分钟,呈现10分钟,操练10分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
总计50分钟。
在完成《实数》的教学设计实施后,进行课堂反思是非常重要的。
人教版数学七年级下册6.3《实数》优秀教学案例

3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”
初中数学七年级《实数》优秀教学设计

6.3实数(1)教学过程设计知识探究1.探究:1.使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 ,35-,,911,119,592.归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式。
反过来,任何有限小数或无限循环小数也都是有理数3.观察:通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=也是无理数结论:有理数和无理数统称为实数4.试一试:把实数分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数像有理数一样,无理数也有正负之分。
例如2,33,π是正无理数,2-,33-,π-是负无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:5.探究实数与数轴上的点一一对应关系。
我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?总结:1.事实上,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
因为实数包括有理数和无理数,在教学中引导学生自己归纳实数的分类⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数领会按定义和按正负两种分类方法,领会分类思想。
学生通过探究实践,作图得出实数与数轴上的点一一对应通过具体操作让学生掌握实数与数轴上的点一一对应的关系不应忽略学生分组讨论,老师提示知识探究怎样表示无理数2?方法:(教师示范)6.课本思考,归纳相反数.倒数和绝对值的意义。
领会在实数范围内,相反数、倒数和绝对值的含义不变。
应用迁移1.把下列各数分别填入相应的集合里:332278,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7378π-----正有理数{ }负有理数{ }正无理数{ }负无理数{ }2. 下列实数中是无理数的为()A. 0B. 3.5- C.2 D.9;3.下列各数中,是无理数的是()A. 1.732- B. 1.414 C. 3 D. 3.144.已知四个命题,正确的有()⑴有理数与无理数之和是无理数⑵有理数与无理数之积是无理数⑶无理数与无理数之积是无理数⑷无理数与无理数之积是无理数A. 1个B. 2个C. 3个D.4个5.若实数a满足1aa=-,则()A. 0a> B. 0a< C. 0a≥ D. 0a≤6.下列说法正确的有()⑴不存在绝对值最小的无理数⑵不存在绝对值最小的实数⑶不存在与本身的算术平方根相等的数学生自主探索完成,巩固新知,提高能力.学生完成交流反馈学习情况。
北师大版八年级数学上册《实数》示范课教学设计

第二章实数2.6 实数一、教学目标1.了解实数的概念和意义,能按要求对实数进行分类.2.了解有理数的运算规律在实数范围内仍然适用.3.了解实数和数轴上的点一一对应,能找出实数在数轴上的对应位置.4.在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想.二、教学重难点重点:能按要求对实数进行分类,掌握实数的运算规律.难点:利用数轴上的点来表示实数,找出实数在数轴上的对应位置.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计环节二探究新知【合作探究】教师活动:首先设计一个数集分类的活动,让学生对数集进行归类,再让学生尝试自主地进行实数的分类后进行交流.之后引导学生研究实数的其他相关概念和运算.最后设计问题,引导学生探索实数和数轴上的点的对应关系.问题:把下列各数分别填入相应的集合内.分析:(1) 32,7,2,203,5-为开方开不尽的数,所以这五个数是无理数.(2) π,0.3737737773⋅⋅⋅是无限不循环小数,所以这两个数也是无理数.(3)14,52-为分数,所以14,52-是有理数.(4)382-=-为负整数;4293=为分数.所以38-,49是有理数.预设答案:【归纳】实数的定义:有理数和无理数统称为实数,分组操作,探索实数的定义.通过数集分类活动,让学生对不同性质的数进行归类,进一步熟悉有理数和无理数的概念.即实数可以分为有理数和无理数.按定义可以将实数分为:【议一议】提问:下面集合内的数还可以怎样分?教师提示:实数的分类与有理数的分类一样,有两种不同的标准:按定义分类和按符号分类,因此,类比有理数,实数也有正负之分.教师活动:教师先展示课件内容,再让学生将上面的数分成正数集合和负数集合.预设答案:【归纳】结论:实数又可以分为正实数、0和负实数.即按正负分实数可以分为:问题:有理数范围内的一些概念是否适用于实数?预设答案:适用.结论:在实数范围内,相反数、倒数、绝对值的意义,和有理数范围内的相反数、倒数、绝对值的意义完全一样.【想一想】与________互为相反数, a 是一个实数,它的相反数为______;与________互为倒数, 当a ≠0时,那么它的倒数为 _______; |3|=|0|= |π|-=a 是一个实数,它的绝对值为:______. 预设答案: 2 ,-a ;315,1a ; 30,,π.()()()⎪⎩⎪⎨⎧-=>=0000<a a a a a a【做一做】(1)分别写出6π 3.14--,的相反数; (2)求3513--,的倒数; (3)求364-的绝对值. 预设答案:(1)若a 是一个实数,它的相反数为-a ;思考有理数范围内的相关概念在实数范围内的意义.学生思考,解答.研究实数的相反数、绝对值的相关概念和有理数相关概念的联系并得出结论.趁热打铁,进一步熟悉实数范围内相反数、倒数、绝对值的意义.∴ 6-的相反数是6;π-3.14的相反数是3.14-π.(2)当a ≠0时,它的倒数为 ; ∴5-的倒数是15- ; 313-的倒数是3113-.(3)若a 是一个小于0的实数,则其绝对值为: -a . ∴364-的绝对值是4.【观察】观察下列式子,你发现了什么? 2552⋅=⋅113535355⎛⎫⋅⋅=⋅⋅= ⎪⎝⎭()33334272472112+=+=分析:分别用到了有理数运算中的乘法交换律、 乘法结合律、分配律.结论:实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.【议一议】(1)如下图,OA=OB ,数轴上点A 对应的数是什么?它介于哪两个整数之间?预设答案:解:(1)根据勾股定理,可得OB 2=12+12=2, ∴OB =2,OA =OB , OA =2.分小组进行探讨实数运算规律与有理数运算规律的联系.通过类比有理数的运算律,探讨实数的运算律、运算法则,明确实数和有理数一样,有完全一样的运算法则和运算律.引导学生探讨实数和数轴上的点的对应关系.实现数与形的结合,为后续的学习打基础.∴数轴上点A对应的数是2.∵2≈1.414,∴点A介于整数1和2之间.(2)你能在数轴上找到5对应的点吗?与同伴进行交流.预设答案:在数轴上数2的对应点处作长度为1的垂线段AB,连接原点O与点B,以原点O为圆心,OB 长为半径画弧交数轴与点2右侧一点C,则点C 即为5的对应点.【归纳】实数与数轴上的点的关系:每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.在数轴上,右边的点表示的数比左边的点表示的数大.【典型例题】1.错,对,错;解析:(1)带根号的数有可能是能开方开得尽的数,所以这句话错误.(2)所有实数的绝对值都是正数或0,而所有的正数都比0大,所以这句话正确.(3)数轴上的每一个点都表示一个实数,实数还包括无理数,所以这句话错误.2.解:在数轴上数3的对应点处作长度为1的垂线段AB,连接原点O与点B,以原点O为圆心,OB长为半径画弧交数轴与点3右侧一点C,则点C即为10的对应点.3.(1) π2,2π-,π2;(2)315-,3115,315.思维导图的形式呈现本节课的主要内容:。
初中数学《实数》单元教学设计以及思维导图

初中数学《实数》单元教学设计以及思维导图一、教学目标1. 知识与技能:理解实数的概念,掌握实数的分类。
掌握实数的运算方法,能够熟练地进行加、减、乘、除、乘方、开方等运算。
了解实数的性质,如实数的顺序性、稠密性、完备性等。
2. 过程与方法:通过实际问题和数学活动,培养学生的数学思维能力和问题解决能力。
通过小组合作学习,培养学生的合作意识和沟通能力。
3. 情感态度与价值观:培养学生对数学的兴趣和热爱,激发学生的求知欲和探索精神。
培养学生的严谨、细致、求实的科学态度。
二、教学内容1. 实数的概念:引导学生理解实数的概念,包括有理数和无理数。
通过举例和实际应用,帮助学生理解实数的意义。
2. 实数的分类:教授学生如何将有理数和无理数进行分类。
通过练习和讨论,巩固学生对实数分类的理解。
3. 实数的运算:讲解实数的加、减、乘、除、乘方、开方等运算方法。
通过大量练习和实际应用,帮助学生熟练掌握实数的运算。
4. 实数的性质:介绍实数的顺序性、稠密性、完备性等性质。
通过讨论和探究,引导学生发现和证明实数的性质。
三、教学策略1. 讲授法:通过讲解和示范,向学生传授实数的概念、分类和运算方法。
2. 讨论法:通过小组讨论和全班讨论,激发学生的思维,促进学生对实数概念和性质的理解。
3. 练习法:设计大量的练习题,让学生通过实际操作巩固所学知识。
4. 探究法:引导学生通过自主探究和合作学习,发现和证明实数的性质。
四、思维导图1. 实数的概念:有理数整数正整数、负整数、零分数正分数、负分数无理数2. 实数的分类:有理数无理数3. 实数的运算:加法减法乘法除法乘方开方4. 实数的性质:顺序性稠密性完备性初中数学《实数》单元教学设计以及思维导图一、教学目标1. 知识与技能:理解实数的概念,掌握实数的分类。
掌握实数的运算方法,能够熟练地进行加、减、乘、除、乘方、开方等运算。
了解实数的性质,如实数的顺序性、稠密性、完备性等。
2. 过程与方法:通过实际问题和数学活动,培养学生的数学思维能力和问题解决能力。
《实数》教学设计

《实数》教学设计
一、教学目标
1.理解实数的概念,包括有理数和无理数。
2.掌握实数的分类方法。
3.能进行实数的运算。
二、教学重难点
1.重点:实数的概念和分类。
2.难点:实数的运算。
三、教学方法
讲授法、讨论法、练习法。
四、教学过程
1.导入
回顾有理数的概念,引出无理数,从而引出实数的概念。
2.讲解实数的概念
(1)定义实数,说明实数包括有理数和无理数。
(2)举例说明无理数的存在。
3.实数的分类
(1)按定义分类。
(2)按性质分类。
4.实数的运算
(1)实数的加法、减法、乘法、除法。
(2)运算律在实数运算中的应用。
5.例题讲解
进行实数运算的例题分析。
6.课堂练习
让学生进行实数的分类和运算练习。
7.总结归纳
总结实数的概念、分类和运算方法。
8.作业布置
布置课后作业,巩固实数知识。
华东师大版八年级上册数学教学设计《实数》

华东师大版八年级上册数学教学设计《实数》一. 教材分析华东师大版八年级上册数学的《实数》章节,是学生在掌握了有理数知识的基础上,进一步学习实数的理论。
本章主要包括实数的定义、实数的分类、实数的运算以及实数与数轴的关系等内容。
通过本章的学习,使学生能够更深入地理解数的概念,掌握实数的运算方法,以及实数与几何图形之间的联系。
二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数的概念和运算规则有了初步的了解。
但学生在学习实数时,可能会对实数的抽象概念和实数与数轴的关系产生困惑。
因此,在教学过程中,需要引导学生通过实例来理解实数的定义,并通过数轴来直观地理解实数与数轴的关系。
三. 教学目标1.知识与技能:使学生理解实数的定义,掌握实数的分类,以及实数的运算方法;能够利用数轴表示实数,并理解实数与数轴的关系。
2.过程与方法:通过实例分析,培养学生的抽象思维能力;通过数轴的直观表示,培养学生的几何直观能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力,使学生体验到数学的严谨性和美感。
四. 教学重难点1.重点:实数的定义,实数的分类,实数的运算,实数与数轴的关系。
2.难点:实数的抽象概念,实数与数轴的关系。
五. 教学方法采用问题驱动法、实例教学法和数形结合法。
通过问题引导,激发学生的思考;通过实例分析,使学生理解实数的定义和运算;通过数形结合,使学生直观地理解实数与数轴的关系。
六. 教学准备1.教学PPT:制作涵盖实数的定义、分类、运算和数轴关系的PPT。
2.教学实例:准备一些与生活实际相关的实例,用于解释实数的概念。
3.数轴教具:准备数轴教具,用于直观地展示实数与数轴的关系。
七. 教学过程1.导入(5分钟)通过一个实际问题引出实数的概念,例如:“某商店进行打折活动,原价为200元,打8折后的价格是多少?”让学生思考并回答,从而引出实数的概念。
2.呈现(10分钟)讲解实数的定义,以及实数的分类,包括有理数和无理数。
人教版数学七年级下册6.3《实数》教学设计

人教版数学七年级下册6.3《实数》教学设计一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数知识的基础上,进一步学习实数的定义、性质和运算。
本节内容是整个初中数学的重要基础,对学生来说是全新的概念。
教材从学生的实际出发,通过引入无理数的概念,让学生感受实数的广泛性,进而引入实数的概念,使学生对实数有一个直观的认识。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的知识,对数的运算、大小比较等有一定的基础。
但实数是一个全新的概念,与有理数有很大的区别。
学生在学习过程中,可能对无理数的概念、实数的性质和运算产生困惑。
因此,在教学过程中,要注重引导学生从实际出发,理解实数的定义,掌握实数的性质和运算。
三. 教学目标1.了解实数的定义,掌握实数的性质和运算。
2.能够运用实数解决实际问题,提高解决问题的能力。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.实数的定义和性质。
2.实数的运算。
五. 教学方法1.情境教学法:通过生活实例,引导学生从实际出发,理解实数的定义和性质。
2.互动教学法:引导学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
3.实践操作法:通过大量的练习,让学生掌握实数的运算方法。
六. 教学准备1.准备相关的生活实例,用于导入新课。
2.准备PPT,展示实数的性质和运算。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如计算房屋面积、身高、体重等,引导学生从实际出发,了解无理数的概念。
进而引出实数的概念,让学生对实数有一个直观的认识。
2.呈现(10分钟)通过PPT展示实数的性质和运算,让学生对实数有一个全面的认识。
主要包括实数的定义、性质(如正实数、负实数、零实数等)和运算(如加法、减法、乘法、除法等)。
3.操练(10分钟)让学生进行实数运算的练习,巩固所学知识。
可以设置一些具有挑战性的题目,让学生在解决问题过程中,加深对实数运算的理解。
实数经典教案

主动地参与到数学学习过程中,亲自体验知识的形成过程.
课题: 10.3 实数(2)
1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一
一对应;
2、学会比较两个实数的大小;
教学目标
母了解在有理数范围内的运算及运算法则、运算性质等在实数范围 内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的
的绝对值是它的相反数;0 的绝对值是 0.
练一练
例 1 求下列各数的相反数和绝对值:
2.5,- 7 , ,0, 3 2 , -3 5
例 2 一个数的绝对值是 3 ,求这个数。
例 3 求下列各式的实数 x:
3
(1)|x|=|- |;
2
教学中应该给学生充 分发表自己想法的时 间,自己体会有理数 关于相反数和绝对值 的意义同样适用于实 数。
循环小数都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一
定的标准进行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该
创造条件,让学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着
找出三个无理数来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极
轴上的点之间的对应
试一试
教师启发学生得出结论:每一个无理数都可 以用数轴上的一个点表示出来.
关系. 通过练习,让学
练习:学生自己完成课本第 178 页练习第 1 生对于实数可以用数
题.
抽上的点表示,数抽
在此基础上,教师引导学生进一步得出结论: 上的一个点表示一个
在数从有理数扩充到实数后,实数与数轴上的点 实数有了直现的认识,
算一算
出 2 的近似值,再通过比较它们近似值(取近似
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》教学设计
【教材】人教版七年级数学下册 6.3实数第1课时
【教材分析】《实数》是在对算术平方根的研究的基础上,实现数的范围到有理
数后的进一步扩展。
揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。
【学情分析】学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用;学生思维仍较直观,无理数显得比较抽象,难以理解;学生
不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。
【教学目标】
✧知识与技能
让学生通过研读课文,从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
✧过程与方法
让学生体验利用有理数引出无理数和实数的过程,在教学中渗透类比、数形结合的数学思想方法;通过研读课文教会学生自主学习的方法,掌握数学阅读的学习模式。
✧情感态度价值观
培养学生热爱数学的情感和勇于发现真理的科学精神,渗透数形结合及分类的思想和对立统一、矛盾转化的辨证唯物主义观点。
【教学重点】无理数、实数的意义;在数轴上表示实数。
【教学难点、关键】无理数与有理数的本质区别;实数与数轴上的点的一一对应关系。
【教学方法】数学总结教学。
【教学过程设计】
一、教学流程设计
二、教学过程设计
(一)复习旧知
你认识下列各数吗?它们都是什么数? 3、−35、911
、-5、0.875、0 【设计意图】回顾有理数的有关知识,采用类比引入新课中有理数的学习。
(二)学习目标
1、了解无理数的概念
2、会对实数按照一定的标准的分类;
3、知道实数和数轴上的点具有一一对应关系
【设计意图】使学生明确本节课的学习目标,带着目标阅读课文,针对性更
强、重点更突出。
(三)研读课文
认真阅读课本第53页至第54页的内容。
【设计意图】书本是新课学习的基础。
(四)新课导入
1、观察下列各数的小数形式:
=π 14159265.3
【设计意图】回顾平方根、立方根的有关知识,让学生感受实数的存在并引
入新课。
2、完成下面练习,并体验知识点的形成过程。
3、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3=______
,=______, =______,
=______。
我们发现,上面的有理数都可以写成________ 或者 的形式。
归纳 事实上,任何一个 都可以写成有限小数或无限循环小数的形式。
反过来, 任何__________________________
也都是有理数。
观察 我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小
数又叫做 _ __。
例如 , , , 等都是 ____ 。
35-119911
也是。
结论 有理数和无理数统称为 。
试一试 我们学过的数可以这样分类:
{
,π是 ,,π-是 。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:
{
【设计意图】此题引导学生自主阅读课文,指导学生一种有效的学习方法,使学生不至于盲目自学而是有据可依,在感官上认识无理数和实数,了解无理数和实数的概念,由有理数和无理数的比较体验数学分类思想方法。
4、 合作探究 达成目标(此部分为课堂展示部分,结合书本知识)
我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?
从课本图6.3-1中可以看出O O '的长是 ,所以O '对应的数
是 .
总结 (1)每个有理数都可以用数轴上的点来表示。
事实上,每一个 也都可以用数轴上的 表示出来。
这就是说,数轴上的点有些表示 数,有些表示 数。
(2)当从有理数扩充到实数以后,实数与数轴上的点就是 ___
的,即每一个实数都可以用数轴上的 _来表示;反过来,数轴上的每一个点都是表示一个 。
3.14159265π=实数 实数
【设计意图】让学生继续阅读课文,结合数轴进一步探究、理解实数的性质,使学生在阅读中思考,在思考中体验数形结合的数学思想方法。
四、归纳小结
(一)谈谈本节课的收获是什么?
(二)你认为本节课需要注意的地方有哪些?
【设计意图】让学生回顾本节课的重点内容,理解实数的概念、性质,培养学生梳理知识的能力、归纳能力和表达能力。
五、课堂作业
.3,0中,有理数的个数有1、下列各数π,14
( )
A 2个
B 3个
C 4个
D 5个
2、把下列各数分别填入相应的集合里:
--
2,0.1010010001,1.414,0.020202,7
正有理数{ }
负有理数{ }
正无理数{ }
负无理数{ }
3判断题
(1)无理数是无限小数,无限小数就是无理数。
()
(2)无理数包括正无理数,0,负无理数()
(3)带根号的数都是无理数,不带根号的数都是有理数()
(4()
【设计意图】强化训练分层处理有较大的弹性,体现了练习的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,从而让不同的学生在数学上得到不同的发展。